DP Lower Boundsfor Equivalence-Checking and
M odel-Checking of One-Counter Automata?

Petr Jagar®!, Antorin Kucera®!, Faron Mollef, Zderek Sawa!

aDept. of Computer Science, FEI, Technical University of@st, 17. listopadu 15,
CZ-70833 Ostrava, Czech Republf®et r . Jancar, Zdenek. Sawa}@sb. cz

bFaculty of Informatics, Masaryk University, BotardcB8a, CZ-60200 Brno, Czech
Republict ony@i . nuni . cz

“Dept. of Computer Science, University of Wales Swanseglefn Park,
Swansea SA2 8PP, Walés.G. Mol | er @wansea. ac. uk

Abstract

We present a general method for proviD&-hardness of problems related to formal ver-
ification of one-counter automata. For this we show a redoatif the \T-UNSAT prob-
lem to the truth problem for a fragment of (Presburger) arétic. The fragment con-
tains only special formulas with one free variable, and igalarly apt for transforming
to simulation-like equivalences on one-counter automiatahis way we show that the
membership problem for any relation subsuming bisimijaaitd subsumed by simulation
preorder isDP-hard (even) for one-counterets(where the counter cannot be tested for
zero). We also showP-hardness for deciding simulation between one-countemaaia
and finite-state systems (in both directions), and for thdefohecking problem with one-
counter nets and the branching-time temporal logic EF.

Key words: One-Counter Machines, Equivalence-Checking, Model-&ingc

1 Introduction

In concurrency theory, process is typically defined to be a state inteansition

system, which is a tripleT = (S, X, —) whereS is a set ofstates, X is a set of
actionsand— C S x L x S is atransition relation. We writes — t instead of
(s,a,t) € —, and we extend this notation in the natural way to elemenis oA

statet is reachable from a states, writtens —* t, iff s = t for somew € Z*.

1 Supported by the Grant Agency of the Czech Republic, gran2R8&/00/0400.
2 The paper is based on results which previously appearediit][7

Preprint submitted to Elsevier Science 12 April 2008

We consider processes generatedig-counter automata, nondeterministic finite-
state automata operating on a single counter variable vihl@ds values from the
setN ={0,1,2,...}. Formally this is a tuplé\ = (Q, X,57,67, qo) whereQ is a
finite set ofcontrol states, X is a finite set ofactions,

§~:QxX—PQx{0,1) and
5 : QxZ—PQx{-1,01}

aretransition functions (where?(M) denotes the power-set M), andq, € Q is

a distinguishedhitial control stated= represents the transitions which are enabled
when the counter value is zero, andrepresents the transitions which are enabled
when the counter value is positivi.is aone-counter net if and only if for all pairs
(q,a) € Q x X we have thab=(q,a) C 57(q, a).

To the one-counter automatdnwe associate the transition systém= (S, X, —),
whereS = {p(n) : p € Q,n € N}and— is defined as follows:

n =0, and(q,1i) € 6=(p,a); or
p(n) 3 qn+1i) iff
n >0, and(q,1i) € 6~(p, a).

Note that any transition increments, decrements, or leamebanged the counter
value; and a decrementing transition is only possible ifchenter value is strictly
positive. Also observe that when > 0 the immediate transitions @f(n) do not
depend on the actual value of Finally note that a one-countaetcan in a sense
test if its counter is nonzero (that is, it can perform sona@gitions only on the
proviso that its counter is nonzero), but it cannot test iy semse if its counter is
zero. For ease of presentation, we understaniig-statesystems (corresponding to
transition systems with finitely many states) to be one-taumets wheré= = 6~
and the counter is never changed. Thus, the paris akachable fronp(i) and
p(j) are isomorphic and finite for afl € Q andi,j € N.

Remark 1 The class of transition systems generated by one-countsrisi¢he
same (up to isomorphism) as that generated by the class elfi¢abPetri nets with
(at most) one unbounded place. The class of transition ssteenerated by one-
counter automata is the same (up to isomorphism) as thatrgteby the class of
realtime pushdown automata (i.e. pushdown automata withxdransitions) with
a single stack symbol (apart from a special bottom-of-staakker).

The equivalence-checkingpproach to the formal verification of concurrent sys-
tems is based on the following scheme: the specificaéigre., the intended be-
haviour) and the actual implementatibof a system are defined as states in transi-
tion systems, and then it is shown tl8aindI areequivalent There are many ways
to capture the notion of process equivalence (see, e.d); H®vever,simulation

andbisimulationequivalence [15,17] are of special importance, as theoapa-
nying theory has found its way into many practical applmasi.

Given a transition systeih = (S, £, —), asimulation is a binary relatioR C SxS
satisfying the following property: whenevey, t) € R,

if s 5 s’ thent 5 t’ for somet’ with (s’,t’) € R.

s is simulated by t, writtens C t, iff (s,t) € R for some simulatiorR; ands

andt aresimulation equivalent, writtens ~ t, iff s C t andt C s. The union

of a family of simulation relations is clearly itself a sinatibn relation; hence,

the relationC, being the union of all simulation relations, is in fact theximal

simulation relation, and is referred to as #mulation preorder. A characteristic
a

property is that C t iff the following holds: ifs % s’ thent % t’ for somet’
with s’ C t/.

A bisimulation is a symmetric simulation relation, andandt are bisimulation
equivalent, or bisimilar, writtens ~ t, if they are related by a bisimulation.

Simulations and bisimulations can also be used to relatesstédifferenttransition
systems; formally, we can consider two transition systemiset a single one by
taking the disjoint union of their state sets.

Let P andQ be classes of processes. The problem of deciding whetheea gio-
cesss of P is simulated by a given proces®f Q is denoted byP T Q; similarly,

the problem of deciding i§ andt are simulation equivalent (or bisimilar) is de-
noted byP ~ Q (or P ~ Q, respectively). The classes of all one-counter automata,
one-counter nets, and finite-state systems are denhtdd, and.F, respectively.

In themodel-checkingpproach to formal verification, one defines the desired-prop
erties of the implementation as a formula in a suitable temidogic, and then it

is shown that the implementation satisfies the formula. &la@e many temporal
logics which can be classified according to various aspees, (e.g., [3,18] for
an overview). The simplest (branching-time and actioredasemporal logic is
Hennessy-Milner logic (HML) [15]. The syntax is given by

Y ou=true | Y1 AY, | =Y | (a)V¥

Here a ranges over a countable alphabet of actions. Given a tramsystem
T = (S,X,—) and an HML formula¥, we inductively define thelenotation of
Y, denoted @], which is the set of all states dfwhere the formuldolds

[true] = S
[O1AD;] = [O4] N [D]
[-®] = S—[D]

[(a)®] = {s€S|TteS:s HtAtec[D]}

As usual, we writes = @ instead ofs € [@]. The operator dual tda) is [a]
defined byla]® = —(a)—®. The other propositional connectives are introduced in
the standard way.

The logic EF is obtained by extending HML with tke(reachability) operator. Its
semantics is defined as follows:

[CDP] ={seS|TteS:s ="t Ate[D]}

The formula®® can be phrased “thefexists aFuture state such th& holds”;
this justifies the “EF” acronym. The dual operator<ois O, defined byd® =
—O—®@. The logic EF can also be seen as a natural fragment of CTL [3].

The stateof theart: The N C N problem was first considered in [1], where it was
shown that if two one-counter net processes are relatesbimesimulation, then
they are also related by a semilinear simulation (i.e. a Etimn definable in Pres-
burger arithmetic), which suffices for semidecidabilitpdahus decidability) of the
positive subcase. (The negative subcase is semidecidaistamdard arguments.)
A simpler proof was given later in [8] by employing certaire@metric” techniques
which allow you to conclude that the simulation preorderefav given one-counter
net) is itself semilinear. Moreover, it was shown there that4 C A problem is
undecidable. The decidability of thé ~ A problem was demonstrated in [4] by
showing that the greatest bisimulation relation over thgestof a given one-counter
automaton is also semilinear. The relationship betweemlation and bisimula-
tion problems for processes of one-counter automata hasdbegied in [6] where
it was shown that one can effectively reduce certain sirmarigiroblems to their
bisimulation counterparts by applying a technique progaes¢l2]. The complex-
ity of bisimilarity-checking with one-counter automatasxstudied in [10], where
the problem\ ~ N is shown to be&eoNP-hard and the problem efeakbisimilar-
ity [15] betweenN and.F processes eveDP-hard; moreover, the probleph ~ F
was shown to be solvable in polynomial time. Complexity basifor simulation-
checking were given in [11], where it was shown that the ot C F and
F C N (and thus alsoV ~ F) are inP, while A C F and A ~ F arecoNP-
hard (and solvable in exponential time). As for model-clegkwe can transfer
upper complexity bounds from the results which were achideepushdown pro-
cessesbecaused can be seen as a (proper) subclass of pushdown automata{cf. R
mark 1). Hence, model-checking with logics like EF, CTL, CTRB], or even the
modal u-calculus [9], is decidable in exponential time for one4tigu automata
processes [20]. However, the techniques for lower comyléxaunds do not carry
over to.A. Another simple observation is that model-checking for Histhd A
processes is iR. This is because the (in)validity of a given HML formulain a
states depends only on those states which are reachable §ralong a path con-
sisting of at mosd transitions, wherel is the nesting depth of thé) operator

in ®. Since the number of states which are reachable from a gimercounter

automata process(i) is clearly polynomial ind and the size of the underlying
one-counter automaton, we can easily design a polynomma thodel-checking
algorithm. (It contrasts with other models like BPA or BPParmmodel-checking
HML is PSPACE-complete [13]).

Our contribution: We generalize the technique used in [10] for establishingto
complexity bounds for certain equivalence-checking potd, and present a gen-
eral method for showinBP-hardness of equivalence-checking and model-checking
problems for one-counter automata. (The claBJ16] consists of those languages
which are expressible as a difference of two languages f&nand is generally
conjectured to be larger than the unionNf? andcoNP. Section 2.2 contains fur-
ther comments oBP.) The “generic part” of the method is presented in Section 2,
where we define a simple fragment of Presburger arithmegimoed OCL (“One-
Counter Logic”) which is

¢ sufficiently powerful so that satisfiability and unsatisfigpof boolean formulas
are both polynomially reducible to the problem of decidihg truth of formulas
of OCL, which implies that this latter problemBP-hard (Theorem 3); yet

¢ sufficiently simple so that the problem of deciding the tratfOCL formulas
is polynomially reducible to various equivalence-chegkamd model-checking
problems (thus providing the “application part” of the pospd method). The
reduction is typically constructed inductively on the sture of OCL formulas,
thus making the proofs readable and easily verified.

In Section 3.1 we apply the method to thé < N problem where— is any re-
lation which subsumes bisimilarity and is subsumed by satmh preorder (thus,
besides bisimilarity and simulation equivalence alsa, eegdy simulation equiva-
lence or 2-nested simulation equivalence), shovMdighardness of these problems
(Theorem 6). In particular, we improve tlweNP lower bound for the\V ~ N
problem established in [10]. In Section 3.2 we concentratsimulation problems
between one-counter and finite-state automata, and pravedthc 7, 7 C A,
and.A ~ F are allDP-hard (Theorem 8). Section 3.3 is devoted to the complexity
of model-checking with one-counter processes. As alreaglytioned, the model-
checking problem for HML and one-counter automata proceissie P. We show
that model-checking with the logic EF is already intractali is DP-hard even
for processes of one-counter nets anfikad EF formula (Theorem 11). In prac-
tice, temporal formulas are usually quite small; hencefdbethat the EF formula
can be fixed provides stronger evidence of computationaddtebility. Finally, in
Section 4 we draw some conclusions and present a detailetharymof known
results.

2 The OCL Fragment of Arithmetic

In this section, we introduce a fragment of (Presburgetharetic, denoted OCL
(“One-Counter Logic”). We then show how to encode the pnolslef satisfiability
and unsatisfiability of boolean formulas in OCL, and thusutedP-hardness
of the truth problem for (closed formulas of) OCL. (The nani¢he language is
motivated by a relationship to one-counter automata whidlhoe explored in the
next section.)

2.1 Definition ofOCL

OCL can be viewed as a certain set of first-order arithmetimiédas. We shall
briefly give the syntax of these formulas; the semanticsvélbbvious. Since we
only consider the interpretation of OCL formulas in the sl structure of natu-
ral numbersN, the problem of deciding the truth of a closed OCL formula &lw
defined:

Problem: TRUTHOCL
INSTANCE: A closed formulaQ € OCL.
QUESTION: IsQ true ?

Let x andy range over (first-ordenyariables A formula Q € OCL can have at

most one free variabbe(i.e., outside the scope of quantifiers); we shall wiltex)

to indicate the free variable (if there is one)@f that is,Q(x) either has the one
free variablex, or no free variables at all. For a numbBere N, [k] stands for a

special term denoting; we can think of[k] asSS ... S0, i.e., the successor func-
tion S appliedk times to 0. We stipulate thatzg [k]) = k+1 (which corresponds

to representing numbers in unary).

The formulasQ of OCL are defined inductively as follows; at the same time we
inductively define their size (keeping in mind the unary esgntation ofk|):

Q sizgQ)
@ x=0 1
(b) [k]Ix (“kdividesx”; k>0) k41
(¢) [k]1x (“k does notdivide”; k>0) k41
(d) Qi(x) A Qalx) sizdQ4) + siz€Q3) +
(e) Qilx)V Qzx) sizd Q1) + SIze(Qz)
M Fy <x:Q'(y) (xandy distinct) sizd Q') +
(@) vx:Q'(x) siz¢Q’) +

We shall need to consider the truth value of a form@(a) in a valuation assigning
a numbern € N to the (possibly) free variable; this is given by the formula
Q[n/x] obtained by replacing each free occurrence of the variabteQ by n.
Slightly abusing notation, we shall denote this Qyn). (Symbols likei,j, k,n
range over natural numbers, not variables.) For exampl@, i) is the formula
Jy <x:((3ly) A (21y)), thenQ(5) is true whileQ(2) is false; and ifQ(x) is a
closed formula, then the truth value Qfn) is independent ofi.

2.2 DP-hardness ofTRUTHOCL

Recall the following problem:

Problem: SAT-UNSAT

INSTANCE: A pair (¢,{) of boolean formulas in conjunctive normal form
(CNF).

QUESTION: Is it the case thap is satisfiable while) is unsatisfiable ?

This problem isDP-complete, which corresponds to an intermediate level én th
polynomial hierarchy, harder than boH{ andTT} but still contained inZ} and
1% (cf., e.g., [16]). Our aim here is to show that1SUNSAT is polynomial-time
reducible to RUTHOCL. In particular, we show how, given a boolean formyla
in CNF, we can in polynomial time construct a (closed) foranaf OCL which
claims thate is satisfiable, and also a formula of OCL which claims tipais
unsatisfiable (Theorem 3).

First we introduce some notation. Lear(¢) = {x1,...,xn} denote the set of
(boolean) variables ip. Furthermore, letr; (for j>1) denote thé'™ prime number.
For everyn € N define the assignment, : Var(¢) — {true, false by

true, if ;[n,
Vn(xj) = .
falsg otherwise.

Note that for an arbitrary assignmewthere exists am € N such thatv,, = -v;
it suffices to taken = TI{ 7t; : 1<j<m andv(x;)=true}. By | ¢||+ we denote the
truth value ofep under the assignment

Lemma2 There is a polynomial-time algorithm which, given a booléamula
¢ in CNF, constructOCL-formulasQ ,(x) ande(x) such that both siZ€),)
and siz¢Q,,) are inO(|¢[*), and such that for every € N

Qe(n) istrue iff Q,(n) isfalse iff |¢]|y, = true.

PROOF. LetVar(¢@) = {x1,...,xm). Given a literall (that is, a variable; or its
negatiorx;), define the OCL-formul&),(x) as follows:

Qy(x) = [m]lx and Qx(x) = [m]{x.
Clearly,Q¢(n) is true iff Qg(n) is false iff ||£||y, = true.

e FormulaQ ,(x) is obtained fromp by replacing each literdl with Q,(x). Itis
clear thatQ ,(n) is true iff | ¢ |y, = true.

° Formulaﬁ(p(x) is obtained fromyp by replacing eaci\, V, and{ with \VV, A,
andQq(x), respectively. It is readily seen th@t,(n) is true iff |||, = false

It remains to evaluate the size Qf, andﬁ(p. Here we use a well-known fact from
number theory (cf, e.g., [2]) which says thgt, is in O(m?). Hencesiz€Q,) is in
O(|e|?) for every literalt of . As there are)(|o|) literal occurrences an@(|¢|)
boolean connectives ip, we can see thaiz§Q,) and size@@) are indeed in
O(leP). O

We now come to the main result of the section.

Theorem 3 ProblemSAT-UNSAT is reducible in polynomial time toRUTHOCL.
Therefore,TRUTHOCL is DP-hard.

PROOF. We give a polynomial-time algorithm which, given an instaf, \) of
SAT-UNSAT, constructs a closed OCL-formu@@, with siz6€ Q) in O(|e[> + hp[?),
such thalQ is true iff ¢ is satisfiable and is unsatisfiable.

Expressing the unsatisfiability df is straightforward: by Lemma 2} is unsatisfi-
able iff the OCL-formula

Vx 1 Qy(x)
is true. Thus, leQ), be this formula.

Expressing the satisfiability ap is rather more involved. Lej = mm,. .. 7Ty,
whereVar(¢) = {x1, ..., xmn}. Clearly ¢ is satisfiable iff there is some < g such
that||¢||v,, = true. Henceg is satisfiable iff the OCL-formulay < x: Q,(y) is
true for any valuation assigning sorme> g to x.

As it stands, it is unclear how this might be expressed; heweve can observe that
the equivalence still holds if we replace the conditior®* g” with “ 1 is a multiple
of g”. In other words,p is satisfiable iff for every € N we have that either= 0,
or g1i, or there is some < i such thatQ ,(n) is true. This can be written as

Vx :x=0V ([m]tx V-V [t]1x) V Fy <x:Qely)

We thus letQ; be this formula.

Hence,(, 1) is a positive instance of thea3-UNSAT problem iff the formula

Q=Q1ANQ2

is true. To finish the proof, we observe tisitd Q) is indeed inO (|2 +P|3). O

2.3 TRUTHOCL isinTI}

The conclusions we draw for our verification problems ar¢ tihey areDP-hard,
as we reduce thBP-hard problem RUTHOCL to them. We cannot improve this
lower bound by much using the reduction fromrATHOCL, as TRUTHOCL is in
TT5. In this section we sketch the ideas of a proof of this fact.

Theorem 4 TRUTHOCL isinTI

PROOF. We start by first proving that for every formu@(x) of OCL there is a
d with 0 < d < 2578Q) such thatQ(i) = Q(i — d) for everyi > 257¢Q), Hence,
Vx : Q(x) holds iff ¥x < 2578Q) : Q(x) holds. (Note that’x < 2574Q) : Q(x) is
not a formula of OCL.)

We prove the existence df for every formulaQ (x) by induction on the structure
of Q(x). If Q(x) isx = 0then we can takd = 1; and if Q(x) is [k] [x or [k]tx
then we can takd = k.

If Q(x)isQq(x)AQ2(x)orQq(x)V Q2(x), then we may assume by the induction
hypothesis the existence of the relevdnfor Q; andd, for Q,. We can then take
d = d,d, to give the desired property th@X(i) = Q(i — d) for everyi > 257¢Q),

If Q(x)is3dy < x:Q’(y) (x andy distinct) then by the induction hypothesis there
isad’ with 0 < d’ < 252€Q") such tha’(i) = Q’(i—d’) for everyi > 257€Q") |t
follows that if Q’(i) is true for some, then it is true for some < 25124Q") « 2sizdQ)
(recall thatsiz§ Q) = siz¢Q’) + 1). Furthermore, ifQ’(1) is true for some then
Q(j) is true for everyj > 1; on the other hand, if)’(1) is false for evenyi, then
Q(j) is false for evenyj. Thus we can takd = 1.

If Q(x)isVy : Q'(y), thenx is not free inQ’(y), so the truth value of) (1) does
not depend o and we can takd = 1.

Next we note that every OCL-formul@(x) can be transformed into a formula
Q(x) (which need not be in OCL) in (pseudo-)prenex form

(Wxg < 2528Qu)) ... (x < 2576 Qu))
(Fui <z1) - (Fye < zo) Flx1, ..., %, Y1, - -+, Ye)
where

e Vx;: Qi(x;) is a subformula of) (x);
b eaChZi € {X]» <oy Xl Y1y el)Ui—]}; and
o F(x1,...,%x Y1,...,Yg) isa/, V-combination of atomic subformulas Qf(x).

This can be proved by induction on the structuré)yk). The only case requiring
some care is the case wh@ix) is of the form3y < x : Q’(y), becauselyVvz :
P(y,z) andVzdy : P(y, z) are not equivalent in general, but they are in our case,
asz never depends ong due to restrictions in OCL. Note that the size@fx) is
polynomial insizg Q) (assuming tha?sz4Q) 2s2€Q«) gre encoded in binary).

We can construct an alternating Turing machine which firesuts universal states
to assign all possible values (bounded as mentioned abmxe) t. . , xy, then uses
its existential states to assign all possible valuegito. ., y,, and finally evalu-
ates (deterministically) the formul&(xi, ..., xx, y1,...,y¢). It is clear that this
alternating Turing machine can be constructed so that iksvar time which is
polynomial insiz€ Q). This implies the membership ofRUTHOCL inTT5. O

3 Application to One-Counter Automata Problems

As we mentioned above, the language OCL was designed witfcaumater au-
tomata in mind. The problemRUTHOCL can be relatively smoothly reduced to
various verification problems for such automata, by prowgdielevant construc-
tions (“implementations”) for the various cases (a)-(gjref OCL definition, and
thus it constitutes a useful tool for proving lower comptgkxiounds DP-hardness)
for these problems. We shall demonstrate this forthe» N problem, where—

is any relation satisfying that C « C C, and then also for thel C F, F C A,
andA ~ F problems.

For the purposes of our proofs, we adopt a “graphical’ repregion of one-
counter automata as finite graphs with two kinds of edgesi(sold dashed ones)
which are labelled by pairs of the forfa,1) € £ x {—1,0, 1}; instead of(la, —1),

(a, 1), and(a,0) we write simply—a, +a, anda, respectively. Asolid edge from

p to q labelled by(a,1i) indicates that the represented one-counter automaton
can make a transitiop(k) — q(k + i) wheneveri > 0 or k > 0. A dashed

10

edge fromp to q labelled by(a, i) (wherei must not be—1) represents a zero-
transitionp(0) > q(i). Hence, graphs representing one-counter nets do not con-
tain any dashed edges, and graphs corresponding to fiateeststems use only
labels of the form(a, 0) (remember that finite-state systems are formally under-
stood as special one-counter nets). Also observe that #ghgrcannot represent
non-decrementing transitions which are enalbaty for positive counter values;
this does not matter since we do not need such transitiongriproofs. The distin-
guished initial control states are indicated by black eiscl

3.1 Results for One-Counter Nets

In this section we show that, for any relatien satisfying~ C <« C L, the
problem of deciding whether two (states of) one-countes aet in— is DP-hard.
We first state an important technical result, but defer ipuntil after we derive
the desired theorem as a corollary.

Proposition 5 There is an algorithm which, given a formulga = Q(x) € OCL
as input, halts afte©(siz€ Q)) steps and outputs a one-counter net with two dis-
tinguished control statgs andp’ such that for everk € N we have:

o if Q(k)istrue then p(k)~p’(k);
e if Q(k)isfalse thenp(k) Z p’(k).

(Note that ifQ is a closed formula, then this implies that0) ~ p’(0) if Q is true,
andp(0) IZ p’(0) if Q is false.)

Theorem 6 For any relation«— such that~ C « C C, the following problem is
DP-hard:

INSTANCE: A one-counter net with two distinguished control staiesndp’.
QUESTION: Isp(0) « p’(0)?

PROOF. Given an instance of RUTHOCL, i.e., aclosedformulaQ € OCL, we
use the (polynomial) algorithm of Proposition 5 to constaione-counter net with
the two distinguished control statpsandp’. If Q is true, therp(0) ~ p’(0), and
hencep(0) « p’(0); and if Q is false, therp(0) Z p’(0), and hence(0)
p/(0). O

Proof of Proposition 5: We proceed by induction on the structure@f For each
case, we show amplementationi.e., the corresponding one-counter Nej with
two distinguished control statgsandp’. Constructions are sketched by figures

11

which use our notational conventions; the distinguishedrob states are denoted
by black dots (the left one, the right onep’). It is worth noting that we only use
two actions,a andb.

(@) Q(x) = (x = 0): A suitable (and easily verifiable) implementation looks as
follows:

p op’

(b,c) Q(x) = [k]|x or Q(x) = [k]|{x, wherek>0: Given] C {0,1,2,...,k—1},
let R;(x) = ((xmodk) € J). We shall show that the formulRy(x) can be
implemented in our sense; takifig= {0} then gives us the construction for
case (b), and taking= {1, ..., k—1} gives us the construction for case (c).

An implementation ofR;(x), where for the point of illustration we have
1,2 € Jbut0,3,k—1 &], looks as follows:

qo=7p’

In this picture, each nodg; has an outgoing edge going to a “dead” state; this
edge is labelled if i €] and labelled-b if 1 ¢]. It is straightforward to
check that the proposed implementatiorRefx) is indeed correct.

(d) Q(x) = Qq(x) A Q2(x): We can assume (by induction) that implementations
Ng, of Qi(x) andNg, of Q2(x) have been constructel.q is constructed,
usingNg, andNg,, as follows:

e N |
P P Pa P
Nooo e N
The dotted rectangles represent the graphs associaléd,tandNq, (only
the distinguished control states are depicted). Verifyirggcorrectness of this
construction is straightforward.
(e) Q(x) = Q1(x) V Q2(x): As in case (d), the construction uses the implemen-
tations ofQ;(x) andQ,(x); but the situation is slightly more involved in this

12

case:

To verify correctness, we first consider the case widR) is true. By in-
duction, eitherpq, (k) ~ pq, (k) or pg,(k) ~ pg,(k). In the first case,
pPq, (k) ~ pg, (k) implies thatp;(k) ~ pa(k), which in turn implies that
p(k) ~ p’(k); similarly, in the second case.q, (k) ~ pq, (k) implies that
p1(k) ~ p3(k), which also implies thap (k) ~ p’(k). Hence in either case
p(k) ~p'(k).

Now consider the case wh&(k) is false. By inductionp g, (k) £ pg, (k)
andpq, (k) £ pg, (k). Obviously,pq, (k) £ pg, (k) implies thatpq(k) [
p2(k), andpq, (k) £ pg, (k) implies thatp;(k) [Z p3(k). From this we have
p(k) Zp'(k).

M Q(x) = Fy < x : Qq(y) (wherex,y are distinct): We use the following
construction:

To verify correctness, we first consider the case WQ€k) is true. This means
that Q(1) is true for somei<k, which by induction implies thapg, (i) ~
Pg, (1) for thisi<k. Our result, thap (k) ~ p’(k), follows immediately from
the following:
Claim: For allk, if pg, (i) ~ pg, (1) for somei<k, thenp(k) ~ p’(k).
Proof: By induction onk. For the base cas&<0), if pq, (1) ~ pg, (1) for
somei<0, thenpq, (0) ~ pg, (0), which implies thap;(0) ~ p3(0), and
hence thap(0) ~ p’(0). For the induction stefk(-0), if pq, (1) ~ pg, (1)
for somei<k, then eitheipq, (k) ~ pg, (k), which implies thap; (k) ~
p3(k) which in turn implies thap (k) ~ p’(k); or pq, (i) ~ pg, (1) for
somei<k—1, which by induction implies thgi(k—1) ~ p’(k—1), which
implies thatp(k) ~ p2(k—1), which in turn implies thap (k) ~ p’(k).
Next, we consider that case wheénk) is false. This means th&,(i) is

13

false for alli<k, which by induction implies thapq, (1) £ pgq, (1) for all
i<k. Our result, thap (k) Z p’(k), follows immediately from the following:
Claim: Forallk, if p(k) E p’(k) thenpq, (i) E pg, (i) for somei<k.
Proof: By induction onk. For the base cas&£0), if p(0) C p’(0) then
p1(0) T p3(0), which in turn implies thapq, (0) C pg, (0). For the
induction step K>0), if p(k) C p’(k) then eitherp;(k) C pa(k—1)
or p1(k) C p3(k). In the first casep;(k) T p2(k—1) implies that
p(k—1) E p’(k—1), which by induction implies thapq, (i) E pg, (1)
for somei<k—1 and hence for somieck; and in the second cage,(k) C
ps(k) implies thatpq, (k) C pg, (k).
(@) Q = Vx : Qq(x): The implementation in the following figure can be easily
verified.

For anyQ € OCL, the described construction terminates af¥ésiz€ Q)) steps,
because we add only a constant number of new nodes in eacassudxcept for
(b) and (c), where we ad@(k) new nodes (recall that the size[df] isk+1). O

3.2 Simulation Problems for One-Counter Automata and Eiitate Systems

Now we establisitDP-hardness of thed C F, 7 C A, and A ~ F problems.
Again, we use the (inductively defined) reduction fromUrHOCL; only the par-
ticular constructions are now slightly different.

By animplementatiorwe now mean a 4-tupleA, F, F’, A’) whereA, A’ are one-
counter automata, arflF’ are finite-state systems; the role of distinguished states
is now played by the initial states, denotedor A, f for F, f’ for F/, andq’ for

A’. We again first state an important technical result, andnedgfier its proof until
after we derive the desired theorem as a corollary.

Proposition 7 There is an algorithm which, giveQ = Q(x) € OCL as input,
halts afterO(siz€Q)) steps and outputs an implementatioh, F, F', A’) (where
q, f, f’ and q’ are the initial control states oA, F, F/ and A’, respectively) such
that for everyk € N we have:

Q(k) istrue iff q(k) Cf iff f T q'(k).

14

(Note that ifQ is a closed formula, then this implies thaD is true iff q(0) C f
iff f'C q’(0).)

Theorem 8 ProblemsA C F, F C A, and A ~ F are DP-hard.

PROOF. Recalling that RUTHOCL is DP-hard, DP-hardness of the first two
problems readily follows from Proposition 7.

DP-hardness of the third problem follows from a simple (gebhemeduction of
A C Fto A~ F:given a one-counter automatdawith initial stateq, and a
finite-state systerh with initial statef, we first transforn¥ to F; by adding a new
statef; and transitionf; > f, and then creatd ; by taking (disjoint) union ofA,
F; and addingf; = q, wheref; is the copy off; in A;. Clearly q(k) C f iff
f] (k) ~ f]. O

Proof of Proposition 7: We proceed by induction on the structure @f In the
constructions we use only two actionsandb; this also means that a state with
non-decreasing andb loops isuniversal i.e, it can simulate “everything”.

(@) Q = (x = 0): A straightforward implementation looks as follows:

q f f’ q

—a a

(b,c) Q = [k][x or Q = [k]tx, wherek>0: Given] C {0,1,2,...,k—1},
let R;(x) = ((xmodk) € J). We shall show that the formulRy(x) can be
implemented in our sense; takifg= {0} then gives us the construction for
case (b), and taking= {1, ..., k—1} gives us the construction for case (c).

An implementation ofR;(x), where1,2 €] but0,3,k—1 &], looks as

15

follows:

In this picture, nodé€; has ab-loop inF, and nodey; has an outgoing dashed
a-edge inA’, iff i €]. Itis straightforward to check that the proposed imple-
mentation ofR;(x) is indeed correct.

(d) Q(x) = Q1(x)AQz(x): The elements of the implementatibhq, Fq, Fi, Ag)
for Q can be constructed from the respective elements of the imgaiations
for Q4, Q2 (assumed by inductionfi o from A g, andAq,; Fo from Fq, and
Fq,; Fo fromFq, andFg,; andAg from Ag, andAg, . All these cases follow
the schema depicted in the following figure:

Correctness is easily verifiable.
(e) Q(x) = Q1(x) VvV Q2a(x): We give constructions just fok andF (the construc-
tions forF’ andA’ are almost identical):

For anyk, Q(k) istrue iff Q;(k) is true orQ;(k) is true, which by induction
is true iff qq, (k) C fg, orqq, (k) C fqg,, which is true iff q;(k) C f; or
gi1(k) C f,, which in turnis true iff q(k) C f.

M Q(x) = Fy < x : Qq(y) (wherex,y are distinct): We use the following

16

constructions:

We prove that the construction is correct fdrand A’ (the other case being
similar). Q(k) is true iff Q4(i) is true for some <k, which by induction is
true iff f5, C qgq, (i) for somei<k, whichin turnis true iff f; £ q5(i) for
somei<k. Our result, that this is true ifff’ C q’(k), follows immediately
from the following:

Claim: Forallk, f'C q'(k) iff f; C q5(i) for somei<k.

Proof: By induction onk. For the base cas&<0), the result is immedi-
ate. For the induction stefx$0), first note thatf; C q(k—1) iff ' C
q’'(k—1), which by induction is true ifff; C q5(i) for somei<k—1. Thus
' C q'(k) iff f; C q5(k)orf; C qij(k—1), whichis true iff f; C q5(k)
or f; C qg5(i) for somei<k—1, which in turn is true iff f; C q5(i) for
somei<k.

(@) Q =Vx: Qq(x): Itis easy to show the correctness of the implementation in
the following figure.

For anyQ € OCL, the described construction terminates af¢siz€ Q)) steps,
because we add only a constant number of new nodes in eacassudxcept for
(b) and (c), where we ad@(k) new nodes. O

17

3.3 Model-Checking the Logic EF for One-Counter Nets

We prove that the model-checking problem for the logic EF Ahghrocesses is
DP-hard, even for a fixed EF formula. We start with the followprgposition:

Proposition 9 There is an algorithm which, giveQ@ = Q(x) € OCL as input,
halts afterO(siz€Q)) steps and outputs a one-counter net with a distinguished
stateq and an EF formulab g such that for everk € N we have:

Q(k) istrue iff q(k) = @q.

The constructed EF formul@g, is not yet fixed; actually, it is not clear if the proof
of Proposition 9 can be modified so that it returns the sameoEHRLila for every
Q € OCL. However, it is quite straightforward to modify the ctmstion so that
it produces the same EF formula for all tha3e= OCL which can be obtained by
applying the construction of (the proof of) Theorem 3 to sanstance(¢, 1) of
TRUTHOCL. Thus we obtain

Proposition 10 Let Q be anOCL formula which can be obtained by applying
the construction of Theorem 3. There is a (fixed) EF forn@land an algorithm
which, givenQ on input, halts afteiO(siz€ Q)) steps and outputs a one-counter
net with a distinguished statgsuch that for everk € N we have:

Q(k) istrue iff gq(k) = @.

Theorem 11 The model-checking problem for the logic EF aNdprocesses is
DP-hard, even for a fixed EF formula.

Proof of Proposition 9: We proceed by induction on the structure@f All steps
are easy to verify and do not require detailed comments.

(@ Q= (x=0):

—a

®q = [a]false

18

(b,c) Q = [k]|x or Q = [k|tx, wherek>0:

do=4(

= O[blfalse or ®g = O(b)true

(x)V Qa(x)

q)Q = [Cl]q)Q] A\ [b]q)Qz or q)Q = <Cl>q)Q] V ®Q2

(M Q(x) =3y < x:Qq(y) (wherex, y are distinct):

(DQ = <><C>(DQ1

Herec is a fresh (i.e., previously unused) action.

(@ Q=vx:Qulx):

Again, c is a fresh action. O

Proof of Proposition 10: Note that the algorithm of Theorem 3 produces OCL for-
mulas with an “almost fixed” structure: for a given instafige) of TRUTHOCL,

it basically plugs thep and (in a slightly modified form) into a fixed template.
Therefore, we just need to modify the steps (d,e) of the ptesvalgorithm.

(de) () Q(x) = Vig;Pilx) V Vi Nj(x) whereu +v > 2, and everyP; and

19

N; is of the form[k;] [x and[k{] {x, respectively.

(DQ = <a>(Dp\/ (DN

Here®p = <[blfalseand @y = O(b)true are the (fixed) formulas con-
structed forP;(x) andN;(x), respectively. Also note that if, e.gs, = 0,
then the nodey in the above graph has nesuccessors, but the formula
® keeps its form.

(i) Q(x) = ALy Pilx) A AjZ; Nj(x) whereu +v > 2, and everyP; and
N; is of the form[k;] [x and[k;] 1 x, respectively. We construct the same
net as in (i) and pu® o = [a]@p A [b] D

(i) Q(x) = Ry(x)V---VR,(x)wheren > 2 and evenR;(x) is a conjunc-
tion of the form discussed in (ii).

R R Do = (a)Dg

Here®y = [a]®p A\ [b]Dy is the (fixed) formula constructed &% (x).

(iv) Q(x) = Ry(x) A---ARp(x) wheren > 2 and everyR;(x) is a dis-
junction of the form discussed in (i). We construct the saeteas in (jii)
and putd g = [a]®r wheredy = (a)DpV (b) Dy is the (fixed) formula
constructed foR;(x).

4 Conclusions

Intuitively, the reason why we could not lift tHeP lower bound to some higher
complexity class (e.gPSPACE) is that there is no apparent way to implement
a “step-wise guessing” of assignments which would allowausricode, e.g., the
QBF problem. The difficulty is that if we modify the counter vaJwee were not
able to find a way to check that the old and new values encodapatible” as-
signments which agree on a certain subset of propositiaradtants. Each such
attempt resulted in an exponential blow-up in the numbepofml states.

Known results about equivalence-checking with one-cauaiéomata are summa-
rized in the following table where rows correspond to défg@requivalences, resp.
preorders,4 denotes weak bisimilarity) and columns correspond to ifiepairs

20

of checked systems:

A= A NN A F N« F
~ | decidable [4] | decidable [4] in P[10] in P[10]
DP-hard DP-hard

in EXPTIME | in EXPTIME
DP-hard [10] | DP-hard [10] | DP-hard [10] | DP-hard [10]
undecidable [8] decidable [1,8]| in EXPTIME in P[11]

Q

12

DP-hard DP-hard

C | undecidable [8] decidable [1,8] in EXPTIME in P[11]
DP-hard DP-hard

2 | undecidable [8] decidable [1,8] in EXPTIME in P[11]
DP-hard DP-hard

Recently, it has been shown in [14] that the problefisc N and A ~ A are
already undecidable.

The EXPTIME upper bound of problemd ~ F,N ~ F, AC F,F C Aand

A ~ F is due to the fact that all of the mentioned problems can biéyeasluced

to the model-checking problem with pushdown systems (sge,[6,12]) and the
modalu-calculus which iEXPTIM E-complete [20].

Known results for model-checking of one-counter automatale summarized as
follows:

e The model-checking problem for HML and processes is iR.

e Model-checking with any logic which subsumes the logic EB aich is sub-
sumed by the modai-calculus (it applies to, e.g., EF, CTL, CTlu-calculus) is
DP-hard and irEXPTIME. The lower complexity bound holds even for a fixed
formula.

References

[1] P.Abdullaand KCerans. Simulation is decidable for one-counter neRrdeeedings
of CONCUR’'98 volume 1466 oL NCS pages 253-268. Springer, 1998.

[2] E. Bach and J. ShallitAlgorithmic Number Theory. Vol. 1, Efficient AlgorithmEhe
MIT Press, 1996.

21

[3] E. Emerson. Temporal and modal logldandbook of Theoretical Computer Science
B:995-1072, 1991.

[4] P. Jancar. Decidability of bisimilarity for one-co@ntprocesses.Information and
Computation 158(1):1-17, 2000.

[5] P.Jancar, A. Kucera, and R. Mayr. Deciding bisimulatlike equivalences with finite-
state processed.heoretical Computer Scienc258(1-2):409-433, 2001.

[6] P. Jancar, A. KuCera, and F. Moller. Simulation andrbigation over one-counter
processes. lIfProceedings of STACS 2Q0@lume 1770 ofLNCS pages 334-345.
Springer, 2000.

[7] P.Jancar, A. Kucera, F. Moller, and Z. Sawa. Equiveéenhecking with one-counter
automata: A generic method for proving lower bounds.Ptoceedings of FoSSaCS
2002 volume 2303 oLNCS pages 172—-186. Springer, 2002.

[8] P.Jancar, F. Moller, and Z. Sawa. Simulation probleprsohe-counter machines. In
Proceedings of SOFSEM’99olume 1725 of. NCS pages 404—413. Springer, 1999.

[9] D. Kozen. Results on the propositionalcalculus. Theoretical Computer Science
27:333-354, 1983.

[10] A. Kucera. Efficient verification algorithms for oneunter processes. Proceedings
of ICALP 2000 volume 1853 of.NCS pages 317-328. Springer, 2000.

[11] A. Kucera. On simulation-checking with sequentiastgms. IrProceedings of ASIAN
200Q volume 1961 oL NCS pages 133-148. Springer, 2000.

[12] A. KuCera and R. Mayr. Simulation preorder over simgieocess algebras.
Information and Computatiqri73(2):184-198, 2002.

[13] R. Mayr. Strict lower bounds for model checking BFENTCS 18, 1998.

[14] R. Mayr. Undecidability of weak bisimulation equivalge for 1-counter processes. In
Proceedings of ICALP 20083 NCS. Springer, 2003.

[15] R. Milner. Communication and ConcurrenciPrentice-Hall, 1989.
[16] C. PapadimitriouComputational ComplexityAddison-Wesley, 1994.

[17] D. Park. Concurrency and automata on infinite sequentesroceedingsst™ Gl
Conferencevolume 104 olLNCS pages 167-183. Springer, 1981.

[18] C. Stirling. Modal and temporal logicélandbook of Logic in Comp. ScR:477-563,
1992.

[19] R. van Glabbeek. The linear time—branching time speotrHandbook of Process
Algebra pages 3-99, 1999.

[20] I. Walukiewicz. Pushdown processes: Games and mdutking. Information and
Computation 164(2):234-263, 2001.

22

