

Edinburgh Research Explorer

Linear logic and elementary time

Citation for published version:
Danos, V & Joinet, J-B 2003, 'Linear logic and elementary time', Information and Computation, vol. 183, no.
1, pp. 123 - 137. https://doi.org/10.1016/S0890-5401(03)00010-5

Digital Object Identifier (DOI):
http://dx.doi.org/10.1016/S0890-5401(03)00010-5

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Information and Computation

Publisher Rights Statement:
Open Archive

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 26. Apr. 2024

https://doi.org/10.1016/S0890-5401(03)00010-5
https://doi.org/10.1016/S0890-5401(03)00010-5
https://www.research.ed.ac.uk/en/publications/0ae6fbda-dcbb-4318-af12-a541ac5cfbfb

Linear logic and elementary time

Vincent Danosa,* and Jean-Baptiste Joinetb

a CNRS and Universit�ee Paris 7, Paris, France
b Universit�ee Paris 1 and CNRS, Paris, France

Received 11 January 2000; revised 12 March 2001

Abstract

A subsystem of linear logic, elementary linear logic, is defined and shown to represent exactly elementary
recursive functions. Its choicest part consists in reducing the deductive power of the exponential, also known

as the ‘‘bang,’’ which, in linear logic, is in charge of controlling duplication in the cut-elimination process.

� 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Think of elementary linear logic as an idealized functional programming language with a severe
typing mechanism. Definition by recursion is, of course, forbidden, but some sort of iteration still
is possible and the purpose of this paper is to show that enough computing power remains so that
elementary recursive functions can be implemented. Actually, the whole paper can be considered
an exercise in programming elegantly with a rather desolate language.

To zero in on an interesting class of functions, one usually tries to weaken in the given logic
whatever corresponds to induction or iteration. Here we follow a different strand, rather specific
to the linear logic decomposition of the implication as !A(B, by fiddling with the rules handling
‘‘!’’. The standard rules are enough to embed the full power of intuitionistic computations. So the
game is to find a sensible way to make them harder to use than in full linear logic. There are a few
obvious candidates which we present below and ELLELL stands out as the simplest.

By proving it represents elementary time we surely learn something about the logic; but, does
the logic teach us anything about elementary time? It seems we merely are giving yet another

Information and Computation 183 (2003) 123–137

www.elsevier.com/locate/ic

Information
and

Computation

*Corresponding author.

E-mail address: danos@logique.jussieu.fr (V. Danos).

0890-5401/03/$ - see front matter � 2003 Elsevier Science (USA). All rights reserved.

doi:10.1016/S0890-5401(03)00010-5

mail to: danos@logique.jussieu.fr

language defining that complexity class. But the language is just not any language. It is a subset of
linear logic which supports the deployment of denotational semantics methods. Thus we bring
that class closer to a machine-independent semantic explanation. And, in the long term, it seems
just inevitable that the obsessive denotational semantics quest for a reconstruction of the inten-
sional based only on extensional evidence eventually makes it a powerful tool in complexity.

Surely another potential ‘‘application’’ is in the design of type systems which would embody
some sort of static termination proof within an interesting bound. Baillot has recently reported
finding a type inference algorithm for elementary linear logic [4]. This is a very interesting, but
quite perpendicular issue, bringing in different questions such as programming comfort.

Both the principles of our system and its representation theorem were forecast in Girard�s 1995
paper ‘‘Light Linear Logic’’ [8]. Actually the system can be traced further back in time when the
first author was trying to build a subsystem of LLLL with a simplified geometry of interaction in-
terpretation. Without being deadly original our construction improves on the state of the art by
giving a new and concise definition of ELLELL both as a fragment of LLLL proof nets and in the form of
a sequent calculus endowed with a sound cut-elimination procedure (there was a defect in the
original formulation as explained in [9]). We also provide a first complete proof of representation,
and we do this directly using Kalmar�s abstract characterization of elementary recursive functions,
in place of Turing machines. And last we develop a novel realizability interpretation of negative
intuitionistic LLLL proofs in k-calculus with pairing, which is of independent interest and allows,
here, for a simple and thorough checking of our ELLELL programming.

Coming to the organisation of the matter, we are confronted with a rather embarassing design
choice. Proof nets offer a graphical syntax for representing LLLL proofs which is particularly handy
for studying the dynamics of proofs (see, for instance, [6]). And ELLELL can be defined as the subset
of proof nets satisfying some stratification condition: that any exponential branch with a dere-
liction leaf (resp. with an axiom leaf) crosses exactly one (resp. zero) !-box. Of course this defi-
nition only makes sense after defining proof nets. It is pretty easy to verify then that proof-net
normalization preserves the stratification condition. From this it follows that ELLELL is strongly
normalizing. It follows also that the nonadditive fragment is confluent. All formal proofs pre-
sented here have been first done using this presentation of ELLELL, and it would be natural to use this
language in the paper too.

However, to cut down preliminaries, and possibly bring this study to a larger audience, we
choose to present ELLELL as a sequent calculus system. For the same reasons we will actually never
use more than the negative intuitionistic fragment of ELLELL, denoted by IELLIELL, which is enough to
implement elementary recursive functions. Cut-elimination certainly looks less elegant in sequent
calculus, but there remains an advantage yet, namely that our realizability is going to be simpler
to define and to prove adequate.

So we first define ILLILL, that is the negative intuitionistic fragment of linear logic, in the guise of a
sequent calculus; then we proceed to the definition of IELLIELL as a subset of those proofs meeting
(some suitable rephrasing of) the stratification condition and provide some discussion of alter-
native subsystems. Next, we define cut-elimination and draw from there any properties we need in
the remainder of the paper. A last preliminary step is the attachment to any ILLILL proof of a k-term
which will be useful in verifying the programming of the last section. We then turn to the defi-
nition of what it means to represent a function in ILLILL and IELLIELL, and prove the representation
theorem.

124 V. Danos, J.-B. Joinet / Information and Computation 183 (2003) 123–137

We thank Thierry Joly for a crash-course on the many different ways elementary time can be
defined in classical subrecursion theory.

2. Elementary linear logic

2.1. ILL and IELL as sequent calculi

2.1.1. Statics
Formulas are built over a countable set of propositional variables with the following operators:

(the linear implication, & the additive conjunction, ! the exponential, and 8 the second order
universal quantifier. Observe that (, &, and 8 are all right reversible. This fragment is usually
called the negative fragment of intuitionistic linear logic [7]. Sequents are of the form C ‘ A where
C is a finite multiset of formulas and A is a formula. An ILLILL proof is a proof tree constructed from
the rules below:

2.1.2. Various subsystems
Structural rules allow for duplication and erasure in cut-elimination. The other two rules

managing the exponential, or the ‘‘bang’’ namely dereliction and promotion, are in charge of
controlling these duplications. Prohibiting all of them results in a system with lazy normalization
in linear time. Elementary linear logic and its cousin light linear logic, representing exactly
polytime functions, also are obtained by constraining these rules, but in a less brutal way.

V. Danos, J.-B. Joinet / Information and Computation 183 (2003) 123–137 125

Definition 1. IELLIELL consists in the proofs of ILLILL satisfying the following stratification condition:
any left occurences of an exponential formula !A introduced by a dereliction rule (an axiom rule)
has exactly one (zero) descendant in the context of a promotion rule.

Typical sequents that are provable in ILLILL but not provable in IELLIELL are !X ‘ !!X and !X ‘ X for
X a propositional variable. Their shortest proofs respectively are

d ¼ !X ‘ !X
!X ‘ !!X

and � ¼ X ‘ X
!X ‘ X

;

and, indeed, none are in IELLIELL: d is not because it violates the axiom stratification condition, and �
is not either because it violates the dereliction stratification condition. Assuming cut-elimination,
it is easy to show that none of these sequents are provable in IELLIELL. These correspond categorically
to the natural transformations making the usual LLLL exponential a comonad:

X �X !X!dX !!X

which brings in the interesting question of whether one can have a categorical description of (what
it means to be a model of) elementary linear logic.

Note that the stratification condition runs somewhat against the tradition of sequent calculus
by introducing an additional nonlocal condition. Not only does one need to check each rule as
usual, but in addition, for each dereliction or axiom rule creating a ‘‘!’’ one has to chase down the
line of descendants of this formula occurrence and count how many promotion rules it crosses. In
particular a subproof of an ELLELL-proof need not be in ELLELL itself.

Other meaningful subsystems can be obtained by constraining this crossing-number c in var-
ious ways. For instance TLLTLL corresponds to the constraint c6 1 and 4ll to cP 1. So that the
former variant admits � and refuses d, while the latter makes the symmetric choice, they intersect
in ELLELL. Little is known about these variants, except that they are both closed by cut-elimination
and TLLTLL is strong enough to encode primitive recursion. And, of course, there is a very interesting
smaller system sitting inside ELLELL, namely Girard�s LLLLLL, which is obtained by further constraining
the ‘‘width’’ of promotion rules, that is the size of the promotion rules� contexts.

Fragments are named after standard terminology in modal logic (except ELLELL which should be
called KLLKLL). So far the situation is:

but combining width- and crossing-constraints generates many other stable subsystems of linear
logic.

2.1.3. Dynamics

We now informally describe the cut-elimination procedure with which we will equip LLLL. It is the
so-called q-protocol, first explained in [5] for classical logic. This is a ‘‘big-step’’ cut-elimination

126 V. Danos, J.-B. Joinet / Information and Computation 183 (2003) 123–137

procedure more in the style of natural deduction normalization than the usual ‘‘small-step’’ cut-
elimination.

Let A be an occurrence of a formula in a proof p and define A�s tree in p to be the subtree
of p that contains A�s ancestors. Its leaves may be logical rules, axioms, and weakenings in-
troducing A�s primeval ancestors. A�s tree is said to be flat when A is principal in a logical
rule.

Now, consider an ILLILL proof with a cut between two occurrences A0 and A1 of the same formula
A:

p0

C ‘ A0

p1

A1;C
0 ‘ C

C;C0 ‘ C
:

This cut will be handled by one of the three steps described below depending on whether A0�s and
A1�s trees are flat. These steps are mutually exclusive and one of them always applies.
1. The first structural step, or simply the S1 step, applies when A0�s tree is not flat. It con-

sists in cutting p1
A1;C

0‘C under A0�s logical leaves in p0, substituting it to axioms A0 ‘ A0 in-
troducing A0�s leaves in p0, and replacing A0�s weakening leaves with weakenings on the
context formulas C0 and C, transferring any contraction on A in A0�s tree to contractions
on C0 and C. (Indeed, in the particular case of ILLILL, A0�s tree is filiform so that it has only
one leaf, which must be introduced by a logical rule or an axiom, since there is no right
weakening in ILLILL; nevertheless the q-protocol works in general in a classical ambient cal-
culus).

2. The second structural step, or simply the S2 step, applies when A0�s tree is flat and A1�s is not. It
consists in cutting p0

C‘A0
under A1�s logical leaves in p1, substituting p0 to A1�s axiom leaves, and

replacing A1�s weakening leaves with weakenings on the context formulas C and transferring
any contraction on A in A1�s tree to contractions on C. (Again in the particular case of ILLILL there
might only be contractions and weakenings in A1�s tree if A is an exponential formula of the
form !B for some B).

3. If no structural steps apply then A0�s and A1�s trees are both flat. Then a logical step applies
depending on A�s principal connective or quantifier. For instance, in the exponential logical
rule:

!C ‘ A0

!C ‘ !A0

A1;C
0 ‘ C

!A1;C
0 ‘ C

C;C0 ‘ C

reduces to:

!C ‘ A0 A1;C
0 ‘ C

!C;C0 ‘ C
:

For a reason to be clear in the next proposition, we modify slightly the general protocol just
explained in the particular case where A ¼ !B. In this case we ask that the S2 step includes the last
reduction just presented (promotion/dereliction) though it is a logical one.

The natural embedding of ILLILL in proof nets allows us to simulate the q-protocol with proof-net
normalization.

V. Danos, J.-B. Joinet / Information and Computation 183 (2003) 123–137 127

In the following we consider only the lazy cut-elimination, where one never performs an S2 step
when some node of A1�s tree belongs to the context of a right &-rule. That lazy protocol has three
properties:
1. it is strongly normalizing;
2. from a recent result of Tortora de Falco [12], it follows that it is also confluent, up to the com-

mutation of structural rules;
3. when applied to proofs of simple sequents, i.e., with no positive subformulas of the form A&B

nor any negative subformulas of the form 8X A, it leads to cut-free proofs.
Now the expected property:

Proposition 2. IELLIELL is stable under the q-protocol.

This is easily checked. An S2 step on an exponential formula is the only nonroutine case. The
modification of S2 is required here, as well as the condition that exponential left formulas in
axioms have no descendants in the context of a promotion rule.

Call the depth of a rule in a proof the number of promotion rules below that rule. The key
dynamic property of IELLIELL, which the stratification condition directly enforces, is (1) the depth of
any rule, different from a cut, is invariant under the q-protocol; and (2) the depth of a cut may
only increase under the q-protocol. Thus an IELLIELL proof can be normalized by clearing out cuts in
depth-increasing order. Call the depth of a proof that of the deepest rule and the size of a proof the
number of its rules.

Let p be a proof of size s and depth d, if we neglect S1 and L steps which have no
effect on the size s; clearing out all cuts at depth d in p takes at most s steps (a crude
estimate on the number of cuts !) and result in a proof of size at most ssþ1 because each S2
step may at most produce s copies of any deeper rule (again an extremely crude estimate).
But, almost everywhere ssþ1 6 22

s
. So if one proceeds in depth-increasing fashion, cut-elim-

ination time will clearly be bounded by an exponential lower w2dðsÞ with wnþ1ðxÞ ¼ 2wnðxÞ and
w0ðxÞ ¼ x.

Theorem 3. IELLIELL normalizes in elementary time. That is, there is a function hðx; yÞ such that (1) for
all p of size s and depth d; hðs; dÞ bounds the maximum number of cut-elimination steps in p; and (2)
hð:; yÞ is elementary recursive for any y.

Of course, hðx; xÞ is not elementary recursive. Better estimates for h than the one above were
given by Kanovich in [10], in sequent calculus, and by Baillot and Pedicini in [2], in the geometry
of interaction framework.

2.2. ILL and IELL as typed lambda-calculi

We now attach to each ILLILL proof a typed term of k-calculus with pairing. In a typing judgment
C ‘ t : A the context C is now a partial application from variables to formulas, defined on all free
variables of t. The typing judgments are obtained as follows:

128 V. Danos, J.-B. Joinet / Information and Computation 183 (2003) 123–137

Two remarks are in order here. First, the terms attached to a proof are invariant under both
quantifier rules, dereliction, and promotion. Second, if C ‘ t : A is derivable in the system above
then C
 ‘ t : A
 is derivable in system FF with products, where A
 is obtained from A by erasing
exponentials, replacing (with ! the intuitionistic implication and & with � the intuitionistic
product (the so-called intuitionistic forgetful reading of ILLILL).

We now equip terms with their usual equality generated by the following:

ðkx; t uÞ � t½u=x�; ðfst ht1; t2iÞ � t1 and ðsnd ht1; t2iÞ � t2:

If p is an ILLILL proof, it is assigned, up to renaming, a unique term by the typing system above,
which we denote by tðpÞ. The reason we introduce these terms in the first place is that tðpÞ can be
read as a kind of computational semantics of p:

Proposition 4. ILLILL normalization is compatible with its term assignment. That is, given an ILLILL proof

p; if p q-normalizes to p0, then tðpÞ � tðp0Þ.

Specifically, both structural steps, S1 and S2, leave the attached term invariant, and so does the
quantifier step. Additive and multiplicative logical steps induce a rewriting of the attached term
using the corresponding rule above. Working in the negative fragment comes into play here:
during an S1 step, any rule that the line of ancestors of a given cut formula traverses is rendered as
a substitution at the term level and therefore the attached term is invariant under S1. This would
no longer be the case in the presence of the additive disjunction �, though even this case could be
accomodated at the expense of more term equations.

V. Danos, J.-B. Joinet / Information and Computation 183 (2003) 123–137 129

We are done now with proof-theoretic preliminaries. In the next section we set up the notion of
implementing a function with a proof in ILLILL.

3. Implementing functions in IELLIELL

3.1. Representing integers

Put N ¼ 8X !ðX(X Þ(!ðX(X Þ: This is the formula we choose to be the type of integers. Note
that the intuitionistic associated type, N
, is but the usual integer type in system FF. In fact our
programming is going to run parallel to usual FF programming as far as our typing system permits.

For A any formula, let NA stand for !ðA(AÞ(!ðA(AÞ.
We proceed now to the description of normal, or cut free, integers in IELLIELL. In case n 6¼ 0, n is

represented by the proof below, denoted xn. By convention double inference lines indicate more
than one rule in a row.

Or, in case n ¼ 0, it is represented by the following proof, denoted x0:

Note that xns are indeed in IELLIELL, trivially so for x0 since it contains no dereliction or exponential
axiom and less trivially for other xn�s since all their derelictions, of which they have exactly n,
have one descendant in the unique promotion. All of them are of depth 1 and xn�s size is
4ðnþ 1Þ. Also note that tðxnÞ ¼ kf kx:ðf ð. . . ðfxÞÞÞ, i.e., the nth Church numeral, which we shall
denote by n.

Observe also that, up to commutation of weakenings, derelictions, and contractions, these are
all cut free proofs of N in IELLIELL. Except for 1, which has two representations. But this is already
the case in system FF.

130 V. Danos, J.-B. Joinet / Information and Computation 183 (2003) 123–137

3.2. Implementing functions

We need a few notations before we are in position to define what it means to represent a function.
If p

A1;...;Ak‘B and
p1
‘Ai
, i ¼ 1; . . . ; k, are proofs in IELLIELL, then pðp1;...;pkÞ

‘B will stand for p cut against the

pi�s; that is:

If A is a formula, let !pA stand for ! . . . !A, that is A prefixed by p exponentials. If p
‘A is a proof in

IELLIELL, then !pp
‘!pA will stand for p promoted p times. Note that !pp is still in IELLIELL.

Definition 5. Let f be a k-ary function from integers to integers; we say that f is representable (or
programmable) in IELLIELL if there exists an integer pP 0 and an IELLIELL proof p

N ;...;N‘!pN such that for all
n1; . . . ; nk:

pðxn1 ; . . . ;xnkÞ q-normalises to !pxf ðn1;...;nkÞ:

When p ¼ 0, we say such a p is flat; when not, we say p is oblique.
Note that the term tðpÞ attached to such a p is an open term with at most k free variables. (This

saves systematically ending proofs with k right implication rules.) As said, it always will be typable
of type N
; . . . ;N
 ‘ N
, in system FF with products.

If f is representable then it must be total since all proofs are strongly normalizing. Conversely:

Lemma 6. Let p
N ;...;N‘!pN be an IELLIELL proof; then (1) p represents a unique total recursive function, say

f, and (2) tðpÞ also represents f.

Indeed, for all n1; . . . ; nk, pðxn1 ; . . . ;xnkÞ proves a simple conclusion, namely !pN . It therefore
normalizes to a unique proof of the form !pxm, for some m. Hence p represents the function which
produces m on input n1; . . . ; nk.

For (2) suppose p is unary, just to ease notations. Call x the free variable of tðpÞ and let n be an
integer. Then pðxnÞ normalizes to a unique xm as said. Now by compatibility, we know that
tðpÞ½n=x� � m, which means tðpÞ represents (in the usual sense of k-terms representing functions
over Church numerals) the same function as p.

The second point in the lemma is going to be very useful: to check whether a p represents a
function, it suffices to prove that tðpÞ does. And it is very illuminating too, because it says ex-
ponentials are only instrumental in collecting information about the term (such as an elementary
time termination proof in our case), in no way do they express any computational content. And
this is nothing specific to IELLIELL, it is true of negative ILLILL in general.

Call d the depth of such a p, and s its size. Then pðxn1 ; . . . ;xnkÞ is of depth maxð1; dÞ, since xns,
as said, are of depth 1. It follows that pðxn1 ; . . . ;xnkÞ will normalize in less than hð4ðn1 þ � � �

V. Danos, J.-B. Joinet / Information and Computation 183 (2003) 123–137 131

þnkÞ þ 5k þ s, maxð1; dÞ) steps, since xn has size 4nþ 4, and that bound is elementary recursive in
n1; . . . ; nk. Hence:

Theorem 7. Any function from integers to integers representable in IELLIELL is elementary recursive.

Indeed, q-steps can be simulated on a Turing machine with an elementary recursive slow-down
(and not less in general because one S2 step might transform a proof of size s in a proof of size s2).
If f is representable, it can be implemented by a Turing machine running in elementary time in the
size of the inputs (be they unary as here or binary, as usual, this makes no difference for the class
of elementary recursive functions).

The end of the paper is devoted to a careful proof of the converse:

Theorem 8. Any elementary recursive function from integers to integers is representable in IELLIELL.

4. Programming in ELLELL

We use the abstract following characterization due to Kalmar (cf. [11]): elementary functions
are contained in any class of functions: (1) containing constants, projections, addition, multi-
plication, substraction (or equality test) and (2) closed under composition, bounded sums, and
bounded products.

All we have to do now is to program in IELLIELL these basic functions and schemes. In passing we
will program a few more, mostly variations on iteration of flat p�s.

The method we follow each time consists in (1) exhibiting a proof, (2) checking that it belongs
to IELLIELL (in other words that it meets the stratification condition), (3) computing the attached
term, and (4) checking that it itself represents the desired basic function or scheme (which is
enough to show that the proof represents the intended function or scheme, by the lemma above).
We leave it to the reader to verify points (2) which is always trivial and (4) which involves regular
k-calculus computations.

Below, proof will mean proof in IELLIELL.

4.1. Addition and successor

Addition is represented by the following flat proof (of depth 1):

132 V. Danos, J.-B. Joinet / Information and Computation 183 (2003) 123–137

The term attached to this proof is kf :kx:ððmf Þððnf ÞxÞÞ, the regular addition, but the typing hardly
follows the inductive structure of the term ! This is why sequent calculus, or explicit substitution
(as in [1]) is needed to present ELLELL as a typing system.

Cutting this proof against x1 in either left-hand side formula gives a proof representing the
successor function (both being flat). The attached term will be kf :kx:ððmf ÞðfxÞÞ or
kf :kx:ðf ððnf ÞxÞÞ depending on which left-hand side formula is chosen. Again these are the two
regular implementations of the successor function over Church numerals.

4.2. Multiplication

Multiplication is represented by the following flat proof (of depth 0):

the term attached being kf :ðmðnf ÞÞ.

4.3. Two iteration schemes

The following scheme IT 0S;E generalizes the traditional iteration scheme. Given two proofs S and
E (S is mnemonics for Step, and E for Exit) we define IT 0S;E to be:

If s is attached to S, e to E, and x is the free variable associated to the left-hand side formula
!ðA(AÞ, then e½ðn sÞ=x� is attached to IT 0S;E.

Let B (for Base) be a proof of D ‘ A and S
 be a proof of C, A ‘ A. We get a particular case of
IT 0S;E, with C ¼ !A, which we denote ITS
;B, by:

If s is attached to S
, b to B, and x is the free variable associated to the left-hand side formula A in
S
, then (ðnkx:sÞ b) is attached to ITS
;B. So that ITS
;B implements the traditional iteration scheme.
But, note that only a flat S
 may be iterated.

V. Danos, J.-B. Joinet / Information and Computation 183 (2003) 123–137 133

(In fact, knowing that elementary functions are not closed by iteration, we deduce that no proof
of !N ‘ N represents the identity function; otherwise this proof could be used to flatten any ob-
lique p without changing the function represented; there is no way we could think of to prove this
directly on the syntax.)

4.4. Composition

4.4.1. Coercions

Remember successor can be represented by a flat proof, call it succ, so that choosing for S
 and
B the following components, in ITS
;B:

der

N ‘ N
succ

!kN ‘ !kN
!-box

‘ N
x0

‘ !kN
!-box

we get, for all k, a proof of N ‘ !kþ1N , which we call a coercion.
These coercions can be used to strip left-hand side exponentiated N�s from their exponentials

(by cut). The term attached is ððnsÞ 0Þ where s attached to succ and does not depend on k (while
the proof does). It is the identity on Church numerals, though it is not equal to the identity. Hence
cutting a coercion on a proof p representing f will leave the function represented by tðpÞ invariant,
hence that of p, since they are the same. We can therefore freely use them. (In sharp contrast with
any proof of !kþ1N ‘ N as just discussed.)

4.4.2. Composition

Let f ðx1; . . . ; xkÞ and gðy1; . . . ; yi; . . . ; ym) be functions from integers to integers represented by

proofs
f

N ;...;N‘!pN and
g

N ;...;N‘!qN. Then their linear composition gðy1; . . . ; f ðx1; . . . ; xkÞ; . . . ; ymÞ can be

represented by:

where the topmost cut is performed on the left-hand side formula corresponding to yi. Thus we
implement linear composition.

To get the full scheme of composition heavier notation is needed. So, suppose we are given a
function gðy1; . . . ; ymÞ and m functions fiðx1; . . . ; xkÞ of the same arity k, respectively represented by
g and f

i
�s with obliqueness q and pi�s. Set p > maxðpiÞ; we first form !pgð!p
pif

1
; . . . ; !p
pmf

m
Þ, we

then contract all left-hand side formulas corresponding to the same xj; j ¼ 1; . . . ; k (which is
always possible, modulo coercions, since p
 pi > 0), and finally we use again coercions to strip
remaining left exponentials. Thus we get a proof of N ; . . . ;N ‘ !qþpN representing the general
composition. Note that the composite has obliqueness at least qþ 1þmaxðpiÞ.

134 V. Danos, J.-B. Joinet / Information and Computation 183 (2003) 123–137

4.5. Exponential

To represent the exponential function mn, we simply iterate (with our second iteration scheme)
any flat proof representing the function f ðxÞ ¼ mx (which we get from our programming of the
multiplication), taking x1 as the base case.

The resulting proof is a proof of N ‘!N of obliqueness 1 and hence cannot be iterated further,
which is natural since it would result in programming a nonelementary function !

By composition, yet, one can program exponential towers of arbitrary fixed height. The higher
the tower, the more oblique the proof becomes.

4.6. Predecessor and substraction

We get the predecessor as an instance of our iteration scheme IT 0S;E.
For the step S we choose:

The term attached to this proof is kz:hðsnd zÞ; ðf ðsnd zÞÞi where f is the free variable corresponding
to the left-hand side formula !ðX(X Þ.

For exit E we choose:

The term attached to this proof is kx.(fstðghx; xiÞ) where g is the free variable corresponding to the
left-hand side formula !ðX&X(X&X Þ.

Then, by applying the first iteration scheme, we get:

N ; !ðX(X Þ ‘ !ðX(X Þ
IT 0S;E

N ‘ NX

N ‘ N
8

(

which represents the predecessor. Observe that the proof is flat, so we get substraction with
obliqueness 1, by the second iteration scheme.

V. Danos, J.-B. Joinet / Information and Computation 183 (2003) 123–137 135

4.7. Bounded sums and products

To finish the proof we have to deal with bounded sums and products. That is given a repre-
sentable function F ði;~xxÞ, we want to represent the function

Pn
i¼0 F ði;~xxÞ and

Qn
i¼0 F ði;~xxÞ. In fact we

are going to do a bit more than this by implementing both schemes as instances of a more general
one, which we may call binary iteration. Expressed in the usual language of recursion, given a
binary function G, an nþ 1-ary function F , we can define an nþ 1-ary function H by:

Hð0;~xxÞ ¼ F ð0;~xxÞ and Hðnþ 1;~xxÞ ¼ GðF ðnþ 1;~xxÞ;Hðn;~xxÞÞ:
In the particular case where G is the sum or the product, H is indeed the bounded sum or the

bounded product of F. Now, if G is representable by a flat proof and F is representable at all, we
can represent H using again our iteration scheme IT 0S;E as we show below. This is enough to end
the proof, since we already provided flat representations of addition and multiplication.

So, suppose we are given a proof G of N ;N ‘ N , the binary flat proof to be iterated which can
be thought of as the sum or the product, and a proof F of C, N ‘ !pN . The function H above can
then be represented by constructing the proof IT 0SF ;G E, where SF ;G : !2C ‘ !ðA(AÞ is

and E : !2C; !ðA(AÞ ‘ !pþ2N is

and with IT 0ðSF ;G;EÞ in place, we finally get, by contractions and coercions on !2C (C is a multiset
on N, since all of F parameters are taken to be integers), a proof of C, N ‘ !pþ2N .

The term attached to SF ;G is

kz:hðsðfst zÞÞ; g½f ½ðfst ðs zÞÞ=x0�=x; ðsnd zÞ=y�i

136 V. Danos, J.-B. Joinet / Information and Computation 183 (2003) 123–137

where s; g½x; y�, and f ½x0� are the terms respectively associated to succ, G and F , while the term
attached to E is ðsndðhh0; f ½0=x0�iÞÞ where h is the variable corresponding to the left-hand side
formula in E.

Observe that, in usual recursion theory, there is no way one could unify both schemes since
there we do not have a notion of being flat. Which brings up the question of whether one can
actually show some other binary flatly representable function (that is other than bilinear poly-
nomials which obviously can be obtained from multiplication and addition): we do not know.

5. Conclusion

One of the outcome of this careful proof of the representation theorem is that the use of second
order has been entirely confined to the first iteration scheme. Thus, one can presumably rephrase
all this as a linear typing system for an elementary system TT and use static denotational semantics
(such as Baillot�s stratified coherence spaces in [3]) to model the part of IELLIELL put to use in the
proof and try to chase after a semantic counterpart of stratification.

Another phenomenon of interest is that all our programming maps back by the forgetful in-
tuitionistic reading to LJQLJQ, a logical intuitionistic system which is now known to relate to call-by-
value k-calculus. There is hope that typing such terms with IELLIELL might shed some light on what it
means for a term to be ‘‘stratified.’’

Other patent questions are: What kind of elementary functionals are defined here ? Can this
approach be furthered to LLLLLL?

References

[1] A. Asperti, Light affine logic, in: Proceedings of LICS�98, Indiana University, Bloomington, USA, IEEE Press,

New York, 1998.

[2] P. Baillot, M. Pedicini, Elementary complexity and geometry of interaction, in: Proceedings of TLCA�99, Lecture
Notes in Computer Science, vol. 1581, Springer, Berlin, 1999.

[3] P. Baillot, Stratified coherent spaces: a denotational semantics for light linear logic, in: Communication at the

Second Workshop on Implicit Computational Complexity ICC�00, 2000.
[4] P. Baillot, Private communication, 2001.

[5] V. Danos, J.-B. Joinet, H. Schellinx, A new deconstructive logic; linear logic, J. Symbolic Logic 62 (3) (1995) 755–

807.

[6] J.-Y. Girard, Linear logic, Theoret. Comput. Sci. 50 (1987) 1–102.

[7] J.-Y. Girard, A new constructive logic: Classical logic, Math. Struct. Comput. Sci. 1 (3) (1991) 255–296.

[8] J.-Y. Girard, Light linear logic, Inform. Comput. (1995) 14.

[9] M.I. Kanovich, M. Okada, A. Scedrov, Phase semantics for light linear logic, Theoret. Comput. Sci., to appear.

Extended abstract in: 13th Annual Conference on the Mathematical Foundations of Programming Semantics,

Pittsburgh, Pennsylvania, March, 1997, Electronic Notes in Theoretical Computer Science 6 (1997).

[10] M. Kanovich, Communication at the Workshop on Linear Logic and Typed Lambda-Calculus, 5–11th April 1998,

CIRM Universit�ee de Marseille-Luminy, France, 1998.

[11] H. Rose, E, Sub-Recursion: Functions and Hierarchy, Clarendon Press, Oxford, 1984.

[12] L. Tortora de Falco, Additives of linear logic and normalization-Part I: a (restricted) Church-Rosser property,

Theoret. Comput. Sci. 294(3) (2003) 489–524.

V. Danos, J.-B. Joinet / Information and Computation 183 (2003) 123–137 137

	Linear logic and elementary time
	Introduction
	Elementary linear logic
	ILL and IELL as sequent calculi
	Statics
	Various subsystems
	Dynamics

	ILL and IELL as typed lambda-calculi

	Implementing functions in iell
	Representing integers
	Implementing functions

	Programming in ell
	Addition and successor
	Multiplication
	Two iteration schemes
	Composition
	Coercions
	Composition

	Exponential
	Predecessor and substraction
	Bounded sums and products

	Conclusion
	References

