
Preprint of Paper ‘Connectionist Inference

Models’ to appear in Neural Networks

Antony Browne†, and Ron Sun ‡
† School of Computing, Information Systems and Mathematics, London Guildhall

University, UK
‡ CECS Department, University of Missouri-Columbia, USA

Reprint requests should be sent to: Antony Browne, School of Computing,
Information Systems and Mathematics, London Guildhall University, London

EC3N 1JY, UK, Tel: (+44) 0207 320 1307 Fax: 0207 320 1717 E-mail:
abrowne@lgu.ac.uk

Running title: Connectionist Inference

Abstract

The performance of symbolic inference tasks has long been a challenge to connec-
tionists.In this paper, we present an extended survey of this area. Existing connec-
tionist inference systems are reviewed, with particular reference to how they perform
variable binding and rule-based reasoning and whether they involve distributed or
localist representations. The benefits and disadvantages of different representations
and systems are outlined, and conclusions drawn regarding the capabilities of con-
nectionist inference systems when compared with symbolic inference systems or
when used for cognitive modelling.

Key words: Symbolic inference, resolution, variable binding, localist
representations, distributed representations.

2

1 Introduction

An essential question in connectionist inference systems research is:‘Why should
we bother attempting to perform symbolic inference using connectionist net-
works?’. It could be argued that symbolic inference should be left to classical
symbolic Artificial Intelligence (AI) systems (such as theorem provers or pro-
duction systems), whilst the application of connectionist systems should be
restricted to tasks that they perform best (such as learning function map-
pings of noisy or incomplete data). Another approach could be to just ‘bolt’
together a symbolic inference system and a connectionist network into a hy-
brid system which although being a non-uniform solution to a problem, solved
that problem nonetheless. However, there are many important reasons for de-
veloping uniform connectionist solutions for performing symbolic inference,
including:

• The human capacities for algorithmic reasoning and abstraction suggest
the importance of symbol-based processing (Buchheit, 1999). Indeed, recent
experiments (Marcus et al., 1999) suggest that even human infants may
perform rule-based reasoning.

• To demonstrate the power of connectionism as an alternative paradigm for
AI, it must be demonstrated that connectionist models are fully capable
of performing symbolic reasoning. Therefore, attempts must be made to
develop these capabilities within entirely connectionist systems.

• Science seeks to unify theories and explanations, because in such a process
a deeper understanding of the nature of things can be achieved. In AI, a
great variety of models, techniques, and paradigms have been developed,
and it may be fruitful to unify these different approaches.

• Serial symbolic systems are much too slow to account for the speed and
style of reflexive and direct reasoning processes. There is no adequate par-
allel symbolic system available for handling these types of reasoning. Mas-
sively parallel connectionist models are more suitable for carrying out such
reasoning.

• In many hybrid systems (Sun, 1995c; Chan and Franklin, 1998; Ghalwash,
1998), while the connectionist component enjoys being fault tolerant and
generalizable, the symbolic component is brittle and rigid and becomes the
‘Achilles’ heel’ of the system.

To construct solutions for the points outlined above, many different connec-
tionist systems have been developed. In the next section an attempt is made
to construct broad taxonomies of these systems.

3

2 Classification of connectionist inference systems

It is impossible to precisely classify the wide variety of existing connectionist
inference systems into specific groupings, but a rough attempt can be made
depending on whether or not the systems implement variable binding and
whether they employ localist or distributed representations. In the following
discussion the syntax of the Prolog programming language has been adopted,
where variables are in upper case (such as X) and constants or functors are
in lower case (such as f).

2.1 The variable binding problem

Some connectionist rule-based reasoning systems avoid implementing variable
binding (see section 3). However, many researchers have argued that the abil-
ity to perform variable binding is essential if connectionist systems are ever
to perform complex reasoning tasks (but see (Barnden and Srinivas, 1996)).
There are several main points to this argument:

• Variable binding is essential if dynamic structures are to be created in con-
nectionist systems (Feldman and Ballard, 1992; Sun, 1992). As an example,
consider a system that can reason with Prolog structures representing ve-
hicles such as ‘blue cars’ and ‘red motorcycles’, the system must have a
method of binding the color blue with the vehicle car and red with the
vehicle motorcycle, as in:

colour(X, blue), vehicle(X, car) and

colour(X, red), vehicle(X, motorcycle)

• Variable binding is needed to achieve greater computational power in con-
nectionist systems (Sun, 1992), as without variable binding there must be
many specific rules rather than one general rule. For example, with variable
binding there can be one general rule such as:

dog(X) −→ hairy(X), barks(X)

· representing that X is a dog if X is hairy and X barks. Without variable
binding we must have a specific rule for each eventuality that the system
may encounter, such as:

dog(fido)−→hairy(fido), barks(fido) and

dog(rex)−→hairy(rex), barks(rex) and...etc

4

• Variable binding is essential in modelling human cognition. For example,
it has been argued that it is necessary for modelling the human language
faculty (Pinker and Prince, 1988) as it imposes constraints on rule matching
needed when modelling certain aspects of past-tense learning.

One problem that arises is how to handle variables that are used in rule-based
reasoning, that is, variables as arguments to a predicate in predicate logic or
as parameters in production rules, in a connectionist fashion. Difficulties exist
in:

(1) How to represent the values of a variable, which can be changed at any
time during reasoning processes due to the application of a rule.

(2) How to transfer such values from a known (stored) fact to a rule, or from
conditions of a rule to the conclusion of a rule, or from a rule to a fact to
be stored (all these types of transfers are necessary to ensure that correct
inference is performed when variables are used).

There are many solutions to the variable binding problem (see (Browne and
Sun, 1999) for a review) and some are discussed in sections 4 and 5.

2.2 Localist and distributed representations

Those models using localist representational schemes (often known as struc-
tured or spreading activation networks) can be broadly divided into two types:

(1) Those using a fully localist representation, which is characterized by rep-
resenting each concept (in a particular task domain) with a separate node
in a network, implying one node for one concept (i.e., there is an one-to-
one mapping between nodes and concepts).

(2) Those using a distributed localist (or modularly distributed) representa-
tion, which uses a set of nodes for one concept, each of which does the
same processing. This implies a set of nodes for one concept (i.e., there
is an one-to-one mapping between sets of nodes and concepts).

In models using these schemes, every different item to be represented is mapped
onto its own distinctive unit or units in the network. These models tend to
represent knowledge in structures similar to the semantic network of clas-
sical AI, in which concepts are represented by individual neurons or units
and relations between concepts are encoded by weighted connections between
those units. The activation level on each unit generally represents the amount
of evidence available for its concept within a given context. These models
address important questions, such as how connectionist models can deal with
discrete, symbolic, and step-by-step reasoning as well as performing the contin-
uous mapping, associative retrieval, and constraint satisfaction characteristics

5

commonly associated with connectionist models. These models are capable of:

(1) Carrying out symbolic rule-based reasoning, including handling the vari-
able binding problem.

(2) Reasoning in a computationally efficient manner (when implemented on
parallel hardware).

(3) Replacing hybrid models in which a symbolic component is coupled with
a connectionist component.

(4) Showing promise in better addressing some symbolic processing tasks
(Sun, 1995b).

Despite the accomplishments of localist connectionist models, they have a
number of (alleged) shortcomings, including:

• They are incapable of generalization and therefore suffer from the same
rigidity problem as traditional symbolic AI systems (Sun, 1995b), whereas
in most models using distributed representations, the representations are a
result of the organization of statistical input which provides a natural means
to capture semantic similarity (Smolensky, 1995).

• It is difficult to apply connectionist learning algorithms to develop repre-
sentation automatically (although some learning algorithms do exist, such
as recruitment learning (Diederich, 1988; Diederich, 1991)).

• Localist models are not robust to noise or damage, unlike those using dis-
tributed representations (Churchland and Sejnowski, 1992).

• Localist models entail a high representational complexity as every possible
concept need to be represented explicitly as an individual node, leading
to combinatorial explosion. Models using distributed representation make
more efficient use of representational resources.

• Available evidence seems to indicate that the representations used in bio-
logical neural systems are distributed.

Although some of these problems may not be entirely true (for example, the
problems with noise, generalization and fault tolerance may not be as clear
cut as described above, for a further discussion see (Page, 2000)), they are still
indicative of the need to develop distributed alternatives to localist models. Lo-
calist connectionist models which perform rule-based reasoning are discussed
in sections 3 and 4.

Connectionists using distributed representations maintain that the correct
level at which to model intelligent systems (including the human mind) lies be-
low the level of the symbol (see the subsymbolic hypothesis (Smolensky, 1990))
and reject the Physical Symbol System Hypothesis of symbolic AI (Newell,
1980; Newell, 1986). There have been many attempts to define distribution
in connectionist representations, such as microfeatures (Hinton et al., 1986;
Hinton, 1990), and coarse coding (Rosenfeld and Touretzky, 1988). Perhaps

6

the most formal notion of distribution has been given by van Gelder (van
Gelder, 1991) who described distributed representations with respect to their
extendedness and superposition. For a representation to be extended the things
being represented must be represented over many units, or more generally over
some relatively extended proportion of the available resources in the system
(such as the units in a neural network). A representation can be said to be
superpositional if it represents many items using the same resources. Rep-
resentations in a standard feedforward network can be both extended and
superposed (Sharkey, 1992), as the representation of each input may be dis-
tributed over many hidden units, and each hidden unit may be representing
several inputs. An in-depth discussion of the various definitions of distribution
in connectionist representations would make this paper too lengthy, for a more
extensive elaboration of these definitions readers are referred to the previous
references or (Browne and Sun, 1999). One could argue that, as both neural
networks and Von-Neumann type physical symbol systems are both universal
Turing machines (Franklin and Garzon, 1990), at some level of abstraction
there is no distinction between them. However, the key issue is what consti-
tutes the primitive representation used by these different systems. This is a
pertinent issue, both in modelling human cognition and in building intelligent
systems. Models of rule-based reasoning using distributed representations are
described in Section 5.

2.3 Other classification schemes, for hybrid systems

In another approach to system classification (Sun and Bookman, 1994) ar-
chitectures can be divided up into two broad categories: single-module archi-
tectures and multi-module architectures. In both, it is easier to incorporate
prior knowledge into models using localist representations since their struc-
tures can be made to directly correspond to that of symbolic knowledge. In
multi-module systems, there can be different combinations of different types of
constituent modules. For example, a system can be a combination of localist
modules and distributed modules.

Other classification schemes have been proposed. Medskers (1994) classifica-
tion scheme is based on the degree of coupling between neural and symbolic
components (where coupling is the degree of communication activity between
modules in the hybrid system) and makes no attempt to describe a hierarchy
of modules. The classification scheme proposed by Hilario (1997 and 2000)
classifies systems into unified and hybrid approaches where the unified ap-
proach attempts to endow neural networks with symbolic capabilities so that
no distinct symbolic component is required. The hybrid approach integrates
separate symbolic and neural elements using four distinct integration tech-
niques based upon the flow of data between the modules and has two degrees

7

of coupling (loosely and tightly coupled).

Another scheme (McGarry et al., 1999a) proposes that a classification scheme
can be made with three groups:

(1) Unified hybrid systems are those that have all processing activities im-
plemented by neural network elements.

(2) Transformational hybrid systems can transform a symbolic representation
into a neural one and vice versa.

(3) Modular hybrid systems are comprised of several neural network and sym-
bolic modules which can have different degrees of coupling and integra-
tion. The hierachy of module configuration can allow sequential flow of
information between modules (i.e. one process must be completed before
being passed on) or parallel flow. In this scheme module coupling can
take three forms: passive coupling, when the symbolic and neural compo-
nents communicate only through a shared data file, so after one compo-
nent completes its task the results are placed in a file to be read by the
other component; active coupling, which involves having memory/data
structures shared between the neural and symbolic modules and commu-
nication may be bi-directional allowing feedback to occur between the
different modules; interleaved coupling involves the neural and symbolic
components interacting at a very fine-grained level (such as at the level of
function calls) and an external observer would be unable to differentiate
between them.

There is currently a large amount of work being performed on hybrid systems,
and a comprehensive overview is too large to encompass here. Interested read-
ers are referred to Sun and Alexandre (1997) and Wermter and Sun (2000).

3 Connectionist inference systems without variable binding.

The idea of implementing propositional logic in connectionist networks has
been explored early on in the history of connectionism. For example, McCul-
lough and Pitts (1943) studied the encoding of simple logical operations in
neural networks, and Collins and Loftus (1975) explored the idea of spread-
ing activation within networks. Without variable binding models can consist
of extremely simple production systems containing no parameters or proposi-
tional logic without arguments to predicates. Suppose there is a set of rules
for determining the classification of certain objects:

table−→ phy obj

chair−→ phy obj

8

phy obj −→ thing

The set of rules together form a particular structure determined by the con-
nection imposed by the rules between various concepts (from conditions to
conclusions). The structure stays the same irrespective of any particular order
in which rules are presented, and of the semantics of the rules and the con-
cepts used in the rules. In order to implement such a rule set, the connectivity
pattern of the network should reflect the structure of the rule set by:

(1) Representing each concept mentioned in the rule set with an individual
node in the network.

(2) Implementing a rule by using a link to directly connect each node repre-
senting a concept in the condition of a rule and the node representing a
concept in the conclusion of the rule.

(3) If two rules reach the same conclusion two intermediate nodes should be
created, each of which is used in place of the conclusion of one rule.

(4) If there is a negated concept involved it is represented by the same node
that represents the positive form of that concept.

(5) If a condition is positive and the conclusion is negative, the link between
them should have a negative weight.

(6) If a condition is negative and the conclusion is negative, the link between
them should have a positive weight.

(7) If a condition is negative and the conclusion is positive, the link between
them should have a negative weight.

In this way, there is a direct, one-to-one isomorphic mapping between the
structure of the rule set and that of the network.

(insert figure 1 here)

For the set of rules listed above, a connectionist network implementation is
depicted in Figure 1. Reasoning in such a network is carried out by spreading
of activation from nodes representing the conditions of rules to nodes repre-
senting the conclusions of rules. This process starts from externally activated
and clamped nodes (representing initially known information) and then (if
some of them are conditions of a rule) activation will be propagated to the
nodes representing the conclusion of the rule. Furthermore, if some of these
newly activated nodes in turn are the conditions of other rules, the activation
will be further propagated to simulate application of these rules. This process
continues until no more nodes can be activated. If weighted-sum computations
are used in each node of the network for determining the activation of the node
based on inputs received, the resulting activation in each node can be viewed
as an accumulation of evidence to determine the confidence in the conclusion
which the node represents. This is accomplished through first weighing each
piece of evidence (with respect to each concept in the condition of a rule)

9

by multiplying it with a numerical weight for each input that represents the
confidence (in relation to the corresponding concept) and then summing all
the products:

al(t) =
∑

j

wj ∗ ij(t)

where l is any node in the network, a denotes the activation, and ij ’s are
inputs received. Thus the most commonly used weighted-sum computation
in connectionist models is a simple way for performing evidential reasoning.
Other commonly encountered node computations can also be used, such as
radial basis functions for implementing fuzzy logic rules (Peterson and Sun,
1998).

In certain situations logical reasoning may need to be carried out precisely,
without involving evidential or fuzzy reasoning. Precise (propositional) logic
rules can be implemented using the approach outlined above. For example,
propositional Horn clause logic consists of single concepts, such as p, and
rules such as p1 p2....pn −→ q. The concept in the conditions of a rule can be
in negated form (e.g. ¬p1), but the conclusion must be in positive form. To
implement such logic, weights are assigned from (all the nodes representing)
all the conditions of a rule to (the node representing) the conclusion of the rule
in a way that ensures the total weight (the sum of the absolute values of all
the weights) is 1, and the threshold of (the node representing) the conclusion
of the rule is assigned the value of 1. If a condition is positive, then the
corresponding weight is positive, otherwise a negative weight is assigned. In
this way, the activation of a node will be either 1 or -1, depending on whether
the weighted-sum of the inputs is greater than or equal to the threshold. For
example, supposing there is the following rule:

a b c −→ d

a connectionist implementation will be as shown in Figure 2.

(insert figure 2 here)

Problems with this approach include how to handle reasoning involving mul-
tiple instances of the same rules and how to handle distinct instances that
should be treated differently. One approach is to set up multiple copies of the
rule, each of which takes care of one particular instantiation. In a rule set that
contains multiple rules and where the conclusion of one rule is the condition
of another, care must be taken in handling the chaining of rules, where the
conclusion reached from one rule is the condition in another rule. With mul-
tiple instantiation of rules there is a need to implement each valid pair of first
rules and second rules, in order to enable all valid inferences to be drawn. The

10

implementation is shown in Figure 3. Maintaining separate chains is necessary
if multiple objects can be present at the same time and if there is a need to
keep track of each of them.

(insert figure 3 here)

It is possible to calculate the computational complexity of this implementa-
tion. Supposing there are a1 instantiations of the condition of the first rule,
c1 instantiations of the conclusions of the first rule, a2 instantiations of the
condition of the second rule, and c2 instantiations of the conclusion of the sec-
ond rule. Then there will be a1 ∗ c1 instantiations of the first rule, and a2 ∗ c2

instantiations of the second rule. The total number of instantiations can be
as high as a1 ∗ a2 ∗ c1 ∗ c2. The example above is based on a simple chain
of two rules, but is suggestive of the kind of complexity inherent when there
are a large number of rules, some of which may form long chains. Connec-
tionist inference systems implemented without variables also lack expressive
power. For example, it is difficult to express relations, especially high-order
relations (or n-ary relations in general). Without an adequate representation
of relations, there is no way to form transient associations and structures dy-
namically (which are needed in most reasoning situations). An example of this
would be the handling of a complex structured object or the remembering of
a sentence with its original structures intact. Without the use of variables it
is also impossible to avoid interference (i.e., cross-talk) of multiple conjunc-
tive concepts (Feldman and Ballard, 1992). Despite the inherent problems
with localist models, many researchers have used them for performing infer-
ence. Models include one by Derthick (1988) who translated logical constraints
into energy functions and used them to implement a subset of the language
KL-ONE. A modified Hopfield network was used by Narazaki and Ralescu
(1992), with inference realized by a minimization of the energy function us-
ing a relaxation method which avoids local minima by having pertubation
which is automatically triggered when the solution has fallen into a local min-
imum. Pinkas (1995) developed a connectionist inference engine capable of
representing and learning propositional knowledge. Using densely connected
networks (such as Hopfield networks and Boltzmann machines) Pinkas per-
formed symbolic constraint satisfaction to perform nonmonotonic reasoning,
coping with inconsistent facts and unreliable knowledge sources. A radial basis
function network has been used by Raghuvanshi and Kumar (1997) in which
inductive learning takes place using an error based heuristic adaptation rule.
Their model can perform inference with conflicting knowledge and perform
abduction and deduction.

11

4 Localist connectionist inference systems with variable binding

The following systems are example of early localist implementations of rule-
based reasoning using variable binding, which demonstrate the feasibility of
this approach:

• Parallel logical inference (Ballard, 1986) has been performed to implement
a restricted form of resolution (see section 5.2) using a parallel relaxation
algorithm and simple terms consisting of unitary constants or variables.
All possible variable substitutions were prewired using hand-coded weights,
with incompatible bindings being represented by units being connected with
inhibitory links. This need for prewiring restricts the applicability of the
model severely, as if arbitrary function symbols are allowed the set of pos-
sible substitutions becomes infinite and so cannot be prewired. Another lo-
calist connectionist system for performing resolution has been constructed
by Lima (Lima, 1992).

• A connectionist unification and inference system has been developed by
Hölldobler (1990a and 1990b) which can perform Horn clause logic on logical
terms of fixed width and having a fixed depth of nesting of arguments.

• The Role Binding and Inferencing Network (ROBIN) (Lange and Dyer,
1989) is a hybrid localist spreading-activation inference system which han-
dles dynamic variable bindings using a mechanism similar to marker-passing.
In this model the terms used are just simple constants and variables. Each
constant has a unit in the network that has a uniquely identifiable value
called its signature, bindings are formed by passing these signatures around
the network.

• Shastri and Ajjanaggadde (Shastri and Ajjanagadde, 1990) perform backward-
chaining rule-based reasoning with first-order predicate logic (see section
4.2).

• An analysis is presented of how to perform generic rule-based reasoning in
connectionist models by Sun (Sun, 1989), and the work addresses a num-
ber of important but often neglected issues in performing such a task. The
analysis has been extended in CONSYDERR (Sun, 1992), an architecture
integrating rule-based and similarity-based reasoning. This system can ac-
commodate variable binding and inference with functional terms, and the
author suggests how some of the localist nodes could be represented in
their own distributed representational space by implementing them using
conventional three layer feedforward networks (see section 4.1).

• Barnden (1989) takes a different tack on the problem of performing rule-
based reasoning. Instead of having rules wired-in ahead of the time and
in fixed forms, his system can dynamically construct representation during
the reasoning process. Any particular representation used at a particular
moment is transient, constructed on the basis of the resource constraints
and other system-dependent considerations.

12

• Net-Clause Language (NCL) (Markov, 1991) is a neural network tool which
integrates some connectionist and some classical symbolic processing fea-
tures in a unified computational environment. It cannot be considered to
be a purely connectionist system as the processing elements do not perform
simple numeric calculations. In addition the network connections, rather
than propagating activation values, propagate complex data structures.
This system is best seen as a symbolic system which uses some connec-
tionist ideas to organize its computation in a more flexible way. Similarly,
INFANT (Buchheit, 1999) is a symbolic-like system where nodes contain
propositional fragments, that also organizes some of its computations in a
connectionist-like way.

In the following sections two of these models are investigated in greater depth,
the sign propagation model of Sun (1992) and a synchronous activation model
(Shastri and Ajjanagadde, 1990).

4.1 Sign propagation

There must be some way of assigning values to variables dynamically during
the reasoning process and passing such values from one variable to another.
There are a variety of ways (for an overview see (Browne and Sun, 1999)), the
simplest of which is sign propagation. This was first proposed in (Lange and
Dyer, 1989) and (Sun, 1989), and further developed in (Sun and Waltz, 1991)
and (Sun, 1992). A separate node is allocated for each variable associated
with each concept. For example, in first-order predicate logic, each argument
of a predicate is allocated a node as its representation. A value is allocated
to represent each particular object (i.e., a constant in first-order logic) and
thus is a sign of the object which it represents. A node may take on an activa-
tion value as a sign in the same way as in conventional connectionist models.
However this activation value represents a particular object and is merely a
pointer. This sign can be propagated from one node to other nodes, when the
same object which the sign represents is being bound to other variables from
the application of a rule. Consider an example (adapted from (Shastri and
Ajjanagadde, 1990)):

X, Y, Z [give(X, Y, Z)−→ own(Y, Z)]

X, Y [buy(X, Y)−→ own(X, Y)]

X, Y [own(X, Y)−→ can sell(X, Y)]

A network can be constructed for representing these rules and reasoning with
them, as shown in Figure 4.

13

(insert figure 4 here)

For each predicate in the rule set, an assembly (of nodes) is constructed. The
assembly contains k +1 nodes if the corresponding predicate contains k argu-
ments. Each node in the assembly represents one particular argument of the
predicate (the argument nodes), except one node, which represents the predi-
cate as a whole (the predicate node). The argument nodes handle the binding
of the corresponding arguments, whilst the predicate node computes as its ac-
tivation the confidence (certainty) measure of an entire instantiated predicate.
If there is a rule containing a condition (such as give(X, Y, Z)) and a conclu-
sion (such as own(Y, Z)), corresponding nodes are connected in the assembly
representing the condition and in the assembly representing the conclusion. In
this process, the corresponding predicate nodes are always linked, so that the
second predicate node can calculate the confidence for the second assembly
based on the confidence of the first assembly (its logical antecedent) repre-
sented by the activation of the first predicate node. For the argument nodes,
an argument node in the first assembly is linked to those argument nodes in
the second assembly that have the same name as the originating argument
node in the rule being implemented. If there are multiple conditions in a rule,
the predicate nodes of all the assemblies that represent the conditions of the
rule are linked to the predicate node in the assembly representing the conclu-
sion. A weighted-sum can be used in the receiving predicate node for evidential
combination. To perform forward-chaining inference the assemblies that rep-
resent known facts are activated, then activations from these assemblies will
propagate to other assemblies which the initial assemblies are connected to.
Further propagation will occur when those newly activated assemblies pass
on their activations to other assemblies downstream. This process will con-
tinue until all the assemblies that are reachable from the initial assemblies
are activated. There are two kinds of activation that are propagated. One
kind is the confidence measure (evidential support) of a corresponding predi-
cate (which is passed between predicate nodes), and the other is the sign (a
pointer) used for representing an individual object (which is passed between
argument nodes). Both types can be represented as a real number within a
pre-defined range (such as between 1 and -1). These two kinds of activation
are completely different, and thus have separate pathways, implying there are
two different types of weights. One type is for weighing evidence, and the
other is for mapping (or passing around information about) an object. How-
ever, these two types of activations and two types of weights are treated in
the same way in such networks, thus ensuring the simplicity and uniformity
of the models. For backward chaining a hypothesis must be proven based on
known facts. For example, in answering a query, the query is treated as a hy-
pothesis and an attempt is made to prove it with known rules and facts. The
process is as follows: Initially an attempt is made to match the hypothesis
with the conclusions of existing rules; if a match is found the conditions of
the matching rule are used as a new hypothesis; if this new hypothesis can

14

be proven, the original hypothesis is also proven. This process repeats until
all of the hypotheses are proven. For example, to prove that mary can sell
a particular book: can sell(mary, book1), the predicate is matched with the
conclusion of the rule: own(X, Y) −→ can sell(X, Y). With this match, an
attempt is made to prove a new hypothesis: own(mary, book1), because if the
latter can be proven the former follows immediately. Assuming that the fact
that Mary owns book1 is already known: own(mary, book1), the new hypothe-
sis is matched exactly and proven, consequently the original hypothesis can be
proven. To implement backward chaining with assemblies, in addition to the
predicate node another node is needed in an assembly for indicating whether
a node is being considered as a hypothesis: the hypothesis node. To simplify
this discussion binary (true/false) cases are considered initially. To generate
hypotheses backwards, the direction of the link between two hypothesis nodes
across two assemblies should be reversed (i.e., the opposite of the direction
of the corresponding rule) but the direction of the link between two predi-
cate nodes across two assemblies should remain the same (the direction of the
rule). The purpose of hypothesis nodes and links connecting them is to gen-
erate new hypotheses backwards, whilst the purpose of predicate nodes is to
prove hypotheses generated in the forward direction (and thus in the opposite
direction of hypotheses generation). To start backward chaining inference, the
predicate nodes are activated of all the assemblies representing known con-
ditions (but they do not propagate activation). Then the hypothesis node of
the assembly representing the hypothesis to be proved is activated. This node
will propagate activation through backward links to generate new hypotheses.
If a hypothesis node is activated in an assembly where the predicate node is
already activated (i.e., the assembly represents a known fact), the (backward)
activation flow of the hypothesis node is stopped and the activation flow of
the predicate node is started (in a forward direction) to activate the predicate
nodes of the assemblies where the activation to the current hypothesis node is
from. This forward activation flow continues to activate the predicate nodes of
the assemblies on the path from the original hypothesis to the hypothesis that
matches the known fact, in the opposite direction of hypothesis generating
activation flow. Thus there are two passes involved, a backward pass and the
other a forward pass. The system should be constructed as follows:

(1) A hypothesis node can propagate activation to other assemblies in a back-
ward direction, as long as there is no activated predicate node in these
other assemblies.

(2) A predicate node can propagate activation to other assemblies if and only
if these other assemblies have activated hypothesis nodes.

To implement this policy, some gating or the use of conjunctive links is neces-
sary (see Figure 4). Where rules have multiple conditions, when the conclusion
of a rule is matched with a hypothesis multiple new hypotheses corresponding
to all of the conditions are generated simultaneously with backward propa-

15

gation. Later (during forward propagation) the activation from all of these
conditions together activates the predicate node of the conclusion (weighted-
sum computation can accomplish this as described above). It is also possible
to carry out both forward and backward chaining inference simultaneously in
one system. In this case the known facts are activated and the network run
to obtain all plausible conclusions. Rules are treated as specifying associa-
tions between conditions and conclusions, simultaneously in both directions.
Notice that here rules are not implemented in a strict logical sense as cir-
cular reasoning is not excluded. To perform forward and backward chaining
simultaneously, instead of a hypothesis node and a predicate node in an as-
sembly, two predicate nodes are used (a forward predicate node for forward
chaining and a backward predicate node for backward chaining). Once a for-
ward predicate node in an assembly is activated, the backward predicate node
is activated. Once a backward predicate node is activated, the corresponding
forward predicate node is activated. The two nodes contain the same confi-
dence measure for the predicate they represent, but if both are activated from
separate sources the larger activation value prevails. These two nodes are used
in different ways:

• Forward predicate nodes are used to propagate activation in a forward di-
rection from a condition of a rule to the conclusion.

• Backward predicate nodes are used to propagate activation in a backward
direction from the conclusion of a rule to a condition.

The propagation along both directions occurs at the same time, from the
initial activation of known facts. One problem with such a network is that
some of the activated nodes may quickly rise to saturation level, because of
mutual (bi-directional) reinforcement. One way to control activation is to use
a global inhibition node that measures at each moment in time the overall
activity level of the network (by receiving activations from all of the predicate
nodes), and then inhibits all predicate nodes by an equal proportion. That is:

al(t) =

∑
j wjij(t)

ag(t)

where l is any predicate node in the network, g is the global inhibition node,
and a denotes activation. Global inhibition allows the activation of the nodes
in each assembly to reflect their true confidence measure, i.e. the evidential
support received from input lines. This model is parallel at the knowledge level
and allows any number of variables to be implemented, however its complexity
is high. Based on the ideas explained above, a formal treatment of variable
binding with sign propagation is presented in the Discrete Neuronal (DN)
model formalism, first proposed in (Sun, 1989) and further developed in (Sun
and Waltz, 1991; Sun, 1992). This model is a generalization of conventional
connectionist models, aiming at resolving some difficulties inherent in these

16

models (such as variable binding) by removing some unnecessary restrictions.
The generalization in this formalism extends over several dimensions, such
as internal states, differentiated outputs and temporal responses. However,
there is insufficient space in this paper to explain this model in depth, for an
in-depth treatment see (Browne and Sun, 1999).

4.2 Temporal synchrony

One way of dealing with variable binding in connectionist systems is to use
temporal aspects of node activation, in addition to or substituting the use
of instantaneous activation values. Phase synchronization can be used by al-
lowing different phases in an activation cycle to represent different objects
involved in reasoning, and representing variable binding by the in-phase fir-
ing of nodes. The connectionist inference system SHRUTI (Ajjanagadde and
L.Shastri, 1989; Shastri and Ajjanagadde, 1990; Ajjanagadde and Shastri,
1991) can represent a restricted number of rules with multi-place predicates.
There are three different types of nodes in SHRUTI (see Figure 5):

(insert figure 5 here)

• Circular nodes, which fire in a particular phase when they are activated in
that phase.

• Triangular nodes, which fire in all of the phases of a cycle when they are
activated in that phase.

• Pentagonal nodes, which fire in all of the phases of a cycle when they are
activated in all of the phases of a previous cycle uninterruptedly.

The same inference as used in Section 4.1 is used to show backward chaining in
this system. A predicate with k arguments is represented by a pair of pentag-
onal nodes and k circular nodes. One of the pentagonal nodes is equivalent to
the hypothesis node in the sign propagation method discussed above, the other
pentagonal node is equivalent to the predicate node. Each of the k circular
nodes are equivalent to the argument nodes. The pentagonal node representing
the hypothesis is used in the backward pass, whilst the pentagonal node rep-
resenting the predicate is used in the forward pass. The hypothesis pentagonal
nodes related by a rule are connected in a backward direction (the opposite
direction of a rule) and the predicate pentagonal nodes are connected in a in
forward direction (the direction of a rule). Circular nodes of the predicates in-
volved are connected in a backward direction (the opposite direction of a rule)
as in Figure 5. In this example, the known fact is give(john, mary, book1).
When the hypothesis nodes are activated by a query, activation flows back-
wards to those hypothesis nodes that represent the conditions of a rule that
has the original hypothesis as its conclusion. These hypothesis nodes repre-

17

sent new hypotheses, which once proven can be used to prove the original
hypothesis. Each circular node for an argument of a predicate that represents
a known fact is gated by the node representing the object (constant) to which
the circular node (representing the argument) is bound. If these nodes fire in
the same phase, the gate will transmit activation. If such links pass on ac-
tivation, the sum of these activations will activate the predicate pentagonal
node of the assembly (showing that the hypothesis represented by the assem-
bly is proven). Such an activated predicate pentagonal node will propagate
activation in a forward direction to other predicate pentagonal nodes in other
assemblies. In Figure 5, the original hypothesis is can sell(mary, book1). The
hypotheses own(mary, book1) and give(john, mary, book1) are then gener-
ated. After give(john, mary, bookl) is proven with the gating system described
above, it is possible to use the forward flow of activation between respective
pentagonal nodes to prove those hypotheses that generate this hypothesis,
namely: own(mary, book1) and can sell(mary, book1). The triangular nodes
are used to implement constraints, such as the constraint when implementing
p(X) −→ q(X, a) that its second argument must be a. This can be achieved
by a gate that will allow activation to pass if and only if both the circular node
representing the argument and the circular node representing the constant a
fire in the same phase.

More recently SHRUTI has been extended in a number of ways (Shastri and
Wendelken, 1999; Shastri et al., 1999; Shastri, 1999). Other researchers (Lane
and Henderson, 1998; Bailey et al., 1998; Cohen et al., 1996; Park et al., 1995;
Park, 2000)) have used architectures similar to SHRUTI for modelling tasks
such as human syntactic processing, language acquisition and attention shift-
ing. Hummel and Holyoak have used a synchronous activation approach to
model analogical inference (Hummel and Holyoak, 1998), whilst Ajjanagadde
has worked on the problem of abductive reasoning (Ajjanagadde, 1991; Ajjana-
gadde, 1993) and also pursued an alternate set of representational mechanisms
(Ajjanagadde, 1997).

4.3 Constructing localist rule representations dynamically

Due to their associative nature and the computational efficiency resulting from
parallelism, the methods discussed in sections 4.1 and 4.2 may well capture
reflexive non-deliberative reasoning in which the immediate association and
instant response are required. However, one common shortcoming of these
methods discussed is that they use a pre-wired static representation that can-
not be changed dynamically. It is often necessary to be able to construct repre-
sentation on the fly, and to modify the constructed representation whenever a
change occurs. This is especially true for deliberative (non-reflexive) reasoning
(Hadley, 1990). One way to overcome this is to build localist representation

18

‘on the fly’, without pre-assigning each node to represent a particular (fixed)
concept. This can be called transiently localist representation, since each node
in a network represents a particular object at a particular moment in time, but
can be used to represent a different object at a different moment in time. There
first method to attempt this was described by Barnden (1989). In this model,
a working space is needed that will hold the representation constructed. One
method to achieve this is to use a two-dimensional array of nodes, such as an
array of ‘registers’. Each register is a connectionist network with a fixed set of
representational nodes, which contains a set of flags (which can either be on
or off) and a symbol. A symbol or a flag is an activation vector in the register
network. However, it can simply be viewed view as a sign in a single node. A
symbol can be used to denote an object in the domain, predicate or a logical
connective (i.e., a ‘class’ as it is called in this model). A flag is used to denote
the role of a particular symbol (which is stored in a register along with the flag)
in the representation (whether it is an argument to a predicate or whether it
is a symbol for a particular representation). Some particularly useful flags are
class and instance flags, and those that denote arguments of a predicate: arg1,
arg2, etc. Representation in this model is set up with two techniques. One is
physical adjacency (of neighboring registers) to form clumps. The other is the
use of the same symbol to link different clumps of representations together (if
they are part of a representation for a structured piece of information). For ex-
ample, to represent a predicate such as give(john, mary, book1) a clump can
be created by assigning a number of adjacent registers to represent each of
the following: give (class), W (instance), john (arg1), mary (arg2), and book1
(arg3). Here in each pair the first word is a symbol, and the word in the paren-
theses is a flag associated with the symbol. (see Figure 6). The representation
should be interpreted as: W is an instance of give(john, mary, book1).

(insert figure 6 here)

However, the representation of a single item can be made up of several clumps.
For example, to represent ¬give(john, mary, book1) two clumps can be created
by dividing the representation into two. One clump contains a set of registers
for the following: give (class), W (instance), john (arg1), mary (arg2), and
book1 (arg3), and the other clump contains the following: not (class), Z (in-
stance), and W (arg1). In the same way as before, in each pair the first word is
a symbol and the word in the parentheses is a flag associated with the symbol
(see Figure 7). The representation can be interpreted as: W is an instance of
give(john, mary, book1), and Z is an instance of not W , which means that Z
is an instance of ¬give(john, mary, book1).

(insert figure 7 here)

The dynamic construction of such representation is accomplished by a hard-
wired specialized network along with the help of the array of registers. The

19

actual work of construction is performed through a sequence of ‘command
signals’, which are initiated by the special network and are sent to all the
registers in parallel. Each register can respond to the signals in specific ways
based on its own flags and the flags of its neighboring registers. Each com-
mand signal can specify as part of the signal a number of conditions which
each responding register has to satisfy, regarding its flags and/or its neigh-
boring registers’ flag. A command signal can also specify that only one of all
the responding registers will be selected for a task. The selection can be ac-
complished by a temporal winner-take-all (Barnden and Srinivas, 1992). This
is useful for selecting an area in the array to create a clump to represent a
predicate. To create a clump, a command signal first chooses a set of free reg-
isters away from existing clumps in the array, sets up the main symbol to be
represented (i.e., the predicate symbol), and then sets up its flags as appro-
priate. Subsequent command signals then set up symbols and flags for each
adjacent register. The details of each register subnetwork and the command
signal generator network will not be expanded, since they can be realized in
various ways and the particular way they are implemented is not important.

5 Connectionist inference systems using distributed representa-
tions

Distributed representations can be divided into those which use modularly
distributed representations (where each symbol may be represented within a
group of units) or globally distributed (where the same representation space
is used for all symbols).

5.1 A model using a modularly distributed representation

Some localist models (Barnden, 1989) can also be viewed as distributed, be-
cause each symbol in the system is an activation vector (a vector of the activa-
tion values of a particular set of nodes). These activation vectors are allocated
to represent symbols when a representation is constructed and is propagated
and matched with other representations (i.e. other activation vectors). Such
finely modularly distributed models are very close to localist models in that
a simple transformation is possible to turn one type into another by mapping
an activation vector (a set of activation values of a number of nodes) in mod-
ularly distributed models into an activation value in localist models, and vice
versa (see Figure 8).

(insert figure 8 here)

20

Referring to the localist connectionist rule-based reasoning model discussed in
Section 4.1, it is possible to transform it into a modularly distributed model.
Recall that in the model, assemblies containing a type of complex node (called
DN nodes) are used, that can perform extensive processing (i.e. more that
just weighted-sum computation). If each of these nodes can be turned into a
small network of simple connectionist nodes (computing only weighted-sum or
sigmoid functions), and if each input/output value of these complex nodes can
be represented with an activation vector, this will be modularly distributed
connectionist model. To achieve this:

(1) Consideration needs to be taken of a mapping between an input/output
value of a complex node and an activation vector of a network of simple
nodes.

(2) The question must be addressed of how to carry out input/output map-
ping (i.e., the action function of a DN node).

(3) Questions must be addressed of how to represent states in the DN for-
malism and then how to carry out the state transition function of a DN
node.

It has been shown that a multi-layer recurrent connectionist network of con-
ventional nodes can achieve this (Giles et al., 1992; Giles and Omlin, 1993a),
where a group of nodes represents the current state and separate groups of
nodes represent all input/output lines, and all the groups of nodes can prop-
agate their activations through sets of links. A recurrent MLP maps the cur-
rent state and current inputs to a new state (represented by another group
of nodes) and outputs (represented by yet another group of nodes). The new
state is fed back (through some delay elements) as the new current state to the
network in the next cycle. This helps the network to decide (along with the
current inputs) which state to enter next and what to output next. This cycle
can completely implement the functionality of a DN node. With DN nodes
replaced by a network of conventional nodes, it can be seen that assemblies
are a set of these networks (interconnected as explained in Section 4.1), and
a complete network for rule-based reasoning is a set of such assemblies, as
shown in Figure 9.

(insert figure 9 here)

Figure 10 shows a network that implements the rules used in earlier examples.

(insert figure 10 here)

5.1.1 Compilation of rules into networks

In small examples such as that given above, it is easy to work out mappings
used in predicate nodes and in argument nodes for carrying out variable bind-

21

ing. However, with large rule sets it is not easy to do this, what is needed
is a systematic procedure for building up a network to carry out rule-based
reasoning. A procedure has been constructed to build a network automati-
cally when given a set of rules (each of which comes with weights). This pro-
cedure involves the Compilation of Fuzzy Evidential Logic into DN Network
(CFELDNN) (Fuzzy Evidential Logic is explained in more depth in section 6).
This procedure is restricted to forward-chaining reasoning, and to the distrib-
uted pattern propagation and sign propagation methods for variable binding.
In this procedure, three different types of assemblies are used (see Figure 11):

• Ordinary assemblies, which compute weighted-sums of inputs and pass bind-
ings for the variables.

• OR assemblies, which compute the maximum of inputs and select one set
of bindings out of many using this maximum.

• Complex assemblies, which are similar to ordinary assemblies except that
they perform checking and unification.

(insert figure 11 here)

As before, it can be assumed that each node has a set of intra-assembly in-
puts and a set of inter-assembly inputs. Likewise, each node has a set of
intra-assembly outputs and a set of inter-assembly outputs. In addition, it
is assumed that there is no recursion in the rule set (that is, the rule set is
acyclic). It is also assumed that rules come with weights attached. The main
bottom-up procedure for compilation of a set of rules into a network is as
follows:

SET-UP-RULE-NET:

Initialize the rule set to include all the rules to be implemented.

Repeat until the set is empty:
· Choose a rule (p1(X 1) p2(X 2)......pn(X n) −→ q(X)| w1,w2, ...,wn) to work

on, if there is no rule in the set that has pi as the conclusion.
· Identify all the existing assemblies for pi, i = 1, 2,,n, if there are none

(with the same binding requirement), make one.
· Identify all the existing assemblies for q, if there are none (with the same

binding requirement), make one.
· If there is only one assembly for each pi and there is no in-link to q, link each

pi to q, assign weights to each link.
· If there are in-links to q, link pi’s to an intermediate assembly, then or-link

this assembly with the existing q to a new q assembly which assumes all the

22

out-links of q, and assign weights as appropriate.
· If there are multiple assemblies for pi, or-link all assemblies for the pi to an

intermediate assembly, and then link that intermediate assembly to q, and
assign weights as appropriate.

Delete from the set the rule implemented.

The procedure for setting up each individual assembly is described in (Sun,
1992; Browne and Sun, 1999). A brief explanation is as follows:

• For an ordinary assembly, the predicate node receives intra-assembly inputs
from argument nodes, computes weighted sums of inter-assembly inputs,
and sends a simple signal to argument nodes. Its functionality can be fully
determined by the mappings specified above which can be implemented as
a MLP that maps strings to numerical values and ⊥ to 0.

• For an OR assembly, the predicate node computes the maximum of inter-
assembly inputs, and the computation can be carried out by a MLP. Each
argument node chooses one binding out of many based on the maximum
activation in the predicate node, this can also easily be implemented using
a MLP. Intra-assembly communications can be taken care of along with the
basic functionalities above.

• Complex assemblies perform constraint checking and/or unification (and
other operations). From the discussion above, it is clear that they can be
implemented using MLPs based on the mappings specified.

This model uses a modularly distributed representation, in which each variable
has its own separate representational space and is a good way of avoiding
interference and crosstalk (c.f. Shastri and Ajjanagadde’s (1990) analysis of
crosstalk in Touretzky and Hinton’s (1988) model). However, the modularly
distributed representation used in the model described above does not meet
van Gelder’s (van Gelder, 1991) criteria of ‘superposition’ and ‘extendedness’
of representation. Fully distributed connectionist inference systems such as
those outlined in the rest of this section do meet these criteria. Touretzky
and Hinton’s DCPS (1988) uses a globally distributed representation (i.e. the
same representational space for all symbols), but has some limitations. Only
a limited form of production rules are allowed in the model, where there is
only one variable and it appears in the first position of both the condition
sides of the inference rule, and anywhere in any of the action side of that rule.
The model is further restricted in that it assumes that at any one time only
one hypothesis of a rule matches the contents of working memory. Although
the representation of the symbols in the system is distributed, rules must be
performed in a serial fashion (as they must first be ‘extracted’ by the settling of
the Boltzmann Machine onto the ‘symbol surface’ and then executed). Because

23

of this, the only kind of parallelism that exists in the system is below the level
of rules (in the mechanism for implementing rules) limiting any potential gains
available from parallelism. It is not clear how this model can be extended and
enhanced to handle more complex rule representation issues, since it is already
very complex. No suggestions have been made as to how the system may
be modified to cope with variables appearing in other positions, or how the
matching of variables present in rules against variables present in WM could
be performed. Another model, RUBICON (Samad, 1992) is a connectionist
rule-based system that does allow for a variable number of expressions in the
left and right hand sides of each rule.

5.2 Performing resolution with a distributed representation

Resolution (Robinson, 1965b) is a powerful formal inference method. A sys-
tem using resolution can infer new facts and relationships from given facts
and relationships, hence resolution is more powerful than simpler reasoning
approaches such as Herbrand instantiation (Shapiro, 1991). There are many
examples of symbolic resolution-based inference systems such as the reason-
ing performed by the Prolog inference engine (which has a resolution-based
theorem prover at its heart) and many practical applications of resolution, in-
cluding the design and validation of logic circuits (Kabat and Wojcik, 1985).
Resolution can be thought of as being a generalization of the transitivity rule
‘from a implies b and b implies c, deduce that a implies c’. Logical implication
a −→ b is logically equivalent to the clause ¬a∨b, so it can be shown from the
two clauses a∨ b and ¬a∨ c that b∨ c. This implies that by using two clauses
that contain a complementary pair of literals (where one is a negation of the
other) a third clause can be deduced and the complementary pair disposed
of. A mechanical process (Nilsson, 1971) can be used to reduce logical expres-
sions that involve universal quantifiers, existential quantifiers and implication
symbols to a set of clauses. A variable binding process called unification is
used in tandem with resolution. For example, the resolution p(X) and p(¬a)
requires the binding X = a as this would produce the desired contradiction.
Resolution based theorem provers successively apply unification followed by
the ‘cut rule’ (Hogger, 1990). This rule states that it is possible to remove
an atom if it occurs at opposite sides of two clauses then merge the resultant
clauses into a new one, i.e. from p −→ q and q −→ r it is possible to deduce
p −→ r. A query to the theorem prover is formulated as a negative clause (i.e.
when asking ‘a’ this is formulated as ‘¬a’). By sucessively applying unification
and the cut rule the theorem prover attempts to generate the empty clause.

The connectionist resolution model outlined here (Browne, 1998b) built on
a previous model that performed unification of (fixed width) nested terms
and included the occurs check (Browne and Pilkington, 1995; Browne and

24

Sun, 1999). There is insufficient space in this paper to discuss the unification
system in detail, readers seeking further explanation are referred to (Browne
and Sun, 1999) for a comprehensive explanation, and toWeber (1992 & 1993)
for explanations of other methods of performing unification with distributed
representations. In the unification system used (Figure 12) the symbolic rep-
resentations of pre-unification term pairs and unification results (taken from
Hölldobler, 1990a) were transformed into distributed representations on the
hidden layers of autoassociators. Autoassociator A in Figure 12 produced dis-
tributed representations of input term pairs, whilst autoassociator B produced
distributed representations of the unification results. Symbolic representations
presented to the input autoassociator consisted of 9216 pairs of logical terms.

(insert figure 12 here)

A four layer feed-forward network (network C in Figure 12) mapped the dis-
tributed representations of pre-unification terms produced by input autoas-
sociator A to the distributed representations of unification results produced
by target autoassociator B. The distributed representation representing the
unification results was read off the output layer of network C and presented
as input to a second network for resolution step to be attempted (Figure 13).
This network had two sections:

• A section that made a decision based on the similarity of two distributed
patterns of activation that it was presented with.

• A section that performed the cut rule.

(insert figure 13 here)

This network took two distributed patterns of activation as inputs, the dis-
tributed pattern of activation representing the unification results read from
the output layer of network C, and a distributed pattern of activation rep-
resenting a term stored in a database. These database terms were identical
to the representations of post-unification results taken from the hidden layer
of network B. The outputs of this first section were connected via weighted
connections to the second part of the network consisting of sigma-pi units
(Rumelhart et al., 1986), connected by weighted connections to the units rep-
resented the distributed pattern of activation stored in the database prior to
performance of the resolution step. The sigma-pi units were connected to an
output layer representing the database contents after the resolution step had
been performed. A form of gating was performed by the sigma-pi units, in
that they allowed the first section of the network to gate the outputs of the
network in such a way that the network could produce the following outputs:

• If the post-unification pattern of activation taken from the output layer of
network C and the database pattern of activation were similar (i.e. where the
distributed representations of a term and its complement were present) the

25

first section of this network was trained to generate 0 at all of its outputs.
• If the post-unification pattern of activation taken from the output layer of

network C and the database pattern of activation were not similar (i.e. they
did not represent a term and its complement), the network was trained
to generate 1 at all of its outputs to signify the cut rule should not be
performed.

• If the two distributed patterns of activation were not judged to be similar the
cut rule was not performed. The distributed pattern of activation present at
the database inputs of the network was reproduced at its outputs, indicating
that the term was still present in the database.

To check the performance of the resolution network the distributed patterns of
activation generated at its outputs were decoded through the hidden-to-output
layer weights of autoassociator B. Then the symbolic outputs generated were
compared with their expected values to discover whether resolution had been
performed correctly.

The unification network correctly unified 97% of the novel term pairs pre-
sented to it, whilst the resolution network correctly resolved 82% of the novel
distributed representations passed to it from the output layer of network C.
This was an acceptable level of generalization as the probability of the cor-
rect output being produced by either network at random was 1 in 221 (as
there are 21 binary output units representing the correctly decoded term).
Less than 100% performance is typical of connectionist systems trained by
gradient descent. Whether this is important depends on what the system is
being used to model. As a replacement for a symbolic theorem prover this level
of performance would not be acceptable, whereas from a cognitive modelling
viewpoint it may be acceptable as Humans often give less than 100% correct
performance. The performance of the resolution network was worse than the
unification network, this can be explained as it was attempting resolution on
the ‘noisy’ distributed representations generated on the output layer of net-
work C. These (real numbered) representations will not be 100% accurate,
and this inaccuracy inevitably affected the resolution process. Conceivably a
distributed connectionist ‘clean-up’ network for transforming the distributed
representation output by network C to the nearest representation formed on
the hidden layer of network B could reduce these errors.

In its current form the model performs only a single resolution step, in most
proofs many such steps are required for useful inference. To do this the system
would have to incorporate a database containing the distributed representa-
tions of several terms (robust to the deletion of these terms). In addition, in
a chain of inference often one of a series of resolution steps will fail, forcing
the system to retrace its steps and then attempt a different series of resolu-
tions. This entails the provision of a backtracking mechanism in the model.
It is possible that some form of recursive auto-associative memory (Pollack,

26

1988) could provide the stacking facility required by backtracking. A form
of overall control mechanism would have to be provided to control the series
of resolution steps attempted. It is possible a finite-state machine could pro-
vide a solution (Giles et al., 1992; Giles and Omlin, 1993a). Many problems
are computationally inefficient to solve by relying on a single inference rule
such as resolution. However resolution has led to the development of inference
rules that are effective in these situations, such as hyper-resolution (Robin-
son, 1965a), unit resolution (Henschen and Wos, 1974) and paramodulation
(Robinson and Wos, 1981). In the future it would be interesting to construct
a connectionist inference system using distributed representations to perform
these inference rules.

5.3 Tensor product representations

The representation of variable-sized structures in connectionist networks has
been a challenge to connectionists. Many connectionist systems (such as those
described in section 5.2) have a limited set of inputs and can only cope with a
limited level of recursion (i.e. nesting of term structures). Because of this, the
set of input patterns (variables, constants and terms) that can be correctly
generated and processed often need to be completely specified when the net-
work is constructed. Recursive connectionist architectures using distributed
representations, such as RAAMs (Pollack, 1988), XRAAMs (Lee et al., 1990),
LRAAMS (Sperduti, 1995), SRAAMS (Callan and Palmer-Brown, 1997) and
BRAAMS (Adamson and Damper, 1999) exist, however the width and depth
of embedding of the structures represented within them are limited. Tensor
product based systems are one way of avoiding this restriction, in this form of
representation structures (such as logical terms) can be represented by a set
of slots (roles or attributes) and fillers (values). The use of tensor products al-
lows a set of variable-value pairs to be represented by accumulating activation
in a fixed-size collection of units. For example, a set of variable-value pairs
V ar 1, val 1 and V ar 2, val 2 is represented by:

V ar 1 ⊗ val 1 + V ar 2 ⊗ val 2

where ⊗ represents the tensor product operation. If a variable is represented
by an m-dimensional vector and a value by an n-dimensional vector, the tensor
product of this variable and value is a m×n matrix of units. New variable-value
pairs are superimposed over this matrix of units, allowing recursive structures
to be constructed ‘on the fly’ of a size only bounded by the graceful saturation
properties of the network. The use of tensor products for variable binding was
proposed by Smolensky (1990). A connectionist implementation of production
systems using tensor products that extended the work of Touretzky and Hinton
was discussed in Dolan and Smolensky (1988) (although this model still suffers

27

from the restriction on variables found in DCPS and is serial at the rule level).
Whilst this model used role-filler bindings, other tensor-based models have
used symbol-argument-argument bindings (Wiles et al., 1992; Halford et al.,
1994) to perform analogical inference. In these schemes multiple predicates
can be stored and one component of a predicate (the variable or the value)
can be retrieved given the remaining components. A predicate is represented
by the tensor product of all its components, for example the representation of
the predicate brother of(fred, sam) would be:

brother of ⊗ fred ⊗ sam

Tensor product representations can represent certain properties of relations
that do not seem to be possible for SHRUTI’s synchronous activation approach
(Halford, 1993a). A relation r(A, B, ...n) can be handled by a tensor product
of rank n+1, and this tensor not only represents the predicate-argument bind-
ings but also the interactions within the structure. For example, the tensor
product representation of r(A, B, C) represents the influence of C on r(A, B),
the influence of B on r(A, C) and the influence of A on r(B, C). The syn-
chronous activation approach used by SHRUTI can handle slot-filler bindings
but it does not appear to be able to represent these higher-order relations
that are important to complex concepts. There is also evidence that tensor
product based models show stronger systematicity of inference than conven-
tional feed-forward or recurrent networks (Phillips and Halford, 1997; Phillips,
1998; Halford et al., 1998). However, one problem with tensor-product based
systems is their space requirements, they require an exponentially increasing
number of elements to represent bindings.

5.4 Inference systems using novel recursive representations

Novel representational schemes such as Holographic Reduced Representations
(HRRs) (Plate, 1991; Plate, 1995; Plate, 2000), Binary Spatter Codes (Kan-
erva, 1998) and the Braid operator (Gayler, 1998) have been proposed as a
way of avoiding the exponential space requirements of tensor-product based
representational schemes, and have the ability to represent nested structures in
fixed-width vectors. HRRs are constructed by using a form of vector multipli-
cation called circular convolution and decoded using correlation (the approx-
imate inverse of circular convolution). The convolution of two HRRs results
in another HRR encoding the information in the two original HRRs. This
third HRR is not similar to either of the two HRRs it was constructed from,
although the original component HRRs can be regenerated by decoding the
third HRR using correlation. A role-filler (variable-value) binding is generated
by circular convolution (∗), for example to bind the role Lover to the person
john this would be Lover ∗ john, and to bind the role Is Loved to the person

28

mary this would be Is loved ∗ mary. Propositions are encoded by the super-
position of role-filler bindings, for example the predicate loves(john, mary) is
represented by:

loves + Lover ∗ john + Is Loved ∗ mary

The representations of fundamental entities such as roles and labels are based
on random activation patterns with zero mean and a Gaussian distribution.
Representations of semantically similar entities (such as mary and john) are
composed of a base type (such as human) and random identifying patterns
that are unique. When decoding HRRs the resulting vectors are noisy, and
are recognized using the dot product operation to find the nearest matching
vector. When HRRs are convolved or superposed the dimensionality of the
resulting dimension vector is the same as the original vectors, so they avoid
an explosion in the size of representations as the structures represented by
the system become more complex. This property, together with the fact that
some of the information in the original HRRs is lost on encoding (i.e., the new
HRR does not contain all the information present before encoding) allows these
representations to be considered to be ‘reduced’ representations as defined by
Hinton (Hinton, 1990). Connectionist systems using HRRs have been used
to perform analogical inference (Plate, 2000; Eliasmith and Thagard, 2001).
Other novel techniques for generating distributed representations (with insuf-
ficent space to detail it here) are context dependent thinning (Rachkovski and
Kussul, 2001) and linear relational embedding (Paccanaro and Hinton, 2000).

6 Representing fuzzy inference in connectionist systems

Connectionist models appear to have some relationship with fuzzy logic as
both deal with the inexactness of real world situations, using numerical val-
ues that can change in correspondence with the change in certainty of real
world situations. The question is: ‘How can the two be merged in order to
unify them and to utilize the strengths of both?’ One way to accomplish this
aim is to map one paradigm onto another (preferably in a simple and direct
way).This section presents a simple mapping of weighted-sum connectionist
models to fuzzy logic, providing an interpretation of weighted-sum connection-
ist models in terms of fuzzy inferences. In the following subsections, a simple
fuzzy logic Fuzzy Evidential Logic (FEL) is defined and then implemented it
in connectionist networks, see (Sun, 1989; Sun & Waltz, 1991; Sun 1992.

29

6.1 A propositional fuzzy logic

Propositional FEL is a direct reformulation of the weighted-sum connectionist
models in logical terms. Here are some definitions:

• A fact is an atom or its negation, represented by a letter (with or without a
negation symbol) and having a value between a lower bound and an upper
bound. The value of an atom is related to the value of its negation by a
specific method, so that knowing the value of an atom results in immediately
knowing the value of its negation, and vice versa. For example, a, ¬a, x,
and m are all facts.

• A rule is a structure composed of two parts: A left-hand side (LHS), which
consists of one or more facts, and a right-hand side (RHS), which consists
of one fact. When facts in the LHS get assigned values, the fact in the RHS
can be assigned a value according to a weighting scheme. When the value
of the LHS of a fact is unknown, zero is assigned as its value. For example,
a b c −→ d is a rule, and a weighting scheme associated with it indicate the
value of d once the values of a, b, and c are known.

• A weighting scheme is a systematic method for assigning a weight to each
fact in the LHS of a rule, with the sum of the absolute values of all weights
less than or equal to 1. It also determines the value of the fact in the RHS
of a rule by a threshold (if thresholds are used) by using weighted-sum
of the values of the facts in the LHS (i.e., an inner-product of a weight
vector and a vector of values of the LHS facts). When the range of values
is continuous, then the weighted-sum is passed on if its absolute value is
greater than the threshold, or 0 if otherwise. When the range of values is
binary (or bipolar), then the result will be one or the other depending on
whether the weighted-sum (or the absolute value of it) is greater than the
threshold (usually the result will be 1 if the weighted-sum is greater than the
threshold, 0 or -1 if otherwise). For example, a weighting scheme for the rule
above is: w1 = 0.3, w2 = 0.3, w3 = 0.4. The value of d, which is between a
pair of bounds [l, u] (e.g., [−1, 1] or [0, 1], depending on the value ranges of
a, b, and c) is calculated by their weighted-sum: i.e., d = w1a + w2b + w3c.

• A conclusion is a value associated with a fact, and is defined here recursively.
In using this definition and the procedure for calculating conclusions implied
by the definition it is possible to restrict the structure of theories allowed
in order to avoid circular reasoning by doing the following:

(1) For each rule having that conclusion in its RHS, obtain conclusions of
all facts in its LHS (if any fact is unobtainable, assume it to be zero).
Then calculate the value of the conclusion in question using the weighting
scheme.

(2) Take the MAX of all these values associated with that conclusion calcu-
lated from different rules or given in initial input.

30

Here are some further definitions:

• An implementation of FEL is a network of elements connected via links,
where each element represents an atom and its negation (there is a one-
to-one mapping between an atom, including its negation, and an element).
There are links that represent rules, going from elements representing facts
in the LHS of a rule to elements representing facts in the RHS of a rule.

• An Element is a structure that represents one and only one fact (including
its negation) and has multiple sites, each of which receives a group of links
that represents one single rule (i.e. links from facts in the LHS of the same
rule).

This implementation of FEL is in fact a connectionist network where elements
are nodes in a network, and rules are defined using links. There are links ema-
nating from nodes representing conditions in a rule to nodes representing the
conclusion in a rule, and weighted-sum computation is carried out within each
site of a node for computing and propagating activations (i.e., for evidential
combination in reaching conclusions based on given conditions). Activations
from different sites of a node are MAXed, corresponding to the previous defi-
nition of conclusions.

In terms of dynamics, inferences in FEL can also be easily mapped to connec-
tionist networks. In FEL no particular order is specified in which inferences
should be performed, so any appropriate order can be used. The network
implementation of FEL can be viewed as performing a parallel breadth-first
search reasoning, with all the links that are applicable taking effect at the
same time and activation flows propagating in all directions. Details of imple-
mentations are beyond the scope of this paper. For formal proofs of correctness
and other implementation details, see (Sun, 1995a; Sun, 1995c).

FEL can handle some simple but important logics as special cases. Such gen-
erality is necessary to ascertain the usefulness of FEL and consequently the
adequacy of connectionist networks in capturing logical inferences. Firstly, it
is shown how FEL can simulate Horn clause logic (Sun, 1995a). A Binary
FEL is a reduced version of FEL, in which values associated with facts are
binary, the sum of weights (each of which is positive) in each rule is 1, and all
thresholds are set to 1. The binary FEL is sound and complete with respect to
Horn clause logic (Sun, 1995a; Sun, 1995c). In addition to Horn clause logic it
can be shown that FEL can emulate one of its extensions – Shoham’s Causal
Theory (CT) (Sun, 1995c).

The connectionist model presented above can be viewed as an implementation
of the propositional FEL, whilst the sign propagation method for variable
binding presented in Section 4.1 can be viewed as a suitable implementation
of predicate FEL. The logical correctness of the sign propagation variable

31

binding method as an implementation of FEL can be established (Sun 1995a
& 1995d).

Other researchers have investigated the relationship between fuzzy and con-
nectionist modelling, including a fuzzy neural logic network which attempts
to model a Prolog-like fuzzy inference system (Ding et al., 1996) and a model
that can encode directly structured knowledge in a fuzzy neural network and
perform incremental learning (Machado and da Rocha, 1997). Fuzzy rules have
also been used in connectionist production systems (Kasabov and Shishkov,
1993; Kasabov, 1994). A thorough overview of fuzzy neurocomputing can be
found in (Magdalena, 1997).

7 Extraction of inference rules

Many attempts have been made to extract symbolic IF-THEN rules from con-
nectionist systems. Gallants connectionist expert systems (Gallant, 1988) and
Matrix Controlled Inference Engine (MACIE) (Gallant and Hayashi, 1990)
are two early models where expert system rules are extracted from a neural
network. Many other rule extraction techniques followed, mostly applied to
extracting rules from MLPs (Saito and Nakano, 1988; Shavlik and Towell,
1989; Baba et al., 1990; Bochereau and Boutgine, 1990; Goh, 1993; McMillan
et al., 1993; Yeung and Fong, 1994; Yoon and Lacher, 1994; Sethi and Yoo,
1994; Fletcher and Hinde, 1995; Thrun, 1995; Benitez et al., 1997; Taha and
Ghosh, 1997; Ampratwum et al., 1998; Ishikawa, 2000; Setiono, 2000) with a
smaller number applied to Kohonen networks (Ultsch et al., 1993), recurrent
networks (Giles and Omlin, 1993b) and radial basis function networks (Mc-
Garry et al., 1999b). The difference between the approaches to rule extraction
can be categorised (Tickle et al., 2000) as that between ‘decompositional’
and ‘pedagogical’ approaches. Decompositional approaches involve analysing
weights and links to extract rules, with some requiring specialised weight mod-
ification algorithms (Shavlik, 1994) or network architectures such as an extra
hidden layer of units with staircase activation functions (Bologna, 2000). Ped-
agogical approaches treat the network as a ‘black box’ and extract rules by
observing the relationship between its inputs and outputs, and because of this
are general purpose in nature and can be applied to any feedforward network
(Craven and Shavlik, 1997). Some of methods lead to the extraction of rules
that involve fuzzy grades of membership calculation (Hayashi, 1991; Mitra
and Hayashi, 2000).

A typical approach to rule extraction is that of Fu (1994) who proposed an
exhaustive search based algorithm to extract conjunctive rules from MLPs. To
find rules, the learner first searches for all the combinations of positive condi-
tions that can lead to a conclusion. Then, with a previously found combination

32

of positive conditions, the learner searches for negative conditions that should
be added to guarantee the conclusion. In the case of three-layered networks,
the learner can extract two separate sets of rules (one for each layer) and then
integrate them by substitution.

An alternative form of rules exists, the N-of-M form. Rules in this form state:
‘If N of the M conditions, a1, a2,, am, is true, then the conclusion b is true’
It is argued (Towell and Shavlik, 1993) that some concepts can be better
expressed in such a form, and they also help avoid the combinatorial explo-
sion in tree size found with IF-THEN rules. A four-step procedure is used to
extract such rules, by first grouping similarly weighted links, eliminating in-
significant groups, and then forming rules from the remaining groups through
an exhaustive search. The following steps are performed:

(1) With each output node, form groups of similarly-weighted links.
(2) Set link weights of all group members to the average of the group.
(3) Eliminate any group that do not significantly affect the output value.
(4) Optimize biases (thresholds) of all output nodes, using the backpropaga-

tion algorithm, while holding links weights constant.
(5) Form a rule for each output node, using the weights and threshold of the

rule.
(6) If possible, create an N-of-M rule.

These rule extraction algorithms are meant to be applied at the end of the
training of a network. Once extracted, the rules are fixed; there is no modifica-
tion on the fly, unless the rules are re-extracted (starting anew) after further
training of the network. On the other hand, in CLARION (Sun and Peterson,
1998) is an agent that can extract and modify rules dynamically. In this model
connectionist reinforcement learning and rule learning work together simulta-
neously. Extracting and modifying rules dynamically is computationally less
expensive because it minimizes the search necessary, and helps the agent adapt
to changing environments by allowing the addition and the removal of rules
at any time. In doing so, Clarion avoids examining the details of the network
from which rules are extracted. Instead it focuses on the behavior of the net-
work. Specifically, if some action decided by the bottom level is successful then
a rule is extracted that corresponds to the decision and the rule is added to
the rule network. In subsequent interactions with the world the extracted rule
is verified by considering the outcome of applying the rule. If the outcome was
not successful (as measured by a criterion), then the rule should be made more
specific and exclusive of the current case. If the outcome was successful, an
attempt is made to generalize the rule to make it more universal. This process
is determined by an information gain criterion which measures the success of
a rule application. As well as being a useful technique for understanding what
a particular network has learnt rule extraction can be helpful when a link be-
tween the neural and symbolic components is required in hybrid architectures

33

(McGarry et al., 1999a; Wermter and Sun, 2000).

8 Comparisons between models using localist or distributed rep-
resentations

Comparisons can be made between different representational schemes used to
perform connectionist symbolic inference. Localist representations are popular
with many researchers in this field, partially because they are easy to inter-
pret as the activation value of a node in a localist connectionist system is
semantically interpretable. One significant problem of distributed representa-
tions is that they can be difficult to interpret. Because of its superposed and
extended nature, the distributed pattern of activation representing a concept
can not be easily labelled. Techniques do exist which attempt to interpret
distributed patterns of activation, including statistical techniques (Bullinaria,
1997), rule extraction techniques (Andrews et al., 1997) and generalized effect
analysis (Browne, 1998a; Browne and Picton, 1999), but these are obviously
more complex than simply recording the activation of a node in a localist
connectionist representation. In addition, training times in distributed con-
nectionist systems can be extensive, and it can often be difficult to achieve
100% correct performance.

As the representations in localist connectionist systems are localized they can
be thought of as symbolic systems. However, in these models processing is
typically carried out not by some form of in-built theorem prover as seen in
classical AI but by the massively parallel flow of activation values between
units.

In a classical symbolic AI system an entity is given an arbitrary label that dis-
tinguishes it from other entities. For example, nothing about an entity labelled
dog makes this entity more closely related to the concept of ‘dog’ than to the
concept of ‘tree’. There is nothing about the entities themselves that indicates
their meaning because they get their designated meaning only because of how
the system interprets them. In a localist connectionist system an entity may
be arbitrarily designated or it may be learnt using a learning algorithm such
as recruitment learning (Diederich, 1988; Diederich, 1991). In contrast, a se-
mantic entity in a distributed connectionist system is a distributed pattern of
activity with a microsemantics (Dyer, 1990), because it has an internal pattern
that systematically reflects the meaning of the entity. The entity representing
the concept ‘dog’ will in some way be closer to the internal representation
of a concept such as ‘cat’, and in some way more removed from a concept
such as ‘tree’. In this way distributed connectionist representations carry their
own meaning, and this gives them ability to generalize on encountering novel
input. A novel example being presented to the network and fed through the

34

appropriate weights and activation functions will be systematically given an
appropriate representation. The internal structure of this representation will
be relatively similar to the structure of representations of objects to which this
example is semantically similar in relevant aspects, and quite different from
the structure of semantically different objects. Symbolic systems and local-
ist connectionist systems often generalize poorly on encountering novel input
(Sun, 1995c) (but as a counter to this see (Page, 2000)). This generalization
ability constitutes a significant advantages of distributed representations over
symbolic or localist representations.

Although many connectionist models are not realistic implementations of bi-
ological neural networks (for a discussion see (Crick, 1989)), models using
distributed representations are more neurobiologically realistic than localist
connectionist or symbolic AI models (Smolensky, 1995).

9 Problems with connectionist inference systems

There are many problems with connectionist systems (Browne, 1997), but two
major problems suffered by connectionist systems using localist or distributed
representations to perform inference are described below. These problems are
not suffered by symbolic AI systems.

9.1 Limits on the productivity and width of representations

The productivity of a system refers to the ability of that system to generate and
correctly process items from an infinite set. With reference to inference, this
refers to the processing of a (potentially) infinite number of variables and con-
stants or functors (potentially) up to infinite length. Because of the possibility
of nesting of arguments, computational structures such as terms with other
terms nested inside them can be produced. The size of these structures cannot
be pre-determined before the run-time of a system. The property of produc-
tivity is displayed by symbolic systems which can produce and process an
(almost) infinite set of terms from an (almost) infinite set of symbols using re-
cursive structures with an (almost) infinite level of embedding (only being lim-
ited by physical constraints such as memory size). Most connectionist systems
have a limited set of inputs and can only cope with a limited level of recursion
(i.e. nesting of term structures). Because of this, the set of input patterns that
can be correctly generated and processed often need to be completely spec-
ified when the network is constructed. Recursive connectionist architectures
using distributed representations, such as RAAMs (Pollack, 1988), XRAAMs
(Lee et al., 1990), LRAAMS (Sperduti, 1995), SRAAMS (Callan and Palmer-

35

Brown, 1997) and BRAAMS (Adamson and Damper, 1999) exist, however
the width and depth of embedding of structures represented within them are
limited by the precision of implementation, and they cannot produce infinitely
larger or deeper structures. The tensor product, HRR and other novel repre-
sentations discussed in Sections 5.3 and 5.4 can be modified dynamically as
the network is performing its processing. However, there are limitations that
interfere with the representation of structures using vectors or real numbers.
The precision with which real numbers can be implemented will affect the
representation, together with the fact that the more deeply nested the com-
ponents of recursive structures the more degradation by noise when encoding
and decoding these structures. Whether this is a serious limitation on con-
nectionist systems depends on the task they are being used for. If the task is
to emulate the properties of a symbolic inference system (such as a theorem
prover), this limitation is serious. However, if the task is that of modelling hu-
man cognition this may not be such a serious limitation. The representation of
recursive structures is intimately related to the competence/performance issue
in cognitive science (MacLennan, 1993). Cognitive science often distinguishes
between an idealized theoretical competence (under which the embedding of
structures is unlimited) from the observed performance (which is limited in the
observed depth). There is evidence that humans exhibit a limit on the depth
of recursion they can process (Dyer, 1995). This is indicated by the difficulty
that humans have in understanding sentences containing more than a certain
level of embedding. Other evidence relates to the number of elements in a rep-
resentation (i.e. the width of the representation) that humans can successfully
deal with, where the number of elements in a representation affects the level
of relation that the representation can represent. The number of elements can
be thought of as the number of facets of a situation that can be viewed si-
multaneously. There is considerable evidence (Halford, 1993b; Halford et al.,
1998) that most humans can reason using representations with at most five
elements, such as a predicate (the first element) with four arguments (the
four other elements). The psychological existence of the processing of rank
six representations (such as a predicate with five arguments) by humans is
speculative, and if it exists it probably does so only for a minority of adults.
This implies that insofar as matching human cognitive capacity is the goal, a
network using distributed representations would only have to process a limited
arity. In addition, the graceful degradation observed when inference systems
using distributed representation have to process deeply embedded structures
is much closer to observed human performance than the hard limit imposed by
(for example) stack size in a symbolic AI system. Thus connectionist systems
can provide more realistic models of observed human cognitive processing.

36

9.2 Representing structural systematicity

Structural systematicity leads to the ability of a system to correctly process
inputs that it has never encountered before. There are a number of different
definitions of structural systematicity. Three levels of systematicity from weak
to strong were defined by Hadley (Hadley, 1992), but the most precise defin-
ition, using six levels of systematicity, has been given by Niklasson and van
Gelder (Niklasson and van Gelder, 1994). These levels are:

(1) Where no novelty is present in the inputs presented to the system. Every
input presented to the system has already been encountered (for example
in the training phase of a connectionist system).

(2) Where novelty is present in the inputs, but all the individual arguments in
these inputs have at some time appeared in the same positions in inputs
previously encountered by the system.

(3) Where the inputs contain at least one example which has an argument in
a position in which it has never before been encountered by the system.
For example, a connectionist system could be trained on a selection of
input patterns in which a particular symbol was never present in the first
argument position of the patterns used for training, and then tested on a
set of patterns where that symbol was present at that argument position.

(4) Where novel symbols appear in the new inputs presented to the system.
(5) Where there is novel complexity in the new inputs presented to the sys-

tem. To display this form of complexity a connectionist system would
have to be capable of being trained on patterns with n inputs in the
training set and then correctly process patterns with n + 1 inputs in the
test set (this is related to the arguments discussed in section 9.1).

(6) Where the test set contains both novel symbols and novel complexity.

Symbolic AI inference systems can display all these levels of systematicity
as they are not dependent on the makeup of a training set to form their
representations. Hence they can generate and process new items whilst only
being restricted by physical constraints, such as the size of available memory
resources. Localist connectionist systems are not usually dependent on the
make-up of a training set to form their representations, and so easily cope
with tasks involving up to the third level of systematicity described above, but
because of the problems outlined in section 9.1, have problems displaying the
fourth and higher levels because any recursive representation in the network
has to be constructed to a pre-specified depth, unlike the (potentially almost
infinite) recursive representation provided with symbolic systems..

Connectionist systems using distributed representations are heavily dependent
on the make-up of the training set used to develop these representations, hence
they often do not display systematicity beyond the second level described

37

above. However, in performing simple logical operations with a system using
distributed representations (Niklasson and van Gelder, 1994) systematic per-
formance of a neural network both when exposed to novel inputs and when
exposed to inputs appearing in novel positions has been demonstrated (i.e.
up to the fourth level above). However, there is evidence (Phillips, 1998) that
inference systems based on standard feed-forward and recurrent networks may
never be able to reach the top level of systematicity described above. However,
it may be that systems based on tensor products or HRRs will achieve this 1 .

10 Conclusions

It has been argued that connectionist systems may well offer an opportunity
to escape some of the problems of symbolic AI, only if ways can be found
of instantiating the sources of power displayed by symbolic systems within
connectionist systems (Smolensky, 1988; Sun, 1995b & 1995c). At least in the
case of inference, connectionist systems have not as yet matched the power
of symbolic AI inference systems. However, any attempt to match the capa-
bilities of a symbolic theorem prover using a connectionist system may be a
misguided attempt to tie connectionist systems into a ‘symbolic straitjacket’.
Connectionist systems may well give better models of the (limited) inference
capabilities of the human mind. In addition, connectionist systems have unique
advantages. For example, they generalize better to unexpected or noisy inputs
than symbolic AI systems. For complex tasks some form of hybrid system (Sun
and Bookman, 1994; Wermter and Sun, 2000) combining the capabilities of
connectionist and symbolic AI components may be more appropriate.

New theories of representation are being developed. While some of these theo-
ries attempt to link symbolic AI and connectionist representations (Smolensky
et al., 1992) in a description that applies to both, other theories try to subsume
both types of representation within a higher level theory such as dynamical
systems theory (Port and van Gelder, 1995). In the future we hope that from
these theories will spring new types of more powerful and flexible represen-
tation for building better intelligent systems as well as for modeling human
cognition.

1 Hadley has achieved the top level of Niklasson and van Gelder’s hierarchy and
satisfied his own criteria of strong systematicity with a connectionist model (Hadley
and Cardei, 1997), but this model has some symbolic components and so cannot be
said to have achieved the highest levels of systematicity in a connectionist way.

38

Acknowledgments

We thank two anonymous referees who provided useful comments on the first
draft of this paper. Ron Sun acknowledges the support from the ARI grant
DASW01-00-K-0012 during the preparation of this article.

References

Adamson, M. J. and Damper, R. I. (1999). B-RAAM: A connectionist model
which develops holistic internal representations of symbolic structures.
Connection Science, 11:41–71.

Ajjanagadde, V. (1991). Abductive reasoning in connectionist networks: In-
corporating variables, background knowledge, and structured explanada.
Technical Report WSI 91-6, Wilhelm-Schickard Institute, University of
Tubingen, Tubingen, Germany.

Ajjanagadde, V. (1993). Incorporating background knowledge and structured
explanada in abductive reasoning: A framework. IEEE Transactions on
Systems, Man, and Cybernetics, 23:650–654.

Ajjanagadde, V. (1997). Rule-Based Reasoning in Connectionist Networks.
PhD thesis, Department of Computer Science, University of Minnesota.

Ajjanagadde, V. and L.Shastri (1989). Efficient inference with multi-place
predicates and variables in a connectionist system. In Proceedings of
the 11th Annual Cognitive Science Society Conference, pages 396–403,
Hillsdale, NJ. Lawrence Erlbaum.

Ajjanagadde, V. and Shastri, L. (1991). Rules and variables in neural nets.
Neural Computation, 3:121–134.

Ampratwum, C. S., Picton, P. D., and Browne, A. (1998). Rule extraction from
neural network models of chemical species in optical emission spectra.
In Proceedings of the Workshop on Recent Advances in Soft Computing,
pages 53–64.

Andrews, R., Tickle, A. B., Golea, M., and Diederich, J. (1997). Rule ex-
traction from trained artificial neural networks. In Browne, A., edi-
tor, Neural Network Analysis, Architectures and Algorithms. Institute of
Physics Press, Bristol, UK.

Baba, K., Enbutu, I., and Yoda, M. (1990). Explicit representation of knowl-
edge aquired from plant historical data using neural networks. In Pro-
ceedings of the International Joint Conference on Neural Networks, pages
155–160.

Bailey, D., Chang, N., Feldman, J., and Narayanan, S. (1998). Extending em-
bodied lexical development. In Proceedings of the Twentieth Conference
of the Cognitive Science Society, pages 84–89.

Ballard, D. H. (1986). Parallel logical inference and energy minimisation.

39

In Proceedings of the AAAI national conference on artificial intelligence,
pages 203–208.

Barnden, J. and Srinivas, K. (1992). Overcoming rule-based rigidity and con-
nectionist limitations through massively parallel case-based reasoning. In-
ternational Journal of Man-Machine Studies, 36:221–246.

Barnden, J. A. (1989). Neural net implementation of complex symbol process-
ing in a mental model approach to syllogistic reasoning. In Proceedings of
the International Joint Conference on Artificial Intelligence, pages 568–
573.

Barnden, J. A. and Srinivas, K. (1996). Quantification without variables in
connectionism. Minds and Machines, 6:173–201.

Benitez, J., Castro, J., and Requina, J. I. (1997). Are artificial neural networks
black boxes? IEEE Transactions on Neural Networks, 8(5):1156–1164.

Bochereau, L. and Boutgine, P. (1990). Extraction of semantic features and
logical rules from multilayer neural networks. In Proceedings of the In-
ternational Joint Conference on Neural Networks, pages 579–582, Wash-
ington, DC.

Bologna, G. (2000). Rule extraction from a multilayer perceptron with stair-
case activation functions. In Proceedings of the International Joint Con-
ference on Neural Networks, pages 419–424, Como, Italy.

Browne, A. (1997). Challenges for neural computing. In Browne, A., editor,
Neural Network Perspectives on Cognition and Adaptive Robotics, pages
3–19. Institute of Physics Press, Bristol, UK.

Browne, A. (1998a). Detecting systematic structure in distributed represen-
tations. Neural Networks, 11(5):815–824.

Browne, A. (1998b). Performing a symbolic inference step on distributed
representations. Neurocomputing, 19:23–34.

Browne, A. and Picton, P. (1999). Two analysis techniques for feed-forward
networks. Behaviormetrika: Special Issue on Analysis of Knowledge Rep-
resentations in Neural Network Models, 26(1):75–87.

Browne, A. and Pilkington, J. (1995). Performing variable binding with a
neural network. In Taylor, J., editor, Neural Networks, pages 71–84. Al-
fred Waller, Henley on Thames, UK.

Browne, A. and Sun, R. (1999). Connectionist variable binding. Expert Sys-
tems: The International Journal of Knowledge Engineering and Neural
Networks, 16(3):189–207.

Buchheit, P. (1999). A neuro-propositional model of language processing.
International journal of intelligent systems, 14:585–601.

Bullinaria, J. (1997). Analyzing the internal representations of trained neural
networks. In Browne, A., editor, Neural Network Analysis, Architectures
and Algorithms, pages 3–26. Institute of Physics Press, Bristol, UK.

Callan, R. and Palmer-Brown, D. (1997). (S)RAAM: An analytical technique
for fast and reliable derivation of connectionist symbol structure repre-
sentations. Connection Science, 9(2):139–159.

Chan, S. W. K. and Franklin, J. (1998). Symbolic connectionism in nat-

40

ural language disambiguation. IEEE Transactions on Neural Networks,
9(5):739–755.

Churchland, P. S. and Sejnowski, T. (1992). The Computational Brain. MIT
Press, Cambridge, MA.

Cohen, M. S., Freeman, J. T., and Wolf, S. (1996). Meta-recognition in time
stressed decision making: Recognizing, critiquing, and correcting. Human
Factors, 38(2):206–219.

Collins, A. and Loftus, J. (1975). Spreading activation theory of semantic
processing. Psychological Review, 82:407–428.

Craven, M. W. and Shavlik, J. W. (1997). Understanding time series networks.
International Journal of Neural Systems, 8(4):373–384.

Crick, F. (1989). The recent excitement about neural networks. Nature,
337:129–132.

Derthick, M. (1988). Mundane reasoning by parallel constraint satisfaction.
Technical Report TR CMU-CS-88-182, Carnegie-Mellon University.

Diederich, J. (1988). Connectionist recruitment learning. In Proceedings of
the European Conference on Artificial Intelligence, pages 351–356.

Diederich, J. (1991). Steps towards knowledge-intensive connectionist learn-
ing. In Barnden, J. A. and Pollack, J., editors, Advances in Connectionist
and Neural Computation Theory, volume 1. Ablex, Norwood, NJ.

Ding, L., Teh, H. H., Wang, P., and Lui, H. C. (1996). A Prolog-like infer-
ence system based on neural logic: An attempt towards fuzzy neural logic
programming. Fuzzy Sets and Systems, 82:235–251.

Dolan, C. P. and Smolensky, P. (1989). Tensor product production system – a
modular architecture and representation. Connection Science, 1(1):53–68.

Dyer, M. G. (1990). Distributed symbol formation and processing in con-
nectionist networks. Journal of Experimental and Theoretical Artificial
Intelligence, 2:215–239.

Dyer, M. G. (1995). Connectionist natural language processing: A status
report. In Sun, R. and Bookman, L. A., editors, Computational Architec-
tures Integrating Neural and Symbolic Processes, pages 389–429. Kluwer
Academic Press, Boston, USA.

Eliasmith, C. and Thagard, P. (2001). Integrating structure and meaning: A
distributed model of analogical mapping. Cognitive Science, 25, 245-286.

Feldman, J. A. and Ballard, D. H. (1992). Connectionist models and their
properties. Cognitive Science, 6(3), 205–254.

Fletcher, G. and Hinde, C. (1995). Using neural networks as a tool for con-
structive rule based architectures. Knowledge Based Systems, 8(4):183–
187.

Franklin, S. and Garzon, M. (1990). Neural computability. In Omidvar, O.,
editor, Progress in Neural Networks, volume 1. Ablex, NJ.

Fu, L. (1994). Rule generation from neural networks. IEEE Transactions on
Systems, Man and Cybernetics, 24(8):1114–1124.

Gallant, S. I. (1988). Connectionist expert systems. Communications of the
ACM, 31:152–169.

41

Gallant, S. I. and Hayashi, Y. (1990). A neural network expert system
with confidence measurements. In Proceedings of the International Con-
ference on Information Processing and Management of Uncertainty in
Knowledge-Based Systems, pages 3–5. Paris, France.

Gayler, R. W. (1998). Multiplicative binding, representation operators and
analogy. In Holyoak, K., Gentner, D., and Kokinov, B., editors, Advances
in analogy research: Integration of theory and data from the cognitive,
computational and neural sciences. New Bulgarian University, Sofia, Bul-
garia (full text available at http://cogprints.soton.ac.uk).

Ghalwash, A. Z. (1998). A recency inference engine for connectionist knowl-
edge bases. Applied Intelligence, 9:205–215.

Giles, C. and Omlin, C. (1993a). Extraction, insertion, and refinement of sym-
bolic rules in dynamically driven recurrent networks. Connection Science,
5(3&4):307–328.

Giles, C. and Omlin, C. (1993b). Rule refinement with recurrent neural net-
works. In Proceedings of the IEEE International Conference on Neural
Networks, pages 801–806.

Giles, C. L., Miller, C. B., Chen, D., Chen, H. H., Sun, G. Z., and Lee, Y. C.
(1992). Learning and extracting finite state automata with second order
recurrent neural networks. Neural Computation, 4:393–405.

Goh, T. H. (1993). Semantic extraction using neural network modelling and
sensitivity analysis. In Proceedings of the International Joint Conference
on Neural Networks, pages 1031–1034, Nagoya, Japan.

Hadley, R. (1990). Connectionism, rule following and symbolic manipulation.
In Proceedings of the American Association of Artificial Intelligence, vol-
ume 2, pages 579–586.

Hadley, R. (1992). Compositionality and systematicity in connectionist lan-
guage learning. In Proceedings of the 14th Annual Conference of the
Cognitive Science Society, pages 659–664. Lawrence Erlbaum.

Hadley, R. F. and Cardei, V. C. (1997). Acquisition of the active-passive
distinction from sparse input and no error feedback. Technical Report
CSS-IS TR97-01, School of Computing Science, Simon Frazer University,
Burnaby, B.C., Canada.

Halford, G., Wilson, W., and Phillips, S. (1998). Processing capacity defined
by relational complexity: Implications for comparative, developmental,
and cognitive psychology. Behavioral and Brain Sciences, 21(6), 803–831.

Halford, G. S. (1993a). Commentary: Competing, or perhaps complemen-
tary approaches to the dynamic binding problem with similar capacity
limitations. Behavioral and Brain Sciences, 16(3):461–462.

Halford, G. S. (1993b). Creativity and the capacity for representation: Why
are humans so creative? AISB Quarterly, 85:32–41.

Halford, G. S., Wilson, W. H., Guo, J., Gayler, R. W., Wiles, J., and Stew-
art, J. E. M. (1994). Connectionist implications for processing capacity
limitations in analogies, pages 363–415. Ablex, Norwood, NJ.

Hayashi, Y. (1991). A neural expert system with automated extraction of fuzzy

42

if-then rules and its application to medical diagnosis. In Lippmann, R.,
Moody, J., and Touretzky, D., editors, Advances in Neural Information
Processing Systems, volume 3. Morgan Kaufmann, San Mateo, CA.

Henschen, L. and Wos, L. (1974). Unit refutations and Horn sets. Journal of
the Association for Computing Machinery, 21:590–605.

Hilario, M. (1997). An overview of strategies for neurosymbolic integration.
In Sun, R. and Alexandre, F. (Eds.). Connectionist symbolic integration.
Lawrence Erlabaum. Hillsdale, NJ.

Hilario, M. (2000). Architectures and techniques for knowledge-based neuro-
computing. In Cloete, I. and Zurada, J. M., editors, Knowledge-Based
Neurocomputing, pages 27–62. MIT Press, Cambridge, UK. Hybrid sys-
tems reference.

Hinton, G. E. (1990). Mapping part-whole hierarchies into connectionist net-
works. Artificial Intelligence, (46):47–75.

Hinton, G. E., McClelleand, J. L., and Rumelhart, D. E. (1986). Distributed
representations. In Rumelhart, D. and McClelland, J., editors, Parallel
Distributed Processing, volume 1, pages 77–109. MIT Press, Cambridge,
MA.

Hogger, C. J. (1990). Essentials of Logic Programming. McGraw-Hill, New
York.

Hölldobler, S. (1990a). A connectionist unification algorithm. Technical Re-
port TR-90-012, International Computer Science Institute, Berkeley, CA.

Hölldobler, S. (1990b). CHCL-a connectionist inference system for Horn logic
based on the connection method. Technical Report TR-90-042, Interna-
tional Computer Science Institute, Berkeley, CA.

Hummel, J. E. and Holyoak, K. (1998). Distributed representations of struc-
ture: A theory of analogical access and mapping. Psychological Review,
104:427–466.

Ishikawa, M. (2000). Rule extraction by successive regularization. Neural
Networks, 13:1171–1183.

Kabat, W. and Wojcik, A. (1985). Automated synthesis of combinatorial logic
using theorem proving techniques. IEEE Transactions on Computing, C-
34:610–628.

Kanerva, P. (1998). Encoding structure in boolean space. In Proceedings of the
International Conference on Artificial Neural Networks, pages 387–392.

Kasabov, N. K. (1994). Connectionist fuzzy production systems. In Pro-
ceedings of the Fuzzy Logic in Artificial Intelligence IJCAI Workshop of
LNAI, volume 847, pages 114–127, Berlin. Springer-Verlag.

Kasabov, N. K. and Shishkov, S. I. (1993). A connectionist production system
with partial match and its use for approximate reasoning. Connection
Science, 5(3 and 4):275–305.

Lane, P. and Henderson, J. (1998). Simple synchrony networks: Learning to
parse natural language with temporal synchrony variable binding. In Pro-
ceedings of the International Conference on Artificial Neural Networks,
pages 615–620.

43

Lange, T. and Dyer, M. G. (1989). High-level inferencing in a connectionist
network. Technical Report UCLA-AI-89-12, UCLA, Los Angeles, USA.

Lee, G., Flowers, M., and Dyer, M. G. (1990). Learning distributed repre-
sentations for conceptual knowledge and their application to script-based
story processing. Connection Science, 2(4):313–345.

Lima, P. M. V. (1992). Logical abduction and prediction of unit clauses in
symmetric hopfield networks. In Alexander, I. and Taylor, J., editors,
Artificial Neural Networks. Elsevier, Amsterdam, The Netherlands.

Machado, R. J. and da Rocha, A. F. (1997). Inference, inquiry, evidence, cen-
sorship and explanation in connectionist expert systems. IEEE Transac-
tions on Fuzzy Systems, 5(3):443–459.

MacLennan, B. (1993). Characteristics of connectionist knowledge represen-
tation. Information Sciences, 70:119–143.

Magdalena, L. (1997). A first approach to a taxonomy of fuzzy-neural systems.
In Sun, R. and Alexandre, F. (Eds.). Connectionist symbolic integration.
Lawrence Erlabaum. Hillsdale, NJ.

Marcus, G. F., Vijayan, S., Rao, S. B., and Vishton, P. (1999). Rule learning
in seven month old infants. Science, 283:77–80.

Markov, Z. (1991). A tool for building connectionist-like networks based on
term unification. In Proceedings of the processing declarative knowledge
international workshop, pages 199–213.

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of ideas immanent
in nervous activity. Bulletin of Mathematical Biophysics, 5:115–133.

McGarry, K., Wermter, S., and MacIntyre, J. (1999a). Hybrid neural sys-
tems: From simple coupling to fully integrated neural networks. Neural
Computing Surveys, 2(1):62–93.

McGarry, K., Wermter, S., and MacIntyre, J. (1999b). Knowledge extrac-
tion from radial basis function networks and multi layer perceptrons. In
Proceedings of the International Joint Conference on Neural Networks.
Washington, D. C.

McMillan, C., Mozer, M., and Smolensky, P. (1993). Dynamic conflict resolu-
tion in a connectionist rule-based system. In Proceedings of the Interna-
tional Joint Conference on Artificial Intelligence, volume 1 and 2, pages
1366–1371.

Medsker, L. R. (1994). Hybrid Neural Network and Expert Systems. Kluwer
Academic Publishers, Boston, MA.

Mitra, S. and Hayashi, Y. (2000). Neuro-fuzzy rule generation: Survey in
a soft computing framework. IEEE Transactions on Neural Networks,
11(3):748–768.

Narazaki, H. and Ralescu, A. L. (1992). A connectionist approach for rule-
based inference using an improved relaxation method. IEEE transactions
on Neural Networks, 3(5):741–751.

Newell, A. (1980). Physical symbol systems. Cognitive Science, 4:135–183.
Newell, A. (1986). The symbol level and the knowledge level. In Pylyshyn,

Z. W. and Demopoulos, W., editors, Meaning and Cognitive Structure,

44

pages 31–39. Ablex Publishing Corp., Norwood, NJ, USA.
Niklasson, L. and van Gelder, T. (1994). Can connectionist models exhibit

non-classical structure sensitivity? In Proceedings of the Cognitive Science
Society, pages 664–669. Lawrence Erlbaum.

Nilsson, N. J. (1971). Problem Solving Methods in Artificial Intelligence.
McGraw-Hill, New York.

Paccanaro, A. and Hinton, G. (2000). Learning distributed representations of
concepts using linear relational embedding. Technical Report GCNU TR
2000-002, University College London, London, UK.

Page, M. (2000). Connectionist modeling in psychology: A localist manifesto.
Behavioral and Brain Sciences, 23, 479–480.

Park, N. S. (2000). Connectionist symbolic rule encoding using a generalized
phase-locking mechanism. Expert Systems: The International Journal of
Knowledge Engineering and Neural Networks (Special Issue on Connec-
tionist Symbol Processing), In Press.

Park, N. S., Robertson, D., and Stenning, K. (1995). Extension of the tem-
poral synchrony approach to dynamic variable binding in a connectionist
inference system. Knowledge-Based Systems, 8(6):345–357.

Peterson, T. and Sun, R. (1998). An RBF network alternative to a hybrid
architecture. In Proceedings of the IEEE International Joint Conference
on Neural Networks, pages 768–773.

Phillips, S. (1998). Are feedforward and recurrent networks systematic? analy-
sis and implications for a connectionist cognitive architecture. Connection
Science, 10(2):137–160.

Phillips, S. and Halford, G. S. (1997). Systematicity: Psychological evidence
with connectionist implications. In Proceedings of the 19th Annual Con-
ference of the Cognitive Science Society, pages 614–619.

Pinkas, G. (1995). Reasoning, nonmonoticity and learning in connectionist
networks that capture propositional knowledge. Artificial Intelligence,
77:203–247.

Pinker, S and Prince, A. (1988) On language and connectionism: Analysis of a
parallel distributed processing model of language acquisition. Cognition,
28(1-2), 73–193.

Plate, T. (1991). Holographic reduced representations. Technical Report CRG-
TR-91-1, Department of Computer Science, University of Toronto, On-
tario, CA.

Plate, T. (1995). Holographic reduced representations. IEEE Transactions on
Neural Networks, 6(3):623–641.

Plate, T. (2000). Analogy retrieval and processing with distributed vector
representations. Expert Systems: The International Journal of Knowledge
Engineering and Neural Networks (Special Issue on Connectionist Symbol
Processing), 17(1), 29–40.

Pollack, J. B. (1988). Recursive auto-associative memory – devising compo-
sitional distributed representations. In Proceedings of the Tenth Annual
Conference of the Cognitive Science Society, pages 33–39.

45

Port, R. F. and van Gelder, T. (1995). Mind as Motion: Explorations in the
Dynamics of Cognition, MIT Press, Cambridge, MA.

Rachkovski, D. A. and Kussul, E. M. (2001). Binding and normalisation of
binary sparse distributed representations by context-dependent thinning.
Neural Computation, 13(2):411–452.

Raghuvanshi, P. S. and Kumar, S. (1997). Bipolar radial basis function infer-
ence networks. Neurocomputing, 14:195–204.

Robinson, G. and Wos, L. (1981). Paramodulation and theorem proving in
first-order theories with equality, volume 4. Elsevier, Amsterdam, The
Netherlands.

Robinson, J. A. (1965a). Automatic deduction with hyper-resolution. Inter-
national Journal of Computing and Mathematics, 1:227–234.

Robinson, J. A. (1965b). A machine-oriented logic based on the resolution
principle. Journal of the Association for Computing Machinery, 12:23–
41.

Rosenfeld, R. and Touretzky, D. (1988). Coarse coded symbol memories and
their properties. Complex Systems, 2:463–484.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning internal
representations by error propagation, volume 1. MIT Press, Cambridge,
MA.

Saito, K. and Nakano, R. (1988). Medical diagnostic expert system based on
pdp model. In Proceedings of IEEE International Conference on Neural
Networks, pages 255–262.

Samad, T. (1992). Hybrid distributed/localist architectures. In Kandel, A.
and Langholz, G., editors, Hybrid Architectures for Intelligent Systems,
chapter 10, pages 200–219. CRC Press, Boca Raton, FL. After Touret-
zky, Rubicon, a connectionist rule-based system that allows for a variable
number of expressions in the left and right-hand of a rule. Similar ap-
proaches taken by Kasabov and Shishkov (1993) and Kasabov (1994).

Sethi, I. and Yoo, J. (1994). Symbolic approximation of feedforward networks.
In Gesema, E. and Kanal, L., editors, Pattern Recognition in Practice,
volume IV, pages 313–324. Elsevier, North-Holland.

Setiono, R. (2000). Extracting m-of-n rules from trained neural networks.
IEEE Transactions on Neural Networks, 11(2):512–519.

Shapiro, E. (1991). Encyclopedia of Artificial Intelligence. MIT press, Cam-
bridge, MA.

Sharkey, N. (1992). The ghost in the hybrid – a study of uniquely connectionist
representations. AISB Quarterly, 79:10–16.

Shastri, L. (1999). Advances in SHRUTI: A neurally motivated model of
relational knowledge representation and rapid inferencing using temporal
synchrony. Applied Intelligence, 11(1):79–108.

Shastri, L. and Ajjanagadde, V. (1990). From simple associations to systematic
reasoning: A connectionist representation of rules, variables and dynamic
bindings. Technical Report MS-CIS-90-05, University of Pennsylvania,
Philadelphia, PA.

46

Shastri, L., Grannes, D. J., Narayanan, S., and Feldman, J. A. (1999). A
connectionist encoding of schemas and reactive plans. In Kraetzschmar,
G. K. and Palm, G., editors, Hybrid Information Processing in Adaptive
Autonomous vehicles: Lecture Notes in Artificial Intelligence. Springer-
Verlag, Berlin.

Shastri, L. and Wendelken, C. (1999). Knowledge fusion in the large: Taking a
cue from the brain. In Proceedings of the Second International Conference
on Information Fusion, pages 1262–1269, Sunnyvale, CA.

Shavlik, J. (1994). Combining symbolic and neural learning. Machine Learn-
ing, 14(2):321–331.

Shavlik, J. and Towell, G. (1989). An approach to combining explanation-
based and neural learning algorithms. Connection Science, 1(3):233–255.

Smolensky, P. (1988). On the proper treatment of connectionism. Behavioral
and Brain Sciences, 11:1–74.

Smolensky, P. (1990). Tensor product variable binding and the representation
of symbolic structures in connectionist systems. Artificial Intelligence,
46:159–216.

Smolensky, P. (1995). Computational models of mind. Blackwell, Cambridge,
MA.

Smolensky, P., Legendre, G., and Miyata, Y. (1992). Principles for an inte-
grated connectionist and symbolic theory of higher cognition. Technical
Report CU-CS-600-92, Computer Science Department, University of Col-
orado, Boulder, CO.

Sperduti, A. (1995). Stability properties of labeling recursive auto-associative
memory. IEEE Transactions on Neural Networks, 6(6):1452–1460.

Sun, R. (1989). A discrete neural network model for conceptual representation
and reasoning. In Proceedings of the 11th Conference of the Cognitive
Science Society, pages 916–923, Hillsdale, NJ. Lawrence Erlbaum.

Sun, R. (1992). On variable binding in connectionist networks. Connection
Science, 4:93–124.

Sun, R. (1995a). A new approach towards modelling causality in commonsense
reasoning. International Journal of Intelligent Systems, 10:581–616.

Sun, R. (1995b). Robust reasoning: Integrating rule-based and similarity-
based reasoning. Artificial Intelligence, 75(2):241–296.

Sun, R. (1995c). Schemas, logics and neural assemblies. Applied Intelligence,
5(2):83–102.

Sun, R. and Alexandre, F. (1997). Connectionist symbolic integration.
Lawrence Erlabaum. Hillsdale, NJ.

Sun, R. and Bookman, L. A. (1994). Computational Architectures Integrating
Neural and Symbolic Processes: A Perspective on the State of the Art.
Kluwer, Boston.

Sun, R. and Peterson, T. (1998). Autonomous learning of sequential tasks:
Experiments and analyses. IEEE Transactions on Neural Networks,
9(6):1217–1234.

Sun, R. and Waltz, D. (1991). Neurally inspired massively parallel model of

47

rule-based reasoning. In Soucek, B., editor, Neural and Intelligent System
Integration, pages 341–381. John Wiley and Sons, New York.

Taha, I. and Ghosh, J. (1997). Evaluating and ordering of rules extracted
from feedforward networks. In Proceedings of the IEEE International
Conference on Neural Networks, volume 1, pages 408–413.

Thrun, S. (1995). Extracting rules from artificial neural networks with distrib-
uted representations. In Tesauro, G., Touretzky, D., and Leen, T., editors,
Advances in Neural Information Processing Systems, pages 505–512. MIT
Press, San Mateo, CA.

Tickle, A., Maire, F., Bologna, G., Andrews, R., and Diederich, J. (2000).
Lessons from past, current issues, and future research directions in ex-
tracting knowledge embedded in artificial neural networks. In Wermter,
S. and Sun, R., editors, Hybrid Neural Systems. Springer-Verlag, Berlin.

Touretzky, D. S. and Hinton, G. E. (1988). A distributed connectionist pro-
duction system. Cognitive Science, 12(3):423–466.

Towell, G. and Shavlik, J. W. (1993). The extraction of refined rules from
knowledge based neural networks. Machine Learning, 31:71–101.

Ultsch, A., Mantyk, R., and Halmans, G. (1993). Connectionist knowledge
aquisition tool: CONKAT. In Hand, J., editor, Artificial Intelligence Fron-
tiers in Statistics: AI and Statistics, volume III, pages 256–263. Chapman
and Hall, London, UK.

van Gelder, T. (1991). What is the ‘D’ in ‘PDP’? A survey of the concept
of distribution. In Ramsey, W., Stich, S., and Rumelhart, D. E., editors,
Philosophy and Connectionist Theory, pages 33–60. Lawrence Erlbaum
Associates, Hillsdale, NJ.

Weber, V. (1992). Connectionist unification with a distributed representation.
In Proceedings of the International Joint Conference on Neural Networks,
pages 555–560.

Weber, V. (1993). Unification in Prolog by connectionist models. In Pro-
ceedings of the Fourth Australian Conference on Neural Networks, pages
A5–A8.

Wermter, S. and Sun, R. (2000). Hybrid Neural Systems. Springer, Heidelberg.
Wiles, J., Halford, G., Stewart, J. E. M., Humphreys, M. S., Bain, J. D.,

and Wilson, W. H. (1992). Tensor models: A creative basis for memory
retrieval and analogical mapping. Technical Report 218, University of
Queensland, Queensland, Australia.

Yeung, D. and Fong, H. (1994). Knowledge matrix: An explanation and knowl-
edge refinement facility for a rule induced neural network. In Proceedings
of the 12th National Conference on Artificial Intelligence, volume 2, pages
889–894.

Yoon, B. and Lacher, R. (1994). Extracting rules by destructive learning. In
Proceedings of the IEEE International Conference on Neural Networks,
pages 1771–1776, Orlando, FL.

48

Figure Captions

Figure 1. A Connectionist Implementation of Rules.

Figure 2. A Connectionist Implementation of Precise Logic Rules.

Figure 3. Implementing Rules in a Connectionist Network with Multiple In-
stantiations.

Figure 4. A Connectionist Network for Backward-Chaining Reasoning where
‘+’ Indicates Enabling and ‘-’ Indicates Blocking.

Figure 5. A Network Utilizing Phase Synchronization for Variable Binding.

Figure 6. Representing give(John, Mary, book1) with adjacent registers for
give (class), W (instance), John (arg1), Mary (arg2), and book1 (arg3).

Figure 7. Representing not give(John, Mary, book1)With Two Clumps of Ad-
jacent Registers for give (class), W (instance), John (arg1), Mary (arg2), and
book1 (arg3).

Figure 8. Mapping between modularly distributed representations and local-
ist representations where a is (a1, a2....an), b is (b1, b2....bn), and c is (c1,
c2....cn).

Figure 9. Implementing a DN node in Conventional Connectionist Networks.

Figure 10. A Modularly Distributed Network for Rule-Based Reasoning.

Figure 11. The Three Types of Assemblies, where C Denotes a Predicate
Node and X Denotes an Argument Node: (1) an Ordinary Assembly, (2) an
OR Assembly, and (3) a Complex Assembly (for Equality Checking and Other
Tasks).

Figure 12. Complete Unification Network. Autoassociator A Produces Dis-
tributed Representations of two Input Terms. Autoassociator B Produces Dis-
tributed Representations of Unification Results. Network C Maps Distributed
Representations from Hidden Layer of A to Hidden Layer of B.

Figure 13. Cut Rule Network. Distributed Representation of Unification Re-
sults from Output Layer of Network C is Supplied as Input Together with
Distributed Representation of Term from Database. Result of Feedforward
Network Mapping Allows Sigma-Pi Units to Gate Database and Reproduce
Representation of Term at Output if Resolution is Performed, or Set All Out-
put Units to 0 Indicating Term has been Removed from Database.

49

can-sell

x
y

z z

y

z

y

give own

50

d

1/3

a b c

(threshold= 0.99)

1/3
1/3

51

phy-obj3

table1

thing1 thing2

label2

thing3

chair

phy-obj1 phy-obj2

52

-

x
y

z z

y

z

y

give own can-sell

- + - + +

53

can-sell

give

own

from John
from Mary

from book1

54

W
(inst)

give
(class)

John
(arg1)

Mary
(arg2)

book1
(arg3)

55

(inst)

(arg1)

give
(class)

John
(arg1)

Mary
(arg2)

book1
(arg3)

W

Z
(inst)

not
(class)

W

56

bn

a

c

b

a1 a2 an

b1 b2

c1 c2

(2)

(1)

cn

57

a multi-layer

OUTPUT

INPUT

delay

for actions

neural net

a multi-layer

for state transitions

neural net

58

z

give

own can-sell

x

y

z

y

z

y

59

X1

C

(1)

X2

q
i
q

i p

a

b

a

b

o= w p i
p

+ w i q

1
2

q> ipif i

C

X1

(2)

X2

i p

i q
o = max(i p, q)i

a 1

a 2

b1

b2

a j

b j

j =
otherwise

0 otherwise

C * W if a = b
U =

U(vector)

C

ab

b

a

X2

X1

C

b

a

60

network A autoassociates
term pairs

hidden 1

hidden 2

output C

network C maps distributed
representations from A to B

output C attempts to
match hidden B

network B autoassociates
unification results

output of C passed to
cut rule network

61

unification results
from network C

input layer 1

hidden layer 1

hidden layer 2

database representation
before resolution

input layer 2

output layer

sigma-pi units

final output

database representation

62

