
DP Lower Bounds for Equivalence-Checking and
Model-Checking of One-Counter Automata 2

Petr Jaňcara,1, Antońın Kučerab,1, Faron Mollerc, Zdeňek Sawaa,1

aDept. of Computer Science, FEI, Technical University of Ostrava, 17. listopadu 15,
CZ-70833 Ostrava, Czech Republic.{Petr.Jancar,Zdenek.Sawa}@vsb.cz
bFaculty of Informatics, Masaryk University, Botanická 68a, CZ-60200 Brno, Czech

Republic.tony@fi.muni.cz
cDept. of Computer Science, University of Wales Swansea, Singleton Park,

Swansea SA2 8PP, Wales.F.G.Moller@swansea.ac.uk

Abstract

We present a general method for provingDP-hardness of problems related to formal ver-
ification of one-counter automata. For this we show a reduction of the SAT-UNSAT prob-
lem to the truth problem for a fragment of (Presburger) arithmetic. The fragment con-
tains only special formulas with one free variable, and is particularly apt for transforming
to simulation-like equivalences on one-counter automata.In this way we show that the
membership problem for any relation subsuming bisimilarity and subsumed by simulation
preorder isDP-hard (even) for one-counternets(where the counter cannot be tested for
zero). We also showDP-hardness for deciding simulation between one-counter automata
and finite-state systems (in both directions), and for the model-checking problem with one-
counter nets and the branching-time temporal logic EF.

Key words: One-Counter Machines, Equivalence-Checking, Model-Checking

1 Introduction

In concurrency theory, aprocess is typically defined to be a state in atransition
system, which is a tripleT = (S, Σ,→) whereS is a set ofstates, Σ is a set of
actions and→ ⊆ S × Σ × S is a transition relation. We writes a

→ t instead of
(s, a, t) ∈ →, and we extend this notation in the natural way to elements ofΣ∗. A
statet is reachable from a states, writtens →∗ t, iff s w→ t for somew ∈ Σ∗.

1 Supported by the Grant Agency of the Czech Republic, grant No. 201/00/0400.
2 The paper is based on results which previously appeared in [7,11].

Preprint submitted to Elsevier Science 12 April 2008

We consider processes generated byone-counter automata, nondeterministic finite-
state automata operating on a single counter variable whichtakes values from the
setN = {0, 1, 2, . . .}. Formally this is a tupleA = (Q,Σ, δ=, δ>, q0) whereQ is a
finite set ofcontrol states, Σ is a finite set ofactions,

δ= : Q× Σ → P(Q× {0, 1}) and
δ> : Q× Σ → P(Q× {−1, 0, 1})

aretransition functions (whereP(M) denotes the power-set ofM), andq0 ∈ Q is
a distinguishedinitial control state.δ= represents the transitions which are enabled
when the counter value is zero, andδ> represents the transitions which are enabled
when the counter value is positive.A is aone-counter net if and only if for all pairs
(q, a) ∈ Q× Σ we have thatδ=(q, a) ⊆ δ>(q, a).

To the one-counter automatonAwe associate the transition systemTA = (S, Σ,→),
whereS = {p(n) : p ∈ Q,n ∈ N} and→ is defined as follows:

p(n)
a
→ q(n + i) iff






n = 0, and(q, i) ∈ δ=(p, a); or

n > 0, and(q, i) ∈ δ>(p, a).

Note that any transition increments, decrements, or leavesunchanged the counter
value; and a decrementing transition is only possible if thecounter value is strictly
positive. Also observe that whenn > 0 the immediate transitions ofp(n) do not
depend on the actual value ofn. Finally note that a one-counternetcan in a sense
test if its counter is nonzero (that is, it can perform some transitions only on the
proviso that its counter is nonzero), but it cannot test in any sense if its counter is
zero. For ease of presentation, we understandfinite-statesystems (corresponding to
transition systems with finitely many states) to be one-counter nets whereδ= = δ>

and the counter is never changed. Thus, the parts ofTA reachable fromp(i) and
p(j) are isomorphic and finite for allp ∈ Q andi, j ∈ N.

Remark 1 The class of transition systems generated by one-counter nets is the
same (up to isomorphism) as that generated by the class of labelled Petri nets with
(at most) one unbounded place. The class of transition systems generated by one-
counter automata is the same (up to isomorphism) as that generated by the class of
realtime pushdown automata (i.e. pushdown automata without ε-transitions) with
a single stack symbol (apart from a special bottom-of-stackmarker).

The equivalence-checkingapproach to the formal verification of concurrent sys-
tems is based on the following scheme: the specificationS (i.e., the intended be-
haviour) and the actual implementationI of a system are defined as states in transi-
tion systems, and then it is shown thatS andI areequivalent. There are many ways
to capture the notion of process equivalence (see, e.g., [19]); however,simulation

2

andbisimulationequivalence [15,17] are of special importance, as their accompa-
nying theory has found its way into many practical applications.

Given a transition systemT = (S, Σ,→), asimulation is a binary relationR ⊆ S×S
satisfying the following property: whenever(s, t) ∈ R,

if s a
→ s ′ thent a

→ t ′ for somet ′ with (s ′, t ′) ∈ R.

s is simulated by t, written s ⊑ t, iff (s, t) ∈ R for some simulationR; ands
andt aresimulation equivalent, written s ≃ t, iff s ⊑ t andt ⊑ s. The union
of a family of simulation relations is clearly itself a simulation relation; hence,
the relation⊑, being the union of all simulation relations, is in fact the maximal
simulation relation, and is referred to as thesimulation preorder. A characteristic
property is thats ⊑ t iff the following holds: if s a

→ s ′ thent a
→ t ′ for somet ′

with s ′ ⊑ t ′.

A bisimulation is a symmetric simulation relation, ands andt arebisimulation
equivalent, or bisimilar, writtens ∼ t, if they are related by a bisimulation.

Simulations and bisimulations can also be used to relate states ofdifferenttransition
systems; formally, we can consider two transition systems to be a single one by
taking the disjoint union of their state sets.

LetP andQ be classes of processes. The problem of deciding whether a given pro-
cesss of P is simulated by a given processt of Q is denoted byP ⊑ Q; similarly,
the problem of deciding ifs andt are simulation equivalent (or bisimilar) is de-
noted byP ≃ Q (orP ∼ Q, respectively). The classes of all one-counter automata,
one-counter nets, and finite-state systems are denotedA, N , andF , respectively.

In themodel-checkingapproach to formal verification, one defines the desired prop-
erties of the implementation as a formula in a suitable temporal logic, and then it
is shown that the implementation satisfies the formula. There are many temporal
logics which can be classified according to various aspects (see, e.g., [3,18] for
an overview). The simplest (branching-time and action-based) temporal logic is
Hennessy-Milner logic (HML) [15]. The syntax is given by

Ψ ::= true | Ψ1∧ Ψ2 | ¬Ψ | 〈a〉Ψ

Here a ranges over a countable alphabet of actions. Given a transition system
T = (S, Σ,→) and an HML formulaΨ, we inductively define thedenotation of
Ψ, denoted[[Φ]], which is the set of all states ofT where the formulaholds:

[[true]] = S

[[Φ1∧Φ2]] = [[Φ1]] ∩ [[Φ2]]

[[¬Φ]] = S− [[Φ]]

3

[[〈a〉Φ]] = {s ∈ S | ∃t ∈ S : s
a
→ t∧ t ∈ [[Φ]]}

As usual, we writes |= Φ instead ofs ∈ [[Φ]]. The operator dual to〈a〉 is [a]

defined by[a]Φ ≡ ¬〈a〉¬Φ. The other propositional connectives are introduced in
the standard way.

The logic EF is obtained by extending HML with the3 (reachability) operator. Its
semantics is defined as follows:

[[3Φ]] = {s ∈ S | ∃t ∈ S : s →∗ t ∧ t ∈ [[Φ]]}

The formula3Φ can be phrased “thereExists aFuture state such thatΦ holds”;
this justifies the “EF” acronym. The dual operator to3 is 2, defined by2Φ ≡
¬3¬Φ. The logic EF can also be seen as a natural fragment of CTL [3].

The state of the art: TheN ⊑ N problem was first considered in [1], where it was
shown that if two one-counter net processes are related bysomesimulation, then
they are also related by a semilinear simulation (i.e. a simulation definable in Pres-
burger arithmetic), which suffices for semidecidability (and thus decidability) of the
positive subcase. (The negative subcase is semidecidable by standard arguments.)
A simpler proof was given later in [8] by employing certain “geometric” techniques
which allow you to conclude that the simulation preorder (over a given one-counter
net) is itself semilinear. Moreover, it was shown there thattheA ⊑ A problem is
undecidable. The decidability of theA ∼ A problem was demonstrated in [4] by
showing that the greatest bisimulation relation over the states of a given one-counter
automaton is also semilinear. The relationship between simulation and bisimula-
tion problems for processes of one-counter automata has been studied in [6] where
it was shown that one can effectively reduce certain simulation problems to their
bisimulation counterparts by applying a technique proposed in [12]. The complex-
ity of bisimilarity-checking with one-counter automata was studied in [10], where
the problemN ∼ N is shown to becoNP-hard and the problem ofweakbisimilar-
ity [15] betweenN andF processes evenDP-hard; moreover, the problemA ∼ F
was shown to be solvable in polynomial time. Complexity bounds for simulation-
checking were given in [11], where it was shown that the problemsN ⊑ F and
F ⊑ N (and thus alsoN ≃ F) are inP, while A ⊑ F andA ≃ F arecoNP-
hard (and solvable in exponential time). As for model-checking, we can transfer
upper complexity bounds from the results which were achieved for pushdown pro-
cesses, becauseA can be seen as a (proper) subclass of pushdown automata (cf. Re-
mark 1). Hence, model-checking with logics like EF, CTL, CTL∗ [3], or even the
modalµ-calculus [9], is decidable in exponential time for one-counter automata
processes [20]. However, the techniques for lower complexity bounds do not carry
over toA. Another simple observation is that model-checking for HMLandA
processes is inP. This is because the (in)validity of a given HML formulaΦ in a
states depends only on those states which are reachable froms along a path con-
sisting of at mostd transitions, whered is the nesting depth of the〈a〉 operator

4

in Φ. Since the number of states which are reachable from a given one-counter
automata processp(i) is clearly polynomial ind and the size of the underlying
one-counter automaton, we can easily design a polynomial time model-checking
algorithm. (It contrasts with other models like BPA or BPP where model-checking
HML is PSPACE-complete [13]).

Our contribution: We generalize the technique used in [10] for establishing lower
complexity bounds for certain equivalence-checking problems, and present a gen-
eral method for showingDP-hardness of equivalence-checking and model-checking
problems for one-counter automata. (The classDP [16] consists of those languages
which are expressible as a difference of two languages fromNP, and is generally
conjectured to be larger than the union ofNP andcoNP. Section 2.2 contains fur-
ther comments onDP.) The “generic part” of the method is presented in Section 2 ,
where we define a simple fragment of Presburger arithmetic, denoted OCL (“One-
Counter Logic”) which is

• sufficiently powerful so that satisfiability and unsatisfiability of boolean formulas
are both polynomially reducible to the problem of deciding the truth of formulas
of OCL, which implies that this latter problem isDP-hard (Theorem 3); yet

• sufficiently simple so that the problem of deciding the truthof OCL formulas
is polynomially reducible to various equivalence-checking and model-checking
problems (thus providing the “application part” of the proposed method). The
reduction is typically constructed inductively on the structure of OCL formulas,
thus making the proofs readable and easily verified.

In Section 3.1 we apply the method to theN ↔ N problem where↔ is any re-
lation which subsumes bisimilarity and is subsumed by simulation preorder (thus,
besides bisimilarity and simulation equivalence also, e.g., ready simulation equiva-
lence or 2-nested simulation equivalence), showingDP-hardness of these problems
(Theorem 6). In particular, we improve thecoNP lower bound for theN ∼ N
problem established in [10]. In Section 3.2 we concentrate on simulation problems
between one-counter and finite-state automata, and prove that A ⊑ F , F ⊑ A,
andA ≃ F are allDP-hard (Theorem 8). Section 3.3 is devoted to the complexity
of model-checking with one-counter processes. As already mentioned, the model-
checking problem for HML and one-counter automata processes is inP. We show
that model-checking with the logic EF is already intractable: it is DP-hard even
for processes of one-counter nets and afixed EF formula (Theorem 11). In prac-
tice, temporal formulas are usually quite small; hence, thefact that the EF formula
can be fixed provides stronger evidence of computational intractability. Finally, in
Section 4 we draw some conclusions and present a detailed summary of known
results.

5

2 The OCL Fragment of Arithmetic

In this section, we introduce a fragment of (Presburger) arithmetic, denoted OCL
(“One-Counter Logic”). We then show how to encode the problems of satisfiability
and unsatisfiability of boolean formulas in OCL, and thus deduce DP-hardness
of the truth problem for (closed formulas of) OCL. (The name of the language is
motivated by a relationship to one-counter automata which will be explored in the
next section.)

2.1 Definition ofOCL

OCL can be viewed as a certain set of first-order arithmetic formulas. We shall
briefly give the syntax of these formulas; the semantics willbe obvious. Since we
only consider the interpretation of OCL formulas in the standard structure of natu-
ral numbersN, the problem of deciding the truth of a closed OCL formula is well
defined:

Problem: TRUTHOCL
INSTANCE: A closed formulaQ ∈ OCL.
QUESTION: IsQ true ?

Let x andy range over (first-order)variables. A formulaQ ∈ OCL can have at
most one free variablex (i.e., outside the scope of quantifiers); we shall writeQ(x)

to indicate the free variable (if there is one) ofQ; that is,Q(x) either has the one
free variablex, or no free variables at all. For a numberk ∈ N, ⌈k⌉ stands for a
special term denotingk; we can think of⌈k⌉ asSS . . . S0, i.e., the successor func-
tion S appliedk times to 0. We stipulate thatsize(⌈k⌉) = k+1 (which corresponds
to representing numbers in unary).

The formulasQ of OCL are defined inductively as follows; at the same time we
inductively define their size (keeping in mind the unary representation of⌈k⌉):

Q size(Q)

(a) x = 0 1

(b) ⌈k⌉ | x (“k dividesx”; k>0) k+1

(c) ⌈k⌉ ∤ x (“k does not dividex”; k>0) k+1

(d) Q1(x) ∧Q2(x) size(Q1) + size(Q2) + 1

(e) Q1(x) ∨Q2(x) size(Q1) + size(Q2) + 1

(f) ∃y ≤ x : Q ′(y) (x andy distinct) size(Q ′) + 1

(g) ∀x : Q ′(x) size(Q ′) + 1

6

We shall need to consider the truth value of a formulaQ(x) in a valuation assigning
a numbern ∈ N to the (possibly) free variablex; this is given by the formula
Q[n/x] obtained by replacing each free occurrence of the variablex in Q by n.
Slightly abusing notation, we shall denote this byQ(n). (Symbols likei, j, k, n
range over natural numbers, not variables.) For example, ifQ(x) is the formula
∃y ≤ x : ((3 |y) ∧ (2 ∤y)), thenQ(5) is true whileQ(2) is false; and ifQ(x) is a
closed formula, then the truth value ofQ(n) is independent ofn.

2.2 DP-hardness ofTRUTHOCL

Recall the following problem:

Problem: SAT-UNSAT

INSTANCE: A pair (ϕ,ψ) of boolean formulas in conjunctive normal form
(CNF).

QUESTION: Is it the case thatϕ is satisfiable whileψ is unsatisfiable ?

This problem isDP-complete, which corresponds to an intermediate level in the
polynomial hierarchy, harder than bothΣp1 andΠp1 but still contained inΣp2 and
ΠP2 (cf., e.g., [16]). Our aim here is to show that SAT-UNSAT is polynomial-time
reducible to TRUTHOCL. In particular, we show how, given a boolean formulaϕ
in CNF, we can in polynomial time construct a (closed) formula of OCL which
claims thatϕ is satisfiable, and also a formula of OCL which claims thatϕ is
unsatisfiable (Theorem 3).

First we introduce some notation. LetVar(ϕ) = {x1, . . . , xm} denote the set of
(boolean) variables inϕ. Furthermore, letπj (for j≥1) denote thejth prime number.
For everyn ∈ N define the assignmentνn : Var(ϕ) → {true, false} by

νn(xj) =






true, if πj |n,

false, otherwise.

Note that for an arbitrary assignmentν there exists ann ∈ N such thatνn = ν;
it suffices to taken = Π{πj : 1≤j≤m andν(xj)=true}. By ‖ϕ‖ν we denote the
truth value ofϕ under the assignmentν.

Lemma 2 There is a polynomial-time algorithm which, given a booleanformula
ϕ in CNF, constructsOCL-formulasQϕ(x) andQϕ(x) such that both size(Qϕ)

and size(Qϕ) are inO(|ϕ|3), and such that for everyn ∈ N

Qϕ(n) is true iff Qϕ(n) is false iff ‖ϕ‖νn = true.

7

PROOF. Let Var(ϕ) = {x1, . . . , xm}. Given a literalℓ (that is, a variablexj or its
negationxj), define the OCL-formulaQℓ(x) as follows:

Qxj(x) = ⌈πj⌉ | x and Qxj(x) = ⌈πj⌉ ∤ x.

Clearly,Qℓ(n) is true iff Qℓ(n) is false iff ‖ℓ‖νn = true.

• FormulaQϕ(x) is obtained fromϕ by replacing each literalℓ with Qℓ(x). It is
clear thatQϕ(n) is true iff ‖ϕ‖νn = true.

• FormulaQϕ(x) is obtained fromϕ by replacing each∧, ∨, andℓ with ∨, ∧,
andQℓ(x), respectively. It is readily seen thatQϕ(n) is true iff ‖ϕ‖νn = false.

It remains to evaluate the size ofQϕ andQϕ. Here we use a well-known fact from
number theory (cf, e.g., [2]) which says thatπm is in O(m2). Hencesize(Qℓ) is in
O(|ϕ|2) for every literalℓ of ϕ. As there areO(|ϕ|) literal occurrences andO(|ϕ|)

boolean connectives inϕ, we can see thatsize(Qϕ) andsize(Qϕ) are indeed in
O(|ϕ|3). 2

We now come to the main result of the section.

Theorem 3 ProblemSAT-UNSAT is reducible in polynomial time toTRUTHOCL.
Therefore,TRUTHOCL is DP-hard.

PROOF. We give a polynomial-time algorithm which, given an instance(ϕ,ψ) of
SAT-UNSAT, constructs a closed OCL-formulaQ, with size(Q) in O(|ϕ|3+ |ψ|3),
such thatQ is true iffϕ is satisfiable andψ is unsatisfiable.

Expressing the unsatisfiability ofψ is straightforward: by Lemma 2,ψ is unsatisfi-
able iff the OCL-formula

∀x : Qψ(x)

is true. Thus, letQ2 be this formula.

Expressing the satisfiability ofϕ is rather more involved. Letg = π1π2 . . . πm,
whereVar(ϕ) = {x1, . . . , xm}. Clearlyϕ is satisfiable iff there is somen ≤ g such
that‖ϕ‖νn = true. Henceϕ is satisfiable iff the OCL-formula∃y ≤ x : Qϕ(y) is
true for any valuation assigning somei ≥ g to x.

As it stands, it is unclear how this might be expressed; however, we can observe that
the equivalence still holds if we replace the condition “i ≥ g” with “ i is a multiple
of g”. In other words,ϕ is satisfiable iff for everyi ∈ N we have that eitheri = 0,
or g ∤ i, or there is somen ≤ i such thatQϕ(n) is true. This can be written as

∀x : x = 0 ∨ (⌈π1⌉ ∤ x ∨ · · · ∨ ⌈πm⌉ ∤ x) ∨ ∃y ≤ x : Qϕ(y)

8

We thus letQ1 be this formula.

Hence,(ϕ,ψ) is a positive instance of the SAT-UNSAT problem iff the formula

Q = Q1∧Q2

is true. To finish the proof, we observe thatsize(Q) is indeed inO(|ϕ|3+ |ψ|3). 2

2.3 TRUTHOCL is inΠp2

The conclusions we draw for our verification problems are that they areDP-hard,
as we reduce theDP-hard problem TRUTHOCL to them. We cannot improve this
lower bound by much using the reduction from TRUTHOCL, as TRUTHOCL is in
Π
p
2. In this section we sketch the ideas of a proof of this fact.

Theorem 4 TRUTHOCL is inΠp2

PROOF. We start by first proving that for every formulaQ(x) of OCL there is a
d with 0 < d ≤ 2size(Q) such thatQ(i) = Q(i − d) for everyi > 2size(Q). Hence,
∀x : Q(x) holds iff ∀x ≤ 2size(Q) : Q(x) holds. (Note that∀x ≤ 2size(Q) : Q(x) is
not a formula of OCL.)

We prove the existence ofd for every formulaQ(x) by induction on the structure
of Q(x). If Q(x) is x = 0 then we can taked = 1; and ifQ(x) is ⌈k⌉ | x or ⌈k⌉ ∤ x
then we can taked = k.

If Q(x) isQ1(x)∧Q2(x) orQ1(x)∨Q2(x), then we may assume by the induction
hypothesis the existence of the relevantd1 forQ1 andd2 forQ2. We can then take
d = d1d2 to give the desired property thatQ(i) = Q(i− d) for everyi > 2size(Q).

If Q(x) is ∃y ≤ x : Q ′(y) (x andy distinct) then by the induction hypothesis there
is ad ′ with 0 < d ′ ≤ 2size(Q′) such thatQ ′(i) = Q ′(i−d ′) for everyi > 2size(Q′). It
follows that ifQ ′(i) is true for somei, then it is true for somei ≤ 2size(Q′) < 2size(Q)

(recall thatsize(Q) = size(Q ′) + 1). Furthermore, ifQ ′(i) is true for somei then
Q(j) is true for everyj ≥ i; on the other hand, ifQ ′(i) is false for everyi, then
Q(j) is false for everyj. Thus we can taked = 1.

If Q(x) is ∀y : Q ′(y), thenx is not free inQ ′(y), so the truth value ofQ(i) does
not depend oni and we can taked = 1.

9

Next we note that every OCL-formulaQ(x) can be transformed into a formula
Q̂(x) (which need not be in OCL) in (pseudo-)prenex form

(∀x1 ≤ 2size(Q1)) · · · (∀xk ≤ 2size(Qk))

(∃y1 ≤ z1) · · · (∃yℓ ≤ zℓ)F(x1, . . . , xk, y1, . . . , yℓ)

where

• ∀xi : Qi(xi) is a subformula ofQ(x);
• eachzi ∈ {x1, . . . , xk, y1, . . . , yi−1}; and
• F(x1, . . . , xk, y1, . . . , yℓ) is a∧,∨-combination of atomic subformulas ofQ(x).

This can be proved by induction on the structure ofQ(x). The only case requiring
some care is the case whenQ(x) is of the form∃y ≤ x : Q ′(y), because∃y∀z :

P(y, z) and∀z∃y : P(y, z) are not equivalent in general, but they are in our case,
asz never depends ony due to restrictions in OCL. Note that the size ofQ̂(x) is
polynomial insize(Q) (assuming that2size(Q1), . . . , 2size(Qk) are encoded in binary).

We can construct an alternating Turing machine which first uses its universal states
to assign all possible values (bounded as mentioned above) to x1, . . . , xk, then uses
its existential states to assign all possible values toy1, . . . , yℓ, and finally evalu-
ates (deterministically) the formulaF(x1, . . . , xk, y1, . . . , yℓ). It is clear that this
alternating Turing machine can be constructed so that it works in time which is
polynomial insize(Q). This implies the membership of TRUTHOCL inΠp2. 2

3 Application to One-Counter Automata Problems

As we mentioned above, the language OCL was designed with one-counter au-
tomata in mind. The problem TRUTHOCL can be relatively smoothly reduced to
various verification problems for such automata, by providing relevant construc-
tions (“implementations”) for the various cases (a)-(g) ofthe OCL definition, and
thus it constitutes a useful tool for proving lower complexity bounds (DP-hardness)
for these problems. We shall demonstrate this for theN ↔ N problem, where↔
is any relation satisfying that∼ ⊆ ↔ ⊆ ⊑, and then also for theA ⊑ F , F ⊑ A,
andA ≃ F problems.

For the purposes of our proofs, we adopt a “graphical” representation of one-
counter automata as finite graphs with two kinds of edges (solid and dashed ones)
which are labelled by pairs of the form(a, i) ∈ Σ× {−1, 0, 1}; instead of(a,−1),
(a, 1), and(a, 0) we write simply−a, +a, anda, respectively. Asolid edge from
p to q labelled by(a, i) indicates that the represented one-counter automaton
can make a transitionp(k) a

→ q(k + i) wheneveri ≥ 0 or k > 0. A dashed

10

edge fromp to q labelled by(a, i) (wherei must not be−1) represents a zero-
transitionp(0) a

→ q(i). Hence, graphs representing one-counter nets do not con-
tain any dashed edges, and graphs corresponding to finite-state systems use only
labels of the form(a, 0) (remember that finite-state systems are formally under-
stood as special one-counter nets). Also observe that the graphs cannot represent
non-decrementing transitions which are enabledonly for positive counter values;
this does not matter since we do not need such transitions in our proofs. The distin-
guished initial control states are indicated by black circles.

3.1 Results for One-Counter Nets

In this section we show that, for any relation↔ satisfying∼ ⊆ ↔ ⊆ ⊑, the
problem of deciding whether two (states of) one-counter nets are in↔ is DP-hard.
We first state an important technical result, but defer its proof until after we derive
the desired theorem as a corollary.

Proposition 5 There is an algorithm which, given a formulaQ = Q(x) ∈ OCL
as input, halts afterO(size(Q)) steps and outputs a one-counter net with two dis-
tinguished control statesp andp ′ such that for everyk ∈ N we have:

• if Q(k) is true then p(k) ∼ p ′(k);
• if Q(k) is false then p(k) 6⊑ p ′(k).

(Note that ifQ is a closed formula, then this implies thatp(0) ∼ p ′(0) if Q is true,
andp(0) 6⊑ p ′(0) if Q is false.)

Theorem 6 For any relation↔ such that∼ ⊆ ↔ ⊆ ⊑, the following problem is
DP-hard:

INSTANCE: A one-counter net with two distinguished control statesp andp ′.
QUESTION: Is p(0) ↔ p ′(0) ?

PROOF. Given an instance of TRUTHOCL, i.e., aclosedformulaQ ∈ OCL, we
use the (polynomial) algorithm of Proposition 5 to construct a one-counter net with
the two distinguished control statesp andp ′. If Q is true, thenp(0) ∼ p ′(0), and
hencep(0) ↔ p ′(0); and ifQ is false, thenp(0) 6⊑ p ′(0), and hencep(0) 6↔
p ′(0). 2

Proof of Proposition 5: We proceed by induction on the structure ofQ. For each
case, we show animplementation, i.e., the corresponding one-counter netNQ with
two distinguished control statesp andp ′. Constructions are sketched by figures

11

which use our notational conventions; the distinguished control states are denoted
by black dots (the left onep, the right onep ′). It is worth noting that we only use
two actions,a andb.

(a) Q(x) = (x = 0): A suitable (and easily verifiable) implementation looks as
follows:

−a

p p ′

(b,c) Q(x) = ⌈k⌉ | x or Q(x) = ⌈k⌉ ∤ x, wherek>0: GivenJ ⊆ { 0, 1, 2, . . . , k−1 },
let RJ(x) = ((xmodk) ∈ J). We shall show that the formulaRJ(x) can be
implemented in our sense; takingJ = {0} then gives us the construction for
case (b), and takingJ = {1, . . . , k−1} gives us the construction for case (c).

An implementation ofRJ(x), where for the point of illustration we have
1, 2 ∈ J but0, 3, k−1 6∈ J, looks as follows:

b

−a p

−b
b

−b
−b

−a

−a−a

−a −a

b

q0 = p ′

q1

q2

q3

qk−1

In this picture, each nodeqi has an outgoing edge going to a “dead” state; this
edge is labelledb if i ∈ J and labelled−b if i 6∈ J. It is straightforward to
check that the proposed implementation ofRJ(x) is indeed correct.

(d) Q(x) = Q1(x) ∧Q2(x): We can assume (by induction) that implementations
NQ1 of Q1(x) andNQ2 of Q2(x) have been constructed.NQ is constructed,
usingNQ1 andNQ2 , as follows:

a bab

p p ′

pQ1 pQ2p ′

Q1
p ′

Q2
NQ1 NQ2

The dotted rectangles represent the graphs associated toNQ1 andNQ2 (only
the distinguished control states are depicted). Verifyingthe correctness of this
construction is straightforward.

(e) Q(x) = Q1(x) ∨Q2(x): As in case (d), the construction uses the implemen-
tations ofQ1(x) andQ2(x); but the situation is slightly more involved in this

12

case:

a

a

b

b

a

a

aa
a

a b

PSfrag

p p ′

p1 p2 p3

pQ1 pQ2p ′

Q1
p ′

Q2

To verify correctness, we first consider the case whenQ(k) is true. By in-
duction, eitherpQ1(k) ∼ p ′

Q1
(k) or pQ2(k) ∼ p ′

Q2
(k). In the first case,

pQ1(k) ∼ p ′

Q1
(k) implies thatp1(k) ∼ p2(k), which in turn implies that

p(k) ∼ p ′(k); similarly, in the second case,pQ2(k) ∼ p ′

Q2
(k) implies that

p1(k) ∼ p3(k), which also implies thatp(k) ∼ p ′(k). Hence in either case
p(k) ∼ p ′(k).

Now consider the case whenQ(k) is false. By induction,pQ1(k) 6⊑ p
′

Q1
(k)

andpQ2(k) 6⊑ p ′

Q2
(k). Obviously,pQ1(k) 6⊑ p ′

Q1
(k) implies thatp1(k) 6⊑

p2(k), andpQ2(k) 6⊑ p ′

Q2
(k) implies thatp1(k) 6⊑ p3(k). From this we have

p(k) 6⊑ p ′(k).
(f) Q(x) = ∃y ≤ x : Q1(y) (wherex, y are distinct): We use the following

construction:

a a a

b+bb

−a
−a

−a
a

−a

p p ′

p1 p2 p3

pQ1 p ′

Q1

To verify correctness, we first consider the case whenQ(k) is true. This means
thatQ1(i) is true for somei≤k, which by induction implies thatpQ1(i) ∼

p ′

Q1
(i) for this i≤k. Our result, thatp(k) ∼ p ′(k), follows immediately from

the following:
Claim: For allk, if pQ1(i) ∼ p ′

Q1
(i) for somei≤k, thenp(k) ∼ p ′(k).

Proof: By induction onk. For the base case (k=0), if pQ1(i) ∼ p ′

Q1
(i) for

somei≤0, thenpQ1(0) ∼ p ′

Q1
(0), which implies thatp1(0) ∼ p3(0), and

hence thatp(0) ∼ p ′(0). For the induction step (k>0), if pQ1(i) ∼ p ′

Q1
(i)

for somei≤k, then eitherpQ1(k) ∼ p ′

Q1
(k), which implies thatp1(k) ∼

p3(k) which in turn implies thatp(k) ∼ p ′(k); or pQ1(i) ∼ p ′

Q1
(i) for

somei≤k−1, which by induction implies thatp(k−1) ∼ p ′(k−1), which
implies thatp1(k) ∼ p2(k−1), which in turn implies thatp(k) ∼ p ′(k).

Next, we consider that case whenQ(k) is false. This means thatQ1(i) is

13

false for all i≤k, which by induction implies thatpQ1(i) 6⊑ p ′

Q1
(i) for all

i≤k. Our result, thatp(k) 6⊑ p ′(k), follows immediately from the following:
Claim: For allk, if p(k) ⊑ p ′(k) thenpQ1(i) ⊑ p

′

Q1
(i) for somei≤k.

Proof: By induction onk. For the base case (k=0), if p(0) ⊑ p ′(0) then
p1(0) ⊑ p3(0), which in turn implies thatpQ1(0) ⊑ p ′

Q1
(0). For the

induction step (k>0), if p(k) ⊑ p ′(k) then eitherp1(k) ⊑ p2(k−1)

or p1(k) ⊑ p3(k). In the first case,p1(k) ⊑ p2(k−1) implies that
p(k−1) ⊑ p ′(k−1), which by induction implies thatpQ1(i) ⊑ p ′

Q1
(i)

for somei≤k−1 and hence for somei≤k; and in the second case,p1(k) ⊑
p3(k) implies thatpQ1(k) ⊑ p

′

Q1
(k).

(g) Q = ∀x : Q1(x): The implementation in the following figure can be easily
verified.

−a −a

b b

b b

+a +ap p ′

pQ1 p ′

Q1

For anyQ ∈ OCL, the described construction terminates afterO(size(Q)) steps,
because we add only a constant number of new nodes in each subcase except for
(b) and (c), where we addO(k) new nodes (recall that the size of⌈k⌉ is k+1). 2

3.2 Simulation Problems for One-Counter Automata and Finite-State Systems

Now we establishDP-hardness of theA ⊑ F , F ⊑ A, andA ≃ F problems.
Again, we use the (inductively defined) reduction from TRUTHOCL; only the par-
ticular constructions are now slightly different.

By an implementationwe now mean a 4-tuple(A, F, F ′, A ′) whereA,A ′ are one-
counter automata, andF, F ′ are finite-state systems; the role of distinguished states
is now played by the initial states, denotedq for A, f for F, f ′ for F ′, andq ′ for
A ′. We again first state an important technical result, and again defer its proof until
after we derive the desired theorem as a corollary.

Proposition 7 There is an algorithm which, givenQ = Q(x) ∈ OCL as input,
halts afterO(size(Q)) steps and outputs an implementation(A, F, F ′, A ′) (where
q, f, f ′ andq ′ are the initial control states ofA, F, F ′ andA ′, respectively) such
that for everyk ∈ N we have:

Q(k) is true iff q(k) ⊑ f iff f ′ ⊑ q ′(k).

14

(Note that ifQ is a closed formula, then this implies thatQ is true iff q(0) ⊑ f
iff f ′ ⊑ q ′(0).)

Theorem 8 ProblemsA ⊑ F , F ⊑ A, andA ≃ F are DP-hard.

PROOF. Recalling that TRUTHOCL is DP-hard, DP-hardness of the first two
problems readily follows from Proposition 7.

DP-hardness of the third problem follows from a simple (general) reduction of
A ⊑ F to A ≃ F : given a one-counter automatonA with initial stateq, and a
finite-state systemF with initial statef, we first transformF to F1 by adding a new
statef1 and transitionf1

a
→ f, and then createA1 by taking (disjoint) union ofA,

F1 and addingf1
a
→ q, wheref1 is the copy off1 in A1. Clearlyq(k) ⊑ f iff

f1(k) ≃ f1. 2

Proof of Proposition 7: We proceed by induction on the structure ofQ. In the
constructions we use only two actions,a andb; this also means that a state with
non-decreasinga andb loops isuniversal, i.e, it can simulate “everything”.

(a) Q = (x = 0): A straightforward implementation looks as follows:

−a

q f

aa

f ′

a

q ′

A F F ′ A ′

(b,c) Q = ⌈k⌉ | x or Q = ⌈k⌉ ∤ x, wherek>0: Given J ⊆ { 0, 1, 2, . . . , k−1 },
let RJ(x) = ((xmodk) ∈ J). We shall show that the formulaRJ(x) can be
implemented in our sense; takingJ = {0} then gives us the construction for
case (b), and takingJ = {1, . . . , k−1} gives us the construction for case (c).

An implementation ofRJ(x), where1, 2 ∈ J but 0, 3, k−1 6∈ J, looks as

15

follows:

b

−a
q

b

b

a

a

a a

a

f0 = f

f1

f2

f3

fk−1 a
f ′

−a

−a−a

−a −a

a

a
a

q0 = q ′

q1

q2

q3

qk−1

A F F ′ A ′

In this picture, nodefi has ab-loop inF, and nodeqi has an outgoing dashed
a-edge inA ′, iff i ∈ J. It is straightforward to check that the proposed imple-
mentation ofRJ(x) is indeed correct.

(d) Q(x) = Q1(x)∧Q2(x): The elements of the implementation(AQ, FQ, F
′

Q, A
′

Q)

forQ can be constructed from the respective elements of the implementations
forQ1,Q2 (assumed by induction):AQ fromAQ1 andAQ2 ; FQ from FQ1 and
FQ2 ; F

′

Q from F ′Q1 andF ′Q2 ; andA ′

Q fromA ′

Q1
andA ′

Q2
. All these cases follow

the schema depicted in the following figure:

a b

Q1 Q2

Correctness is easily verifiable.
(e) Q(x) = Q1(x)∨Q2(x): We give constructions just forA andF (the construc-

tions forF ′ andA ′ are almost identical):

ba

a

Q1 Q2

q

q1

qQ1 qQ2

b

a a

a ba

a,bQ1 Q2

f

f1 f2

fQ1 fQ2
u

For anyk,Q(k) is true iff Q1(k) is true orQ2(k) is true, which by induction
is true iff qQ1(k) ⊑ fQ1 or qQ2 (k) ⊑ fQ2 , which is true iff q1(k) ⊑ f1 or
q1(k) ⊑ f2, which in turn is true iffq(k) ⊑ f.

(f) Q(x) = ∃y ≤ x : Q1(y) (wherex, y are distinct): We use the following

16

constructions:

−a

b

a a b

Q1

q
a

b b

a

a

a,b

a

Q1

f

a

b

a

Q1

f ′

f ′1

f ′Q1

a

b b

a

a

a,b

−a

Q1

q ′

q ′

1 q ′

2

q ′

Q1

u

A F F ′ A ′

We prove that the construction is correct forF ′ andA ′ (the other case being
similar).Q(k) is true iff Q1(i) is true for somei≤k, which by induction is
true iff f ′Q1 ⊑ q

′

Q1
(i) for somei≤k, which in turn is true iff f ′1 ⊑ q

′

2(i) for
somei≤k. Our result, that this is true ifff ′ ⊑ q ′(k), follows immediately
from the following:
Claim: For allk, f ′ ⊑ q ′(k) iff f ′1 ⊑ q

′

2(i) for somei≤k.

Proof: By induction onk. For the base case (k=0), the result is immedi-
ate. For the induction step (k>0), first note thatf ′1 ⊑ q ′

1(k−1) iff f ′ ⊑
q ′(k−1), which by induction is true ifff ′1 ⊑ q

′

2(i) for somei≤k−1. Thus
f ′ ⊑ q ′(k) iff f ′1 ⊑ q

′

2(k) or f ′1 ⊑ q
′

1(k−1), which is true iff f ′1 ⊑ q
′

2(k)

or f ′1 ⊑ q ′

2(i) for somei≤k−1, which in turn is true iff f ′1 ⊑ q ′

2(i) for
somei≤k.

(g) Q = ∀x : Q1(x): It is easy to show the correctness of the implementation in
the following figure.

−a

b

b

+a
q

qQ1

b

b

a

a

f

fQ1

b

b

a

a

f ′

f ′Q1

−a

b

b

+a

a

a,b

q ′

u

q ′

Q1

A F F ′ A ′

For anyQ ∈ OCL, the described construction terminates afterO(size(Q)) steps,
because we add only a constant number of new nodes in each subcase except for
(b) and (c), where we addO(k) new nodes. 2

17

3.3 Model-Checking the Logic EF for One-Counter Nets

We prove that the model-checking problem for the logic EF andN processes is
DP-hard, even for a fixed EF formula. We start with the followingproposition:

Proposition 9 There is an algorithm which, givenQ = Q(x) ∈ OCL as input,
halts afterO(size(Q)) steps and outputs a one-counter net with a distinguished
stateq and an EF formulaΦQ such that for everyk ∈ N we have:

Q(k) is true iff q(k) |= ΦQ.

The constructed EF formulaΦQ is not yet fixed; actually, it is not clear if the proof
of Proposition 9 can be modified so that it returns the same EF formula for every
Q ∈ OCL. However, it is quite straightforward to modify the construction so that
it produces the same EF formula for all thoseQ ∈ OCL which can be obtained by
applying the construction of (the proof of) Theorem 3 to someinstance(ϕ,ψ) of
TRUTHOCL. Thus we obtain

Proposition 10 Let Q be anOCL formula which can be obtained by applying
the construction of Theorem 3. There is a (fixed) EF formulaΦ and an algorithm
which, givenQ on input, halts afterO(size(Q)) steps and outputs a one-counter
net with a distinguished stateq such that for everyk ∈ N we have:

Q(k) is true iff q(k) |= Φ.

Theorem 11 The model-checking problem for the logic EF andN processes is
DP-hard, even for a fixed EF formula.

Proof of Proposition 9: We proceed by induction on the structure ofQ. All steps
are easy to verify and do not require detailed comments.

(a) Q = (x = 0):

−a

q

ΦQ = [a]false

18

(b,c) Q = ⌈k⌉ | x or Q = ⌈k⌉ ∤ x, wherek>0:

−a

−a−a

−a −a

b b

b

b

b

−b

q0 = q

q1

q2

q3

qk−1

ΦQ = 3[b]false or ΦQ = 2〈b〉true

(d,e) Q(x) = Q1(x) ∧Q2(x) or Q(x) = Q1(x) ∨Q2(x)

a b

q

Q1 Q2 ΦQ = [a]ΦQ1 ∧ [b]ΦQ2 or ΦQ = 〈a〉ΦQ1 ∨ 〈b〉ΦQ2

(f) Q(x) = ∃y ≤ x : Q1(y) (wherex, y are distinct):

c

−a
q

Q1 ΦQ = 3〈c〉ΦQ1

Herec is a fresh (i.e., previously unused) action.
(g) Q = ∀x : Q1(x):

c

+a,−a
q

Q1 ΦQ = 2[c]ΦQ1

Again,c is a fresh action. 2

Proof of Proposition 10: Note that the algorithm of Theorem 3 produces OCL for-
mulas with an “almost fixed” structure: for a given instance(ϕ,ψ) of TRUTHOCL,
it basically plugs theϕ andψ (in a slightly modified form) into a fixed template.
Therefore, we just need to modify the steps (d,e) of the previous algorithm.

(d,e) (i) Q(x) =
∨u
i=1Pi(x) ∨

∨v
j=1Nj(x) whereu + v ≥ 2, and everyPi and

19

Nj is of the form⌈ki⌉ | x and⌈k ′

j⌉ ∤ x, respectively.

a bba

q

P1 Pu N1 Nv ΦQ = 〈a〉ΦP∨ 〈b〉ΦN

HereΦP = 3[b]falseandΦN = 2〈b〉true are the (fixed) formulas con-
structed forPi(x) andNj(x), respectively. Also note that if, e.g.,u = 0,
then the nodeq in the above graph has noa-successors, but the formula
ΦQ keeps its form.

(ii) Q(x) =
∧u
i=1Pi(x) ∧

∧v
j=1Nj(x) whereu + v ≥ 2, and everyPi and

Nj is of the form⌈ki⌉ | x and⌈k ′

j⌉ ∤ x, respectively. We construct the same
net as in (i) and putΦQ = [a]ΦP∧ [b]ΦN.

(iii) Q(x) = R1(x)∨ · · ·∨Rn(x) wheren ≥ 2 and everyRi(x) is a conjunc-
tion of the form discussed in (ii).

a a

q

R1 Rm ΦQ = 〈a〉ΦR

HereΦR = [a]ΦP∧ [b]ΦN is the (fixed) formula constructed forRi(x).
(iv) Q(x) = R1(x) ∧ · · · ∧ Rn(x) wheren ≥ 2 and everyRi(x) is a dis-

junction of the form discussed in (i). We construct the same net as in (iii)
and putΦQ = [a]ΦRwhereΦR = 〈a〉ΦP∨ 〈b〉ΦN is the (fixed) formula
constructed forRi(x).

4 Conclusions

Intuitively, the reason why we could not lift theDP lower bound to some higher
complexity class (e.g.,PSPACE) is that there is no apparent way to implement
a “step-wise guessing” of assignments which would allow us to encode, e.g., the
QBF problem. The difficulty is that if we modify the counter value, we were not
able to find a way to check that the old and new values encode “compatible” as-
signments which agree on a certain subset of propositional constants. Each such
attempt resulted in an exponential blow-up in the number of control states.

Known results about equivalence-checking with one-counter automata are summa-
rized in the following table where rows correspond to different equivalences, resp.
preorders, (≈ denotes weak bisimilarity) and columns correspond to different pairs

20

of checked systems:

A ↔ A N ↔ N A ↔ F N ↔ F

∼ decidable [4] decidable [4] in P [10] in P [10]

DP-hard DP-hard

≈ in EXPTIME in EXPTIME

DP-hard [10] DP-hard [10] DP-hard [10] DP-hard [10]

≃ undecidable [8] decidable [1,8] in EXPTIME in P [11]

DP-hard DP-hard

⊑ undecidable [8] decidable [1,8] in EXPTIME in P [11]

DP-hard DP-hard

⊒ undecidable [8] decidable [1,8] in EXPTIME in P [11]

DP-hard DP-hard

Recently, it has been shown in [14] that the problemsN ≈ N andA ≈ A are
already undecidable.

TheEXPTIME upper bound of problemsA ≈ F , N ≈ F , A ⊑ F , F ⊑ A and
A ≃ F is due to the fact that all of the mentioned problems can be easily reduced
to the model-checking problem with pushdown systems (see, e.g., [5,12]) and the
modalµ-calculus which isEXPTIME-complete [20].

Known results for model-checking of one-counter automata can be summarized as
follows:

• The model-checking problem for HML andA processes is inP.
• Model-checking with any logic which subsumes the logic EF and which is sub-

sumed by the modalµ-calculus (it applies to, e.g., EF, CTL, CTL∗,µ-calculus) is
DP-hard and inEXPTIME. The lower complexity bound holds even for a fixed
formula.

References

[1] P. Abdulla and K.Čer āns. Simulation is decidable for one-counter nets. InProceedings
of CONCUR’98, volume 1466 ofLNCS, pages 253–268. Springer, 1998.

[2] E. Bach and J. Shallit.Algorithmic Number Theory. Vol. 1, Efficient Algorithms. The
MIT Press, 1996.

21

[3] E. Emerson. Temporal and modal logic.Handbook of Theoretical Computer Science,
B:995–1072, 1991.

[4] P. Jančar. Decidability of bisimilarity for one-counter processes.Information and
Computation, 158(1):1–17, 2000.

[5] P. Jančar, A. Kučera, and R. Mayr. Deciding bisimulation-like equivalences with finite-
state processes.Theoretical Computer Science, 258(1–2):409–433, 2001.

[6] P. Jančar, A. Kučera, and F. Moller. Simulation and bisimulation over one-counter
processes. InProceedings of STACS 2000, volume 1770 ofLNCS, pages 334–345.
Springer, 2000.

[7] P. Jančar, A. Kučera, F. Moller, and Z. Sawa. Equivalence-checking with one-counter
automata: A generic method for proving lower bounds. InProceedings of FoSSaCS
2002, volume 2303 ofLNCS, pages 172–186. Springer, 2002.

[8] P. Jančar, F. Moller, and Z. Sawa. Simulation problems for one-counter machines. In
Proceedings of SOFSEM’99, volume 1725 ofLNCS, pages 404–413. Springer, 1999.

[9] D. Kozen. Results on the propositionalµ-calculus. Theoretical Computer Science,
27:333–354, 1983.

[10] A. Kučera. Efficient verification algorithms for one-counter processes. InProceedings
of ICALP 2000, volume 1853 ofLNCS, pages 317–328. Springer, 2000.

[11] A. Kučera. On simulation-checking with sequential systems. InProceedings of ASIAN
2000, volume 1961 ofLNCS, pages 133–148. Springer, 2000.

[12] A. Kučera and R. Mayr. Simulation preorder over simpleprocess algebras.
Information and Computation, 173(2):184–198, 2002.

[13] R. Mayr. Strict lower bounds for model checking BPA.ENTCS, 18, 1998.

[14] R. Mayr. Undecidability of weak bisimulation equivalence for 1-counter processes. In
Proceedings of ICALP 2003, LNCS. Springer, 2003.

[15] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[16] C. Papadimitriou.Computational Complexity. Addison-Wesley, 1994.

[17] D. Park. Concurrency and automata on infinite sequences. In Proceedings5th GI
Conference, volume 104 ofLNCS, pages 167–183. Springer, 1981.

[18] C. Stirling. Modal and temporal logics.Handbook of Logic in Comp. Sci., 2:477–563,
1992.

[19] R. van Glabbeek. The linear time—branching time spectrum. Handbook of Process
Algebra, pages 3–99, 1999.

[20] I. Walukiewicz. Pushdown processes: Games and model-checking. Information and
Computation, 164(2):234–263, 2001.

22

