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Abstract

We introduce a new class of scheduling problems in which the optimization is performed
by the worker (single “machine”) who performs the tasks. A typical worker’s objective is to
minimize the amount of work he does (he is “lazy”), or more generally, to schedule as inefficiently
(in some sense) as possible. The worker is subject to the constraint that he must be busy
when there is work that he can do; we make this notion precise both in the preemptive and
nonpreemptive settings. The resulting class of “perverse” scheduling problems, which we denote
“Lazy Bureaucrat Problems,” gives rise to a rich set of new questions that explore the distinction
between maximization and minimization in computing optimal schedules.

Keywords: Scheduling, Approximation Algorithms, Optimization, Dynamic Programming, NP-
completeness, Lazy Bureaucrat. 68M20, 68Q25, 90B35, 90B70.

1 Introduction

Scheduling problems have been studied extensively from the point of view of the objectives of the
enterprise that stands to gain from the completion of a set of jobs. We take a new look at the
problem from the point of view of the workers who perform the tasks that earn the company its
profits. In fact, it is natural to expect that some employees may lack the motivation to perform at
their peak levels of efficiency, either because they have no stake in the company’s profits or because
they are simply lazy.

The following example illustrates the situation facing a “typical” office worker, who may be one
small cog in a large bureaucracy:
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Example. It is 3:00 p.m., and Dilbert goes home at 5:00 p.m. Dilbert has two tasks
that have been given to him: one requires 10 minutes, the other requires an hour. If
there is a task in his “in-box,” Dilbert must work on it, or risk getting fired. However,
if he has multiple tasks, Dilbert has the freedom to choose which one to do first. He
also knows that at 3:15, another task will appear — a 45-minute personnel meeting. If
Dilbert begins the 10-minute task first, he will be free to attend the personnel meeting
at 3:15 and then work on the hour-long task from 4:00 until 5:00. On the other hand, if
Dilbert is part way into the hour-long job at 3:15, he may be excused from the meeting.
After finishing the 10-minute job by 4:10, he will have 50 minutes to twiddle his thumbs,
iron his tie, or enjoy engaging in other mindless trivia. Naturally, Dilbert prefers this
latter option.

An historical example of a situation where it proved crucial to schedule tasks inefficiently is doc-
umented in the book/movie Schindler’s List [11]. It was essential for the workers and management
of Schindler’s factory to appear to be busy at all times in order for the factory to stay in operation,
but they simultaneously sought to minimize their contribution to the German war effort.

These examples illustrate a general and natural type of scheduling problem, which we term
the “Lazy Bureaucrat Problem” (LBP); the goal of the LBP is to schedule jobs as inefficiently
(in some sense) as possible. There exists a vast literature on scheduling; see e.g., some of the
recent surveys [10, 13, 15]. The LBP studies these traditional problems “in reverse.” Several other
combinatorial optimization problems have also been studied in reverse, leading, e.g., to maximum
TSP [3, 4, 7, 12], maximum cut [6], and longest path [9]; such inquiries often lead to a better
understanding of the structure and algorithmic complexity of the original optimization problem.

1.1 The Model

In this paper we schedule a set of jobs 1 . . . n having processing times (lengths) t1 . . . tn respectively.
Job i arrives at time ai and has its deadline at time di. We assume throughout this paper that
ti, ai, and di have nonnegative integral values. The jobs have hard deadlines, meaning that each
job i can only be executed during its allowed interval Ii = [ai, di]; we also call Ii the job’s window .
We let ci = di − ti denote the critical time of job i; job i must be started by time ci if there is any
chance of completing it on time.

The jobs are executed on a single processor, the (lazy) bureaucrat . The bureaucrat executes
only one job at a time.

1.1.1 Busy Requirement

The bureaucrat chooses a subset of jobs to execute. Since the bureaucrat’s goal is to minimize his
effort, he would prefer to remain idle all the time and to leave all the jobs unexecuted. However, this
scenario is forbidden by what we call the busy requirement, which stipulates that the bureaucrat
work on an executable job, if any executable jobs exist. A job is executable if the constraints of
the LBP allow the job to be run. Thus, in the nonpreemptive setting a job j is executable as long
as it begun during the interval [aj , cj ], at which point it is run to completion. In the preemptive
setting the constraints that govern whether or not a job can be executed are more complicated; see
Section 3.
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1.1.2 Objective Functions

In traditional scheduling problems, if it is impossible to complete the set of all jobs by their
deadlines, one typically optimizes according to some objective, e.g., to maximize a weighted sum
of on-time jobs, to minimize the maximum lateness of the jobs, or to minimize the number of late
jobs. For the LBP we consider three different objective functions, which naturally arise from the
bureaucrat’s goal of inefficiency:

1. Minimize the total amount of time spent working — This objective naturally appeals to a
“lazy” bureaucrat.

2. Minimize the weighted sum of completed jobs — In this paper we usually assume that the
weight of job i is its length, ti; however, other weights (e.g., unit weights) are also of interest.
This objective appeals to a “spiteful” bureaucrat whose goal it is to minimize the fees that the
company collects on the basis of his labors, assuming that the fee (in proportion to the task
length, or a fixed fee per task) is collected only for those tasks that are actually completed.

3. Minimize the makespan, the maximum completion time of the jobs — This objective appeals
to an “impatient” bureaucrat, whose goal it is to go home as early as possible, at the com-
pletion of the last job he is able to complete. He cares about the number of hours spent at
the office, not the number of hours spent doing work (productive or otherwise) at the office.

Note that, in contrast with standard scheduling problems on one processor, the makespan in
the LBP varies; it is a function of which jobs have passed their deadlines and can no longer
be executed.

1.1.3 Additional Parameters of the Model

As with most scheduling problems, additional parameters of the model must be set. For example,
we must explicitly allow or forbid preemption of jobs. When a job is preempted , it is interrupted
and may be resumed later at no additional cost. If we forbid preemption, then once a job is begun,
it must be completed without interruptions.

We must also specify whether scheduling occurs on-line or off-line. A scheduling algorithm is
off-line if all the jobs are known to the scheduler at the outset; it is on-line if the jobs are known
to the scheduler only as they arrive. In this paper we restrict ourselves to off-line scheduling; we
leave the on-line case as an open problem.

1.2 Our Results

In this paper, we introduce the Lazy Bureaucrat Problem and develop algorithms and hardness
results for several versions of the LBP. From these results, we derive some general characteristics
of this new class of scheduling problems and describe (1) situations in which traditional scheduling
algorithms extend to the LBP and (2) situations in which these algorithms no longer apply.

1.2.1 No Preemption

We prove that the LBP is NP-complete, as is often the case for traditional scheduling problems.
Thus, we focus on special cases to study exact algorithms. When all jobs have unit size, optimal
schedules can be found in polynomial time. The following three cases have pseudo-polynomial
algorithms: (1) when each job i’s interval Ii is less than twice the processing time of job i; (2) when
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Instance Metric Complexity

• Unit-length jobs: t1 = · · · = tn = 1 1 Polynomial time

• Short job intervals: ∀i di − ai < 2ti 1-3 Pseudo-polynomial time

• Ratios R = O(1) and ∆ = O(1) 1-3 Pseudo-polynomial time

• Same arrival times: a1 = · · · = an 1-3 Pseudo-polynomial time

(Weakly) NP-complete

Hard to approximate

• Job size ratio ∆ = O(1) 1-3 Strongly NP-complete

Hard to approximate

• General LBP 1-3 Strongly NP-complete

Hard to approximate

Figure 1: Summary of our nonpreemptive results; see Section 2.

Preemption Metrics Complexity

I 1-3 Polynomial Time

II 1-3 (Weakly) NP-complete, even when a0 = · · · = an

III 1-3 (Weakly) NP-complete, even when a0 = · · · = an

Hard to approximate

Figure 2: Summary of our preemptive results; see Section 3.

the ratios of interval length to job length and longest job to shortest job are both bounded; and
(3) when all jobs arrive in the system at the same time. These last scheduling problems are solved
using dynamic programming both for Lazy Bureaucrat and traditional metrics. Thus, in these
settings, the Lazy Bureaucrat metrics and traditional metrics are solved using similar techniques.

From the point of view of approximation, however, the standard and Lazy Bureaucrat met-
rics behave differently. Standard metrics typically allow polynomial-time algorithms having good
approximation ratios, whereas we show that the Lazy Bureaucrat metrics are difficult to approxi-
mate. This hardness derives more from the busy requirement and less from the particular metric
in question, that is the busy requirement appears to render the problem substantially more dif-
ficult. (Ironically, even in standard optimization problems, the management often imposes this
requirement because it intuitively appears desirable.)

1.2.2 Preemption

The busy requirement dictates that the worker must stay busy while work is in the system. If
the model allows preemption we must specify under what conditions a job can be interrupted or
resumed. We distinguish three versions of the preemption rules, which we list from most permissive
to most restrictive. In particular, workers are constrained to execute the following jobs:

(I) any job that has arrived and is before its deadline,

(II) any job that has arrived and for which there is still time to complete it before its deadline, or
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Instance Preemption Metric Complexity

• Arbitrary deadlines II 3 (Weakly) NP-Complete

• Identical job arrivals: Hard to approximate

a1 = · · · = an = 0

• Arbitrary job arrivals II 3 Polynomial time

• Identical deadlines:
d1 = · · · = dn = D

Figure 3: Illustration that reversal of time changes complexity; see Section 3.3.

(III) any job that has arrived, but with the constraint that if it is started, it must eventually be
completed.

We consider all three metrics and all three versions of preemption. We show that, for all three
metrics, version I is polynomially solvable, and version III is NP-complete. Many of the hardness
results for no preemption carry over to version III.

Our main results are for version II. We show that the general problem is NP-complete. Then,
we focus on minimizing the makespan in two complementary special cases:

1. All jobs have a common arrival time and arbitrary deadlines.

2. All jobs have a common deadline and arbitrary arrival times.

We show that the first problem is NP-complete, whereas the second problem can be solved in
polynomial time.

These last results illustrate a curious feature of the LBP. One can convert one special case into
the other by reversing the direction of time. In the LBP, unlike many scheduling settings, this
reversing of time changes the complexity of the problem.

1.3 Related Work on the LBP

Recently Hepner and Stein [8] published a pseudo-polynomial-time algorithm for minimizing the
makespan subject to preemption constraint II, thus resolving an open problem from an earlier
version of this paper [1]. They also extend the LBP to the parallel setting, in which there are
multiple bureaucrats.

2 LBP: No Preemption

In this section, we assume that no job can be preempted: if a job is started, then it is performed
without interruption until it completes. We show that the Lazy Bureaucrat Problem (LBP) without
preemption is strongly NP-complete and is not approximable to within any factor for the three
metrics we consider. These hardness results distinguish our problem from traditional scheduling
metrics, which can be approximated in polynomial time, as proved in [2]. We show, however, that
several special cases of the problem have pseudo-polynomial-time algorithms, using applications of
dynamic programming.
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2.1 Hardness Results

We begin by describing the relationship between the three different objective functions from Sec-
tion 2.1 in the case of no preemption.

The problem of minimizing the total work (objective function 1) is a special case of the prob-
lem of minimizing the weighted sum of completed jobs (objective function 2), because without
preemption every job that is executed must be completed. (The weights become the job lengths.)
Furthermore, if all jobs have the same arrival time, say time zero, then the two objectives mini-
mizing the total amount of time spent working and minimizing the makespan (go home early) are
equivalent (objective functions 1 and 3), since no feasible schedule will have any gaps. Our first
hardness theorem applies therefore to all three objective functions from Section 2.1.

Theorem 1 The Lazy Bureaucrat Problem with no preemption is (weakly) NP-complete for objec-
tive functions (1)-(3), and is not approximable to within any fixed factor, even when all arrival
times are the same.

Proof: We use a reduction from the Subset Sum problem [5]: Given a set of integers S =
{x1, x2, . . . , xn} and a target integer T , does there exist a subset S′ ⊆ S, such that

∑

xi∈S′ xi = T ?
We construct an instance of the LBP having n + 1 jobs, each having release time zero (ai = 0

for all i). For i = 1 . . . , n, job i has processing time ti = xi and deadline di = T . Job n + 1 has
processing time tn+1 = 1+

∑

xi∈S
xi and deadline dn+1 = T+tn+1−1; thus, job n+1 can be started

at time T − 1 or earlier. Because job n+ 1 is so long, the bureaucrat wants to avoid executing it,
but can do so if and only if he selects a subset of jobs from {1, . . . , n} to execute whose lengths
sum to exactly T . In summary, the large job n + 1 is executed if and only if the subset problem
is solved exactly and executing the long job leads to a schedule whose makespan (i.e., total work
executed) is not within any fixed factor of the optimal solution. �

We now show that the LBP with no preemption is strongly NP-complete. As we will show in
Section 2.2, the LBP from Theorem 1 when all arrival times are equal, has a pseudo-polynomial-
time algorithm. However, if arrival times and deadlines are arbitrary integers, the problem becomes
strongly NP-complete. Thus, the following theorem subsumes Theorem 1 when arrival times and
deadlines our unconstrained, whereas Theorem 1 is more generally applicable.

Theorem 2 The Lazy Bureaucrat Problem with no preemption is strongly NP-complete for objec-
tive functions (1)–(3), and is not approximable to within any fixed factor.

Proof: Clearly the problem is in NP, since any solution can be represented by an ordered list
of jobs, given their arrival times. To show hardness, we use a reduction from the 3-Partition

problem [5]: Given a set S = {x1, . . . , x3m} of 3m positive integers and a positive integer bound B
such that B/4 < xi < B/2, for i = 1, . . . , 3m and

∑

i xi = mB, does there exist a partitioning of
S into m disjoint sets, S1, . . . , Sm, such that for i = 1, ...,m,

∑

xj∈Si
xj = B? (Note that, by the

assumption that B/4 < xi < B/2, each set Si must contain exactly 3 elements.)
Objective function (1) is a special case of objective function (2) because without preemption,

any job that is begun must be completed. Furthermore, hard instances will be designed so that
there are no gaps, ensuring that the optimal solution for objective function (1) is also the optimal
solution for objective function (3).

We construct an instance of the LBP containing three classes of jobs:

• Element jobs — We define one “element job” corresponding to each element xi ∈ S, having
arrival time 0, deadline di = (m− 1) +mB, and processing time xi.
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• Unit jobs — We define m − 1 “unit” jobs, each of length 1. The i-th unit job (for i =
1, . . . ,m − 1) has arrival time i(B + 1) − 1 and deadline i(B + 1). Note that for these unit-
length jobs we have dj − aj = 1; thus, these jobs must be processed immediately upon their
arrival, or not at all.

• Large job — We define one “large” job of length L > (m − 1) + mB, arrival time 0, and
deadline L + (m − 2) +mB. Note that in order to complete this job, it must be started at
time (m− 2) +mB or before.

As in the proof of Theorem 1, the lazy bureaucrat wants to avoid executing the long job, but
can do so if and only if all other jobs are actually executed. Otherwise, there will be a time when
the large job is the only job in the system and the lazy bureaucrat will be forced to execute it.
Thus, the unit jobs must be done immediately upon their arrival, and the element jobs must fit in
the intervals between the unit jobs. Each such interval between consecutive unit jobs is of length
exactly B. Refer to Figure 4. In summary, the long job is not processed if and only if all of the
element and unit jobs can be processed before their deadlines, which happens if and only if the
corresponding instance of 3-Partition is a “yes” instance. Note that since L can be as large
as we want, this also implies that no polynomial-time approximation algorithm with any fixed
approximation bound can exist, unless P=NP. �

Element jobs:

Unit jobs:

Long job:

0 B 2B + 2 . . . (m − 1) + mBB + 1

B

L

(very long)

2B + 1 (m − 1)(B + 1)

Figure 4: Proof of hardness of LBP with no preemption and arbitrary arrival times.

2.2 Algorithms for Special Cases

2.2.1 Unit-Length Jobs

Consider the special case of the LBP in which all jobs have unit processing times. (Recall that all
inputs are assumed to be integral.) The Latest Due Date (LDD) scheduling policy selects the job
in the system having the latest deadline. Note that this policy in nonpreemptive for unit-length
jobs, since all jobs have integral arrival times.

Theorem 3 Consider the Latest Deadline First scheduling policy when jobs have unit lengths and
all inputs are integral. The LDD scheduling policy minimizes the amount of executed work.

Proof: Assume by contradiction that no optimal schedule is LDD. We use an exchange ar-
gument. Consider an optimal (non-LDD) schedule that has the fewest pairs of jobs executed in
non-LDD order. The schedule must have two neighboring jobs i, j such that i < j in the schedule
but Di < Dj , and j is in the system when i starts its execution. Consider the first such pair of
jobs. There are two cases:

7



(1) The new schedule with i and j switched, is feasible. It executes no more work than the
optimal schedules, and is therefore also optimal.

(2) The schedule with i and j switched is not feasible. This happens if i’s deadline has passed.
If no job is in the system to replace i, then we obtain a better schedule than the optimal schedule
and reach a contradiction. Otherwise, we replace i with the other job and repeat the switching
process.

We obtain a schedule executing no more work than an optimal schedule, but with fewer pairs
of jobs in non-LDD order, a contradiction. �

2.2.2 Narrow Windows

Consider now the version in which jobs are large in comparison with their intervals, that is, the
intervals are “narrow.” Let R be a bound on the ratio of window length to job length; i.e., for each
job i, di−ai < R · ti. We show that a pseudo-polynomial algorithm exists for the case of sufficiently
narrow windows, that is, when R ≤ 2.

Lemma 4 Assume that for each job i, di − ai < 2ti. Then, if job i can be scheduled before job j,
then job j cannot be scheduled before job i.

Proof: We rewrite the assumption: for each i, di − ti < ti + ai. The fact that job i can be
scheduled before job j is equivalent to the statement that ai + ti ≤ dj − tj , since the earliest that
job i can be completed is at time ai + ti and the latest that job j can be started is at time dj − tj .
Combining these inequalities, we obtain

aj + tj > dj − tj ≥ ai + ti > di − ti,

which implies that job j cannot be scheduled before job i. �

Corollary 5 Under the assumption that di− ai < 2ti for each i, the ordering of any subset of jobs
in a schedule is uniquely determined.

Theorem 6 Suppose that for each job i, di − ai < 2ti. Let K = maxi di. Consider the problem
of minimizing objective functions (1)-(3) from Section 1.1, in the nonpreemptive setting. Then the
LBP can be solved in O(nKmax(n,K)) time.

Proof: We use dynamic programming to find the shortest path in a directed acyclic graph
(DAG). There are O(nK2) states the system can enter. Let (i, j, τ) denote the state of the system
when the processor begins executing the j-th unit of work of job i at time τ . Thus, i = 1, ..., n,
j = 1, ..., ti, and τ = 0, ...,K. Transitions from state to state are defined according to the following
rules:

1. No preemption: once a job is begun, it must be completed without interruptions.

2. When a job is completed at time τ , another job must begin immediately if one exists in the
system. (By Lemma 4, we know this job has not yet been executed.) Otherwise, the system
is idle and begins executing a job as soon as one arrives.

3. State (i, ti, τ) is an end state if and only if when job i completes at time τ , no jobs can be
executed subsequently.
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4. The start state has transitions to the jobs (i, 1, 0) that arrive first.

The goal of the dynamic program is to find the length of a shortest path from the start state
to an end state. Depending on how we assign weights to the edges we can force our algorithm to
minimize all three metrics from Section 1.1. To complete the time analysis, note that only nK of
the nK2 states have more than constant outdegree, and these states each have outdegree bounded
by n. �

For R > 2 we know of no efficient algorithm without additional conditions. Let W be a bound
on the ratio of longest window to shortest window, and let ∆ be a bound on the ratio of the longest
job to the shortest job. Note that bounds on R and ∆ imply a bound on W , and bounds on R and
W imply a bound on ∆. However, a bound on ∆ alone is not sufficient for a pseudo-polynomial-time
algorithm.

Theorem 7 Even with a bound on the ratio ∆, the LBP with no preemption is strongly NP-
complete for objective functions (1)-(3). It cannot be approximated to within a factor of ∆− ε, for
any ε > 0, unless P=NP.

Proof: Modify the reduction from 3-partition of Theorem 2, by changing all the fixed “unit”
jobs to have length B/3, and adjust the arrival times and deadlines accordingly.

Instead of one very long job as in the proof from Theorem 2, we create a sequence of bounded-
length jobs that serve the same purpose. One unit before the deadline of the “element” jobs (see
Theorem 2) a sequence of longer jobs ℓ1, . . . , ℓm arrives. Each job ℓi entirely fills its window and
so can only be executed directly when it arrives. Job ℓi+1 arrives at the deadline of job ℓi. In
addition, a sequence of shorter jobs s1, . . . , sm arrives, where each shorter job si also entirely fills
its window and can only be executed when it arrives. Shorter job si overlaps ℓi and ℓi+1; it arrives
one unit before the deadline of job ℓi. Jobs si have length B/4 and jobs ℓi have length ∆ · B/4.
Thus, if all the jobs comprising the 3-partition problem can be executed, jobs ℓ1, . . . , ℓm will be
avoided by executing jobs s1, . . . , sm. Otherwise, jobs ℓ1, . . . , ℓm must be executed. The index of
m can be adjusted to any ε. �

Bounds on both ∆ and R are sufficient to yield a pseudo-polynomial algorithm:

Theorem 8 Let K = maxi di. Given bounds on R and ∆, the Lazy Bureaucrat Problem with no
preemption can be solved in O(K · n4R lg∆) for objective functions (1)-(3).

Proof: We modify the dynamic programming algorithm of Theorem 6 for this more complex
situation. The set of jobs potentially available to work on in a given schedule at time τ are the
jobs j that have not yet been executed, for which dj − tj ≥ τ . Our state space will encode the
complement of this set for each time τ , specifically, the set of jobs that were executed earlier but
could otherwise have been executed at time τ .

The bounds on R and ∆ together imply an upper bound on the number of subsets of jobs active
at time τ that could have been executed prior to time τ . Let dmin be the length of the shortest job
potentially active at time τ . We can partition all potentially active jobs into lg∆ classes, where
the jth class consists of the jobs of size greater than or equal to 2j−1dmin and less than 2jdmin. The
earliest possible arrival time of any class-j job is τ − 2jdminR, since each job has an R-bounded
window. Only 2jdminR/2j−1dmin = 2R jobs from class j can be executed within this window.
Summing over all the classes implies that at most 2R lg∆ jobs potentially active at time τ could
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have been executed in a non-preemptive schedule by time τ . As before the choice of weights on the
edges determines the metric that is optimized.

The time bound on the running time follows by observing that each of the Kn(2R lg∆) states
has outdegree at most 2R lg∆. �

2.2.3 Jobs Having a Common Release Time

In the next version of the problem all jobs are released at time zero, i.e., ai = 0 for all i. This
problem can be solved in pseudo-polynomial time by dynamic programming, specifically, reducing
the problem to that of finding the shortest path in a directed acyclic graph. The dynamic pro-
gramming works because of the following structural result: There exists an optimal schedule that
executes the jobs Earliest Due Date (EDD).

In fact this problem is a special case of the following general problem: Minimizing the weighted
sum of jobs not completed by their deadlines. A similar problem was solved by [14], using the same
structural result.

Theorem 9 The LBP can be solved in pseudo-polynomial time for all three metrics when all jobs
have a common release time. Specifically, let K = maxi di; then the running time is O(K · n).

3 LBP: Preemption

In this section we consider the Lazy Bureaucrat Problem in which jobs may be preempted: a job
in progress can be set aside, while another job is processed, and then possibly resumed later. It
is important to distinguish among different constraints that specify which jobs are available to be
processed. We consider three natural choices of such constraints:

Constraint I: In order to work on job i at time τ , we require only that the current time τ lies
within the job’s interval Ii: ai ≤ τ ≤ di.

Constraint II: In order to work on job i at time τ , we require not only that the current time τ
lies within the job’s interval Ii, but also that the job has a chance to be completed, e.g., if it
is processed without interruption until completion.

This condition is equivalent to requiring that τ ≤ c′i, where c′i = di − ti + yi is the adjusted
critical time of job i: c′i is the latest possible time to start job i, in order to meet its deadline
di, given that an amount yi of the job has already been completed.

Constraint III: In order to work on job i, we require that τ ∈ Ii. Further, we require that any
job that is started is eventually completed.

We divide this section into subsections, where each subsection considers one of the three ob-
jective functions (1)–(3) from Section 1.1, in which the goals are to minimize (1) the total time
working (regardless of which jobs are completed), (2) the weighted sum of completed jobs, or (3)
the makespan of the schedule (the “go home” time). For each metric we see that the constraints
on preemption can dramatically affect the complexity of the problem.

Constraint III makes the LBP with preemption quite similar to the LBP with no preemption.
In fact, if all jobs arrive at the same time (ai = 0 for all i), then the three objective functions are
equivalent, and the problem is hard:
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Theorem 10 The LBP with preemption, under constraint III (one must complete any job that is
begun), is (weakly) NP-complete and hard to approximate for all three objective functions.

Proof: We use the same reduction as the one given in the proof of Theorem 1. Note that any
schedule for an instance given by the reduction, in which all jobs processed must be completed
eventually, can be transformed into an equivalent schedule with no preemptions. This makes the
problem of finding an optimal schedule with no preemption equivalent to the problem of finding an
optimal schedule in the preemptive case under constraint III. �

Note that we cannot use a proof similar to that of Theorem 2 to show that this problem is
strongly NP-complete, since preemption can lead to improved schedules in that instance.

3.1 Minimizing Total Time Working

Theorem 11 The LBP with preemption, under constraint I (one can work on any job in its in-
terval) and objective (1) (minimize total time working), is polynomially solvable.

Proof: The algorithm schedules jobs according to latest due date (LDD), in which at all times
the job in the system with the latest deadline is being processed, with ties broken arbitrarily. An
exchange argument shows that this is optimal. Suppose there is an optimal schedule that is not
LDD. Consider the first time in which an optimal schedule differs from LDD, and let OPT be an
optimal schedule in which this time is as late as possible. Let OPT be executing a piece of job i,
pi and LDD executes a piece of job j, pj. We know that di < dj . We want to show that we can
replace the first unit of pi by one unit of pj, contradicting the choice of OPT, and thereby proving
the claim. If in OPT, job j is not completely processed, then this swap is feasible, and we are done.
On the other hand, if all of j is processed in OPT, such a swap causes a unit of job j later on to
be removed, leaving a gap of one unit. If this gap cannot be filled by any other job piece, we get
a schedule with less work than OPT, which is a contradiction. Therefore assume the gap can be
filled, possibly causing a later unit gap. Continue this process, and at its conclusion, either a unit
gap remains contradicting the optimality of OPT, or no gaps remain, contradicting the choice of
OPT. �

Theorem 12 The LBP with preemption, under constraint II (one can only work on jobs that can
be completed) and objective (1) (minimize total time working), is (weakly) NP-complete.

Proof: If all arrival times are the same, then this problem is equivalent to the one in which the
objective function is to minimize the makespan, which is shown to be NP-complete in Theorem 16.
�

3.2 Minimizing Weighted Sum of Completed Jobs

Theorem 13 The LBP with preemption, under constraint I (one can work on any job in its in-
terval) and objective (2) (minimize the weighted sum of completed jobs), is polynomially solvable.

Proof: Without loss of generality, assume that jobs 1, . . . , n are indexed in order of increasing
deadlines. We show how to decompose the jobs into separate components that can be treated
independently. Schedule the jobs according to EDD (if a job is executing and its deadline passes,
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preempt and execute the next job). Whenever there is a gap (potentially of size zero), where
no jobs are in the system, the jobs are divided into separate components that can be scheduled
independently and their weights summed. Now we focus on one such set of jobs (having no gaps).
We modify the EDD schedule by preempting a job ε units of time before it completes. Then we
move the rest of the jobs of the schedule forward by ε time units and continue to process. At the
end of the schedule, there are two possibilities. (1) the last job is interrupted because its deadline
passes; in this case we obtain a schedule in which no jobs are completed; (2) the last job completes
and in addition all other jobs whose deadlines have not passed are also forced to complete.

The proof is completed by noting the following:

• There is an optimal schedule that completes all of its jobs at the end; and

• The above schedule executes the maximum amount of work possible. (In other words, EDD
(“minus ε”) allows one to execute the maximum amount of work on jobs 1 through i without
completing any of them.)

�

Theorem 14 The LBP with preemption, under constraint II (one can only work on jobs that
can be completed) and objective (2) (minimize the weighted sum of completed jobs), is (weakly)
NP-complete.

Proof: Consider the LBP under constraint II, where the objective is to minimize the makespan.
The proof of Theorem 16 will have hard instances where all jobs have the same arrival time, and
where the optimal solution completes any job that it begins. Thus, for these instances the metric of
minimizing the makespan is equivalent to the metric of minimizing the weighted sum of completed
jobs, for weights proportional to the processing times. �

3.3 Minimizing Makespan: Going Home Early

We assume now that the bureaucrat’s goal is to go home as soon as possible.
We begin by noting that if the arrival times are all the same (ai = 0, for all i), then the objective

(3) (go home as soon as possible) is in fact equivalent to the objective (1) (minimize total time
working), since, under any of the three constraints I–III, the bureaucrat will be busy nonstop until
he can go home.

Observe that if the deadlines are all the same (di = D, for all i), then the objectives (1) and (3)
are quite different. Consider the following example. Job 1 arrives at time a1 = 0 and is of length
t1 = 2, job 2 arrives at time a2 = 0 and is of length t2 = 9, job 3 arrives at time a3 = 8 and is of
length t3 = 2, and all jobs have deadline d1 = d2 = d3 = 10. Then, in order to minimize total time
working, the bureaucrat will do jobs 1 and 3, a total of 4 units of work, and will go home at time
10. However, in order to go home as soon as possible, the bureaucrat will do job 2, performing 9
units of work, and go home at time 9 (since there is not enough time to do either job 1 or job 3).

Theorem 15 The LBP with preemption, under constraint I (one can do any job in its interval)
and objective (3) (go home as early as possible), is polynomially solvable.

Proof: The algorithm is to schedule by Latest Due Date (LDD). The proof is similar to the
one given in Theorem 11. �
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If instead of constraint I we impose constraint II, the problem becomes hard:

Theorem 16 The LBP with preemption, under constraint II (one can only work on jobs that can
be completed) and objective (3) (go home as early as possible), is (weakly) NP-complete, even if all
arrival times are the same.

Proof: We give a reduction from Subset Sum. Consider an instance of Subset Sum given by
a set S of n positive integers, x1, x2, . . . , xn, and target sum T . We construct an instance of the
required version of the LBP as follows. For each integer xi, we have a job i that arrives at time
ai = 0, has length ti = xi, and is due at time di = T +xi− ε, where ε is a small constant (it suffices
to use ε = 1

3n ). In addition, we have a “long” job n+1, with length tn+1 > T , that arrives at time
an+1 = 0 and is due at time dn+1 = T − 2ε+ tn+1. We claim that it is possible for the bureaucrat
to go home by time T if and only if there exists a subset of {x1, . . . , xn} that sums to exactly T .

If there is a subset of {x1, . . . , xn} that sums to exactly T , then the bureaucrat can perform the
corresponding subset of jobs (of total length T ) and go home at time T ; he is able to avoid doing
any of the other jobs, since their critical times fall at an earlier time (T − ε or T − 2ε), making it
infeasible to begin them at time T , by our assumption.

If, on the other hand, the bureaucrat is able to go home at time T , then we know the following:

1. The bureaucrat must have just completed a job at time T .

He cannot quit a job and go home in the middle of a job, since the job must have been
completable at the instant he started (or restarted) working on it, and it remains completable
at the moment that he would like to quit and go home.

2. The bureaucrat must have been busy the entire time from 0 until time T .

He is not allowed to be idle for any period of time, since he could always have been working
on some available job, e.g., job Jn+1.

3. If the bureaucrat starts a job, then he must finish it.

First, we note that if he starts job Ji and does at least ε of it, then he must finish it, since at
time T less than xi − ε remains to be done of the job, and it is not due until time T − ε+ xi,
making it feasible to return to the job at time T (so that he cannot go home at time T ).

Second, we must consider the possibility that he may perform very small amounts (less than
ε) of some jobs without finishing them. However, in this case, the total amount that he
completes of these barely started jobs is at most nε ≤ 1

3 . This is a contradiction, since his
total work time consists of this fractional length of time, plus the sum of the integral lengths
of the jobs that he completed, which cannot add up to the integer T . Thus, in order for him
to go home at exactly time T , he must have completed every job that he started.

Finally, note that he cannot use job Jn+1 as “filler”, and do part of it before going home at
time T , since, if he starts it and works at least time 2ε on it, then, by the same reasoning as
above, he will be forced to stay and complete it. Thus, he will not start it at all, since he
cannot complete it before time T (recall that tn+1 > T ).

We conclude that the bureaucrat must complete a set of jobs whose lengths sum exactly to T .
Thus, we have reduced Subset Sum to our problem, showing that it is (weakly) NP-complete.
Note that the LBP we have constructed has non integer data. However, we can “stretch” time

to get an equivalent problem in which all the data is integral. Letting ε = 1
3n , we multiply all job

lengths and due dates by 3n.
�
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Figure 5: Proof of hardness of LBP with preemption, assuming that all arrival times are at time
0.

Remark. Hepner and Stein [8] recently published a pseudo-polynomial-time algorithm for this
problem, thus resolving an open problem from an earlier version of this paper [1].

We come now to one of the main results of the paper. We emphasize this result because it uses
a rather sophisticated algorithm and analysis in order to show that, in contrast with the case of
identical arrival times, the LBP with identical deadlines is polynomially solvable. Specifically, the
problems addressed in Theorems 16 and 17 are identical except that the flow of time is reversed.
Thus, we demonstrate that in contrast to most classical scheduling problems, in the LBP, when
time flows in one direction, the problem is NP-hard, whereas when the flow of time is reversed, the
problem is polynomial-time solvable.

The remainder of this section is devoted to proving the following theorem:

Theorem 17 The LBP with preemption, under constraint II (one can only work on jobs that can
be completed) and objective (3) (go home as early as possible), is solvable in polynomial time if all
jobs have the same deadlines (di = D, for all i).

We begin with a definition a “forced gap:” There is a forced gap starting at time τ if τ is the
earliest time such that the total work arriving by time τ is less than τ . This (first) forced gap
ends at the arrival time, τ ′, of the next job. Subsequently, there may be more forced gaps, each
determined by considering the scheduling problem that starts at the end, τ ′, of the previous forced
gap. We note that a forced gap can have length zero.

Under the “go home early” objective, we can assume, without loss of generality, that there are
no forced gaps, since our problem really begins only at the time τ ′ that the last forced gap ends.
(The bureaucrat is certainly not allowed to go home before the end τ ′ of the last forced gap, since
more jobs arrive after τ ′ that can be processed before their deadlines.) While an optimal schedule
may contain gaps that are not forced, the next lemma implies that there exists an optimal schedule
having no unforced gaps.

Lemma 18 Consider the LBP of Theorem 17, and assume that there are no forced gaps. If there
is a schedule having makespan T , then there is a schedule with no gaps, also having makespan T .

Proof: Consider the first gap in the schedule, which begins at time g. Because the gap is not
forced, there is some job j that is not completed, and whose critical time is at time g′ ≤ g. This
is because there must be a job that arrived before g that is not completed in the schedule, and at
time g it is no longer feasible to complete it, and therefore its critical time is before g. The interval
of time between g′ and T may consist of (1) gaps, (2) work on completed jobs, and (3) work on
jobs that are never completed. Consider a revised schedule in which, after time g′, jobs of type 3
are removed, and jobs of type 2 are deferred to the end of the schedule. (Since a job of type 2
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is completed and all jobs have the same deadline, we know that it is possible to move it later in
the schedule without passing its critical time. It may not be possible to move a (piece of a) job
of type 3 later in the schedule, since its critical time may have passed.) In the revised schedule,
extend job j to fill the empty space. Note that there is enough work in job j to fill the space, since
a critical time of g′ means that the job must be executed continuously until deadline D in order to
complete it. �

Lemma 19 Consider an LBP of Theorem 17 in which there are no forced gaps. Any feasible
schedule can be rearranged so that all completed jobs are ordered by their arrival times and all
incomplete jobs are ordered by their arrival times.

Proof: The proof uses a simple exchange argument as in the standard proof of optimality for
the EDD (Earliest Due Date) policy in traditional scheduling problems. �

Our algorithm checks if there exists a schedule having no gaps that completes exactly at time
T . Assume that the jobs 1, . . . , n are labeled so that a1 ≤ a2 · · · ≤ an. The main steps of the
algorithm are as follows:

The Algorithm:

1. Determine the forced gaps. This allows us to reduce to a problem having no forced gaps,
which starts at the end of the last forced gap.

The forced gaps are readily determined by computing the partial sums, τj =
∑j

i=1 ti, for
j = 0, 1, . . . , n, and comparing them to the arrival times. (We define τ0 = 0.) The first forced
gap, then, begins at the time τ = τj∗ = min{τj : τj < aj+1} and ends at time aj∗+1. (τ = 0
if a1 > 0; τ = ∞ if there are no forced gaps.) Subsequent forced gaps, if any, are computed
similarly, just by re-zeroing time at τ ′, and proceeding as with the first forced gap.

2. Let x = D−T be the length of time between the common deadline D and our target makespan
T . A job i for which ti ≤ x is called short ; jobs for which ti > x are called long .

If it is not possible to schedule the set of short jobs so that each is completed and they are
all done by time T , then our algorithm stops and returns “NO,” concluding that going home
by time T is impossible. Otherwise, we continue with the next step of the algorithm.

The rationale for this step is the observation that any job of length at most x must be
completed in any schedule that permits the bureaucrat to go home by time T , since its
critical time occurs at or after time T .

3. Create a schedule S of all of the jobs, ordered by their arrival times, in which the amount of
time spent on job i is ti if the job is short (so it is done completely) and is ti − x if the job is
long.

For a long job i, ti−x is the maximum amount of time that can be spent on this job without
committing the bureaucrat to completing the job, i.e., without causing the adjusted critical
time of the job to occur after time T .

If this schedule S has no gaps and ends at a time after T , then our algorithm stops and
returns “YES.” A feasible schedule that allows the bureaucrat to go home by time T is readily
constructed by “squishing” the schedule that we just constructed: We reduce the amount of
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time spent on the long jobs, starting with the latest long jobs and working backwards in time,
until the completion time of the last short job exactly equals T . This schedule completes all
short jobs (as it should), and does partial work on long jobs, leaving all of them with adjusted
critical times that fall before time T (and are therefore not possible to resume at time T , so
they can be avoided).

4. If the above schedule S has gaps or ends before time T , then S is not a feasible schedule for
the lazy bureaucrat, so we must continue the algorithm.

Our objective is to decide which long jobs to complete, that is, is there a set of long jobs to
complete that will make it possible to go home by time T . This problem is solved using the
dynamic programming algorithm Schedule-by-T , which is described in detail below.

Procedure Schedule-by-T :

Let Gi be the sum of the gap lengths that occur before time ai in schedule S. Then, we know that
in order to construct a gapless schedule, at least ⌈Gi/x⌉ long jobs (in addition to the short jobs)
from 1, . . . , i − 1 must be completed. For each i we have such a constraint; collectively, we call
these the gap constraints.

Claim 20 If for each gap in schedule S, there are enough long jobs to be completed in order to fill
the gap, then a feasible schedule ending at T exists.

We devise a dynamic programming algorithm as follows. Let T (m,k) be the earliest completion
time of a schedule that satisfies the following:

1. It completes by time T ;

2. It uses jobs from the set {1, . . . , k};

3. It completes exactly m jobs and does no other work (so it may have gaps, making it an
infeasible schedule);

4. It satisfies the gap constraints; and

5. It completes all short jobs (of size ≤ x).

The boundary conditions on T (m,k) are given by:

T (0, 0) = 0;

T (0, n) = ∞, which implies that at least one of the jobs must be completed;

T (m, 0) = ∞ for m > 0;

T (m,k) = ∞ if there exist constraints such that at least m + 1 jobs from 1, . . . , k must be
completed, some of the jobs from 1, . . . , k must be completed because they are short, and
some additional jobs may need to be completed because of the gap constraints. Note that
this implies that T (0, k) is equal to zero or infinity, depending on whether gap constraints are
disobeyed.
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In general, T (m,k) is given by selecting the better of two options:

T (m,k) = min{α, β},

where α is the earliest completion time if we choose not to execute job k (which is a legal option
only if job k is long), giving

α =

{

T (m,k − 1) if tk > x
∞ otherwise,

and β is the earliest completion time if we choose to execute job k (which is a legal option only if
the resulting completion time is by time T ), giving

β =
{

max(ak + tk, T (m− 1, k − 1) + tk) if this quantity is ≤ T
∞ otherwise.

Lemma 21 There exists a feasible schedule completing at time T if and only if there exists an m
for which T (m,n) < ∞.

Proof: If T (m,n) = ∞ for all m, then, since the gap constraints apply to any feasible schedule,
and it is not possible to find such a schedule for any number of jobs m, there is no feasible schedule
that completes on or before T .

If there exists an m for which T (m,n) < ∞, let m∗ be the smallest such m. Then, by definition,
T (m∗, n) ≤ T . We show that the schedule S∗ obtained by the dynamic program can be made into
a feasible schedule ending at T . Consider jobs that are not completed in the schedule S∗; we wish
to use some of them to “fill in” the schedule to make it feasible, as follows.

Ordered by arrival times of incomplete jobs, and doing up to ti−x of each incomplete job, fill in
the gaps. Note that by the gap constraints, there is enough work to fill in all gaps. There are two
things that may make this schedule infeasible: (i) Some jobs are worked on beyond their critical
times, and (ii) the last job to be done must be a completed one.

(i). Fixing the critical time problem: Consider a job i that is processed at some time, beginning
at τ , after its critical time, ci. We move all completed job pieces that fall between ci and T to
the end of the schedule, lining them up to end at T ; then, we do job i from time ci up until this
batch of completed jobs. This is legal because all completed jobs can be pushed to the end of the
schedule, and job i cannot complete once it stops processing.

(ii). Fixing the last job to be a complete one: Move a “sliver” of the last completed job to just
before time T . If this is not possible (because the job would have to be done before it arrives), then
it means that we must complete one additional job, so we consider m∗ +1, and repeat the process.

Note that a technical difficulty arises in the case in which the sum of the gap lengths is an exact
multiple of x: Do we have to complete an additional job or not? This depends on whether we
can put a sliver of a completed job at T . There are several ways to deal with this issue, including
conditioning on the last completed job, modifying the gap constraint, or ignoring the problem and
fixing it if it occurs (that is if we cannot put a sliver, then add another job which must be completed
to the gap constraint). �

This completes the proof of our main theorem, Theorem 17.
Remark. Even if all arrival times are the same, and deadlines are the same, and data is integer, an
optimal solution may not be integer. In fact, there may not be an optimal solution, only a limiting
one, as the following example shows: Let ai = 0 and di = 100, for all i. Jobs 1, . . . , n−1 have length
51, while job n has length tn = 48. A feasible schedule executes ε of each of the first n − 1 jobs,
where ε > 1/(n−2), and all of job n, so the total work done is (n−1)ε+48 > (n−1)/(n−2)+48.
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Note that each of the first n−1 jobs have 51−ε remaining to do, while there is only time 52−(n−1)ε
left before the deadline. Now, by making ε arbitrarily close to 1/(n− 2), we can make the schedule
better and better.
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