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Abstract

A new shape recognition-based neural network built with universal feature planes, called Shape Cognitron (S-Cognitron) is introduced to

classify clustered microcalcifications. The architecture of S-Cognitron consists of two modules and an extra layer, called 3D figure layer lies in

between. The first module contains a shape orientation layer, built with 20 cell planes of low level universal shape features to convert first-order

shape orientations into numeric values, and a complex layer, to extract second-order shape features. The 3D figure layer is a feature extract-

display layer that extracts the shape curvatures of an input pattern and displays them as a 3D figure. It is then followed by a second module made

up of a feature formation layer and a probabilistic neural network-based classification layer. The system is evaluated by using Nijmegen

mammogram database and experimental results show that sensitivity and specificity can reach 86.1 and 74.1%, respectively.

q 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Microcalcifications (MCCs) generally present an early

sign of breast cancer. According to related medical reports,

although clustered MCCs associated with benign and

malignant disease usually have distinct characteristics,

studies involving a large number of cases also indicated

that a considerable overlap exists. This creates diagnostic

interpretation difficulty. Under such circumstance, most

radiologists encourage biopsies, even only 20–30% of cases

are found to be cancer (Sickles, 1986). Thus decreasing the

false-positive biopsy rate for mammographically detected

abnormalities is important in image analysis of calcifica-

tions in mammograms. It also presents a challenge for

radiologists who must not only recognise the presence of

MCCs, but also assess the likelihood of malignancy in order

to avoid unnecessary biopsies (Lanyi, 1985).

The difficulties in MCCs diagnosis arise primarily in that

the characteristic differences between benign and malignant

lesions are subtle; some have drastic while some have

similar appearances; some of the differences lie in the shape

and curvature of individual blob of MCCs while some lie in

the overall distribution of MCCs. Some experienced

radiologists use considerable interpretive expertise to rate

biopsy for those calcifications that are very unlikely to be

malignant. However, for less trained radiologists, experi-

ences come with extensive practices. One way to cope with

this dilemma is to use a system to provide them with a

second opinion to assist them in improvement upon

diagnosis (Kegelmeyer et al., 1994).

The literature of classifying benign and malignant MCCs

can be referred to the work proposed by Shen, Rangayyan,

and Desautels (1994) in which the features, including

moments, Fourier descriptors, and compactness, of selected
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blobs of clustered MCCs are computed. The report reveals

that both true-positive fraction and true-negative fraction

achieve 100% correct classification rate in leave-one-out

tests. However, a clustered MCC usually consists of several

blobs or scattered MCCs. Thus it is common to see some

clustered MCCs from which it is impossible to select (or

threshold) a blob. Furthermore, it is reported that the

distribution pattern of MCCs determines the benignancy

and malignancy more than a specific blob within a clustered

MCC, especially that most small blobs of malignant MCCs

reveal like benignant. Therefore, it is highly suggested that a

system for the classification of MCCs should take into

considerations of both each individual blob and the group

distribution.

Another difficulty arising in classifying benign and

malignant MCCs is that the features of benign and

Nomenclature

s variance used in the conditional probability density function

C defective degree of MCCs
�AB average size per blob

Ac the number of pixels of MCCs

AR the area cover of MCCs

C1 complex layer of first module

C2 classification layer of second module

CP compactness of MCCs

d(x) Bayes classifier output when a pattern x is applied

E elongation of MCCs

fcðxÞ the conditional probability density function of an L-dimensional random vector x given that x belongs to class c

FN the false negative rate

FP the false positive rate

hij the elevation of the pixel located at the ði; jÞ position

I irregularity of boundary of MCCs

Mc circularity of MCCs

Md density of MCCs

n the total number of MCCs test cases

nA number of patterns in class A

NB the number of blobs of MCCs

nB number of patterns in class B

nb the number of benign MCCs cases

nbb the number of benign cases classified correctly

nbm the number of benign cases classified incorrectly

nc number of patterns in a class c where c could denote A or B

Ni the total number of pixels which form shape feature dimension i in 3D figure layer within an ROI

nm the number of malignant MCCs cases

nmb the number of malignant cases classified correctly

nmm the number of malignant cases classified correctly

Nx the summation of curvature number x

Rb the rejection rate for benignancy

Rm the rejection rate for malignancy

S1 shape orientation layer of first module

S2 feature formation layer of second module

Sc the summation in the summation unit layer

Sd scattering density of blobs within an ROI

TN the true negative rate

TP the true positive rate

U0 input layer of S-Cognitron

u(y ) the unit step function, i.e. uðyÞ ¼ 1 for y ¼ 0 and 0

wmk weights of training pattern unit layer

{xA
i }

nA

i¼1 L-dimensional training pattern vectors belonging to class A

{xB
j }

nB

j¼1 L-dimensional training pattern vectors belonging to class B

x
nc

mk an element in the input vector xk ¼ ðx
nc

1k; x
nc

2k;…; x
nc

Nk
ÞT
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malignant MCCs are far from specific that they cannot be

described by some pre-selected shape patterns. According to

literature reports, shape, curvature, and size are parts of

basic characteristics in distinguishing benign and malignant

MCCs. It was also reported that malignant MCCs are more

likely to be irregular, granular, fine linear, and of small size

while benign MCCs often have smooth boundary, popcorn-

like, large rod-like, round, lucent-centred, eggshell, and are

of large size. Even so, not only it is impossible to identify

specific shape patterns which distinguish benign from

malignant MCCs, one feature which plays major factor in

the diagnosis in some cases might become irrelevant to the

diagnosis of another case when some other features appear.

It is also not uncommon to see contradict features co-exist in

some cases. These factors cause the feature extraction

difficult, if not impossible.

On the other hand, neural networks have been used in

performing complex tasks. Among the existing neural

network models, most of them such as the multilayer neural

network, self-organised feature maps, associative mem-

ories, are designed based on minimizing a required

equation. This approach does work fine in performing

certain tasks, such as function approximation, minimal

distance calculation for pattern classification, and optimis-

ation problems. However, for performing visual task, as

well as the classification of MCCs, this approach is far from

sufficient. Another type of neural network model is the

Fukushima’s Neocognitrons (Fukushima, 1980, 1988;

Fukushima & Miyake, 1982; Fukushima & Wake, 1991),

and evolved Tricognitron (Xu, 1993; Xu & Chang, 1996).

The Fukushima’s Neocognitrons consist of feature extrac-

tion, S, layers and fusion, C, layers, where the S layers are

constructed either by some pre-selected shape patterns, or

by an unsupervised learning to code the object features in

the planes. The unsupervised Neocognitrons were con-

sidered comprising biological neural model, and effective to

the recognition of characters, invariant to size, translation

and handwriting (Fukushima, 1980, 1988; Fukushima &

Miyake, 1982; Fukushima & Wake, 1991). Due to these

characters of possessing biological meaning and effective in

character recognition, the Neocognitrons were regarded one

type of very unique neural models. But due to the

uncertainty and complexity of MCCs’ features related to

benignancy and malignancy, the classification of MCCs

using unsupervised Neocognitrons is not very successful.

The contradict features co-exist in some cases usually cause

the learning in the feature extraction difficult, if not possible,

to converge for the Neocognitrons to achieve a high

classification rate. On the other hand, as the shape patterns

of the MCCs are far from specific to be pre-determined, the

Neocognitrons using pre-selected shape coding do not work

either. One alternative way adopted in the Shape Cognitron

(S-Cognitron) is to use universal feature planes as opposed

to use specific shape pattern planes or unsupervised learning

in capturing features. Universal features are some basic low-

order patterns which form the basic element of any shape

patterns. In this paper, a S-Cognitron neural network, which

is designed with universal feature planes, is proposed for

classifying the benignancy and malignancy of MCCs. The

S-Cognitron neural network serves as a fourfold operator,

that is a feature extractor, displayer, selector as well as a

classifier. Fig. 1 describes the structure of S-Cognitron,

which consists of two modules, each of which has two

layers. Between these two modules is an extra layer, called

3D figure layer. The first module contains a shape

orientation layer denoted by S1 and a complex layer denoted

by C1. S1 contains 20 cell planes of size N £ N represen-

tation of low level universal shape features obtained by

Fig. 1. Architecture of S-Cognitron.
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using 20 window masks shown in Fig. 2. C1 contains eight

cell planes merged from 20 cell planes of S1 representation

of high level shape features. The task of the first module

converts geometric shape orientations of an input pattern

into numeric representations which are results of different

activities generated by the window masking processing in S1

and merging procedure in C1. The layer following the first

module is 3D figure layer. It is a feature extraction-display

layer, which extracts and represents the shape curvatures of

an input pattern in terms of numeric representations. In the

mean time, it also displays the input pattern as a 3D figure

using these numeric representations as elevation of the

pattern to show curvatures in the third dimension. The

second module can be viewed as a joint feature formation

and classification network and is made up of a feature

formation layer, S2 which generates a desired set of shape

features from the 3D figure layer, and a classification layer,

C2 which employs a probabilistic neural network (PNN)

(Specht, 1990) as a two-class (malignant and benign)

classifier using the shape features produced by S2 as inputs.

The classification performance of S-Cognitron is evaluated

by Nijmegen mammogram database.

The remaining of the paper is organised as follows.

Section 2 is devoted to S-Cognitron whose architecture is

delineated in detail. Section 3 focuses on the classification

of MCCs. Section 4 includes results of classification

performance of the designed system evaluated by the

Nijmegen mammogram database. Final conclusions are

given in Section 5.

2. Architecture of Shape Cognitron

As mentioned in Section 1, shape is one of major features

in discriminating benignancy and malignancy of MCCs. To

enable S-Cognitron to extract these shape features and, from

which, to discriminate malignancy from benignancy, three

major components are built inside the S-Cognitron. The first

component consisting of S1 and C1 layers is a shape

orientation conversion module which converts the shape

orientation information from the input pattern to a numeric

representation for each pixel and passes it on to the second

component. The second component is a shape curvature

extraction-display layer. It is a 3D figure layer which has

only one N £ N £ 16 cell cube. It displays a 2D N £ N input

pattern as a 3D N £ N £ 16 figure where the numeric value

assigned to each pixel in the input pattern represents the

shape curvature of that pixel. The numeral is generated by

activities produced by the first module and can be viewed as

the elevation of the pixel when the pattern is displayed as a

3D figure. The third component is a shape feature

formation-classification module implemented by two layers,

the feature formation layer, S2 and the classification layer,

C2. The task of layer S2 is to integrate and select shape

curvatures obtained from the 3D figure layer, and generate a

desired set of high-order shape features based on certain

classification criteria. Layer C2 employs a PNN as a

classifier to produce a final classification result. The details

of each layer are described as follows.

2.1. Input layer U0 of S-Cognitron

The input patterns to S-Cognitron are MCC’s which are

resulting from an MCCs detection system, for instance, the

detection system described in (Chan, Lo, Sahiner, Lam, &

Helvie, 1995; Dengler, Behrens, & Desaga, 1993; Liao et al.,

1996; Wu, Doi, & Giger, 1992; Zhang et al., 1994) or any

other CAD detection systems. The input pattern shows

MCCs as a binary image corresponding to an ROI, which

contains a cluster of MCCs. The prior information of an ROI

includes the area of region over MCCs—Ac and the number

of blobs, NB. The size of the input patterns in U0 is fixed at

N £ N, where N in our system is 256, which is considered as

the maximum size of a cluster of MCCs, and can vary

subject to applications.

2.2. First module (S1, C1) of S-Cognitron

This module can be thought of as a shape orientation

conversion module, which converts shape orientations from

Fig. 2. (a) A set of eight 2 £ 2 spatial patterns which generate activity 1. (b)

A set of four 3 £ 3 spatial patterns which generate activity 1. (c) A set of

eight 3 £ 3 spatial patterns which generate activity 2.
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input patterns into numeric values. Two layers are

composed in this module. One is called S1 layer, where

contains 20 N £ N cell planes caused by 20 masks (see Fig.

2), which is designed to extract first-order shape of

orientation features by three window masking processes

built with universal feature planes. The other is called C1

layer, where contains eight N £ N cell planes obtained from

S1 layer (see Fig. 4), which is to combine/fuse first-order

shape orientations into second-order shape features. Please

be noted that the orientations are computed on moving

windows of specially designed feature masks. Thus the

operation of S-Cognitron is essentially position and rotation

invariant. As the obtained orientations are used to form

high-order features in latter computation in which size

normalisation is naturally imposed, the S-Cognitron is also

scale-invariant.

2.2.1. Shape orientation layer S1

This layer can be viewed as low-order shape orientation

extraction layer, in which three sets of windows will be used

to detect universal first-order features for input patterns.

Each window masking processing will result in a N £ N cell

plane. Operations of the three sets of windows are described

as follows.

(a) Eight 2 £ 2 windows denoted by (P0, S1), (P1, S1),

(P2, S1), (P3, S1), (P4, S1), (P5, S1), (P6, S1), (P7, S1) as

shown in Fig. 2(a) are used to match the horizontal

orientation 0 and 1808, vertical orientation 90 and 2708,

diagonal orientation 45 and 2258, and asymmetric diagonal

orientation 135 and 3158. A cell marked by ‘X’ is the pixel

currently being visited by a 2 £ 2 window and will be

designated as a seed cell. A highlighted cell indicates a

match between the window and the pattern while a blank

cell showing ‘do not care’ during matching. If there occurs a

match, the seed cell will be assigned an activity 1; 0,

otherwise.

(b) Like 2 £ 2 windows, four 3 £ 3 windows denoted by

(P8, S1), (P9, S1), (P10, S1), (P11, S1) shown in Fig. 2(b) are

also used to match the horizontal orientation (0, 1808),

vertical orientation (90, 2708), diagonal orientation (45,

2258) and asymmetric diagonal orientation (135, 3158). The

difference from 2 £ 2 window masking lies in that the centre

Fig. 3. Activities generated by spatial patterns in Fig. 2 to represent eight different geometric patterns, each of which corresponds to various curvatures, 22.58

(i.e. ,458), 45, 90, 135, 180, 225, 270, 3608.
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of the window is placed on the seed cell so that the pattern’s

orientation is across the seed cell; thus the 3 £ 3 windows

are able to detect a second-order cell relation. If there is a

match, the seed cell is assigned an activity 1; 0, otherwise.

(c) Eight 3 £ 3 windows denoted by (P12, S1), (P13, S1),

(P14, S1), (P15, S1), (P16, S1), (P17, S1), (P18, S1), (P19, S1)

shown in Fig. 2(c) are used to detect patterns with

differences of 22.58. Similar to the previously mentioned

windows in Fig. 2(b), this eight windows are also used to

detect second-order cell relations. But since this orientation

difference 22.58 is more subtle than 458, the seed cell is

assigned an activity 2 if a match occurs; 0, otherwise.

As a result of using these 20 window masking processes,

a total of 20 N £ N cell planes will be generated, one for

each window masking process. For demonstration, shown in

Fig. 3 are the activities generated by spatial patterns in Fig. 2

to represent eight typical geometric patterns, each of which

corresponds to various curvatures, 22.58 (i.e. ,458), 45, 90,

135, 180, 225, 270, and 3608.

2.2.2. Complex layer C1

This layer can be viewed as a shape orientation fusion

layer which combines the orientation information provided

by 20 cell planes in layer S1 and merges them into only eight

cell planes:

(a) When two or more cell planes are merged into one cell

plane, the activity assignment for this newly merged cell

plane abides by dominate-take-all rule. More specifi-

cally, the activity of each pixel in the merged cell plane

is assigned the largest activity among activities of the

corresponding pixel in all cell planes to be merged.

(b) The six cell planes (P0, S1), (P1, S1), (P2, S1), (P3, S1),

(P13, S1), (P14, S1) in layer S1 are merged into one cell

plane, called (P0, C1) shown in Fig. 4(a).

(c) The six cell planes (P2, S1), (P3, S1), (P4, S1), (P5, S1),

(P15, S1), (P16, S1) in layer S1 are merged into one cell

plane, called (P1, C1) shown in Fig. 4(b).

(d) The six cell planes (P4, S1), (P5, S1), (P6, S1), (P7, S1),

(P17, S1), (P18, S1) in layer S1 are merged into one cell

plane, called (P2, C1) shown in Fig. 4(c).

(e) The six cell planes (P0, S1), (P1, S1), (P6, S1), (P7, S1),

(P12, S1), (P19, S1) in layer S1 are merged into one cell

plane, called (P3, C1) shown in Fig. 4(d).

(f) The four cell planes (P8, S1), (P9, S1), (P10, S1), (P11,

S1) in layer S1 will not be merged but reassigned (P4,

Fig. 4. The eight cell planes of complex layer C1 merged from 20 cell planes of simple layer S1.
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C1), (P5, C1), (P6, C1), (P7, C1), respectively, in layer

C1 shown in Fig. 4(e)–(h).

The above merging processing produces a total of eight

cell planes. For illustration, the eight typical patterns formed

in layer C1 through merging basic universal features of S1

layer are shown in Fig. 5, where their activities in

representing shape curvatures with 08 ¼ 360, 45, 90, 135,

180, 225, 270 and 3158 are illustrated. However, it should be

noted that the combination of the eight planes is sufficient to

represent any second-order shape patterns.

2.3. 3D figure layer of S-Cognitron

This layer has only one K £ K cell plane resulting from

summing up all eight cell planes in layer C1. Since each

pixel in any cell plane has value either 0, 1, or 2, the

summed cell plane will take integral values ranging from 0

to 16 which can be viewed as a numeric representation for

the pixel. Representing numeric values, curvature number is

called, as elevations of pixels can create a 3D figure for the

input pattern where the third dimension may be called the

curvature dimension. The elevation of pixels can show their

shape curvatures in this shape feature dimension. Therefore,

a K £ K pattern can be displayed by a 3D K £ K £ h figure

where h [ {0; 1; 2;…; 16}: Because of that, this layer can

be considered to be a shape curvature display layer.

According to our experiments, activities 0 and 1 do not

make any difference in recognition and therefore, they are

merged to value 0 to accommodate 16 values (i.e. 2 bytes).

The last row of Fig. 5 reveals the numeric representation of

3D figure layer for eight different patterns and Table 1

tabulates numeric representations obtained from 3D figures

for eight different shape curvatures. Fig. 6 shows 3D figures

produced in this layer for a number of clustered MCCs

where the numeric value of each pixel in the pattern was

obtained in accordance with the numeric representations of

shape curvatures given in Table 1.

2.4. Second module (S2, C2) of S-Cognitron

2.4.1. Feature formation layer S2

In order for S-Cognitron to produce an optimal feature

set for classification, we follow the criteria proposed from

Fig. 5. Numeric values of 3D figure layer generated by spatial patterns in Fig. 4 to represent eight different geometric patterns, each of which corresponds to

various curvatures, 22.58 (i.e. ,458), 45, 90, 135, 180, 225, 270, 3608.

Table 1

Shape curvatures (degree) generated by S-Cognitron

Shape curvature (8) Curvature number

,45 2

45 3

90 4

135 5

180 6, 7

225 8, 9

270 10, 11

08 ¼ 3608 12
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the Breast Imaging Reporting and Data System (BI-RADS)

which was developed by the American College of

Radiology (1993, 1995) and Lanyi (1986). These criteria

are based on the numbers of MCCs, morphologic appear-

ances, arrangements, concentrations, distributed sizes and

densities, etc. Based on the guidelines, eight important

shape features were generated in layer S2 from shape

curvature and are tabulated in Table 2 (see Appendix A in

detail). Different parameters were designed to generate the

eight features by using summation of curvature numbers,

which are used to present the property of shape features

properly, in this layer. The summation of curvature number

x, Nx, can be computed from the 3D figure pattern by the

convolution formula Nx ¼
PK

i¼1

PK
j¼1 ½uðhij 2 xÞ� where hij

is the elevation of the pixel located at the ði; jÞ position of the

K £ K 3D pattern and u(y ) is the delta function, i.e. uðyÞ ¼ 1

for y ¼ 0 and 0, otherwise. For example, in the result of 3D

figure layer shown in Fig. 6, the summation of curvature

number 7 is computed as N7 ¼
PK

i¼1

PK
j¼1 ½uðhij 2 7Þ� and

equal to 23.

Fig. 6. (a) The original image of a cluster of microcalcifications. (b) The binary image of microcalcifications in (a). (c) The 3D figure of (b).

Table 2

Eight S-Cognitron generated features used for classification

Feature number Feature characterisation Formula

1 Average size per blob ð �ABÞ �AB ¼ Ac=NB

2 Scattering density of blobs within an ROI (Sd) Sd ¼ NB=AR

3 Density of MCCs (Md) Md ¼ N12=AR

4 Irregularity of MCCs (I ) I ¼ N2 þ N3 þ N4

5 Elongation of MCCs (E ) E ¼ N5 þ N6 þ N7 þ N8 þ N9

6 Circularity of MCCs (Mc) Mc ¼ N4 þ N5 þ N8 þ N9

7 Compactness (CP) CP ¼ P2=NB

8 Defective degree (C ) C ¼ N10 þ N11

Note: ROI, region of interest; MCCs, microcalcifications; Ac, the number of pixels of MCCs; AR, the area cover of MCCs; NB, the number of blobs; Nx, the

total number of pixels of shape feature dimensional number no. x of 3D figure layer within an ROI.
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2.4.2. Classification layer C2

This layer is regarded as a classification or recognition

layer in which a PNN is implemented. Features generated in

layer S2 are served as the inputs to the network. Through a

statistical evaluation, the outputs provide the likelihood of

malignance of MCCs associated with the input pattern. A

more detailed description of this layer will be shown in

Section 3.

In summary, how S-Cognitron works is described in the

flow chart given in Fig. 7. It (1) first takes the detected MCCs

produced by the MCC’s detection system as input patterns in

layer U0, (2) uses the first module (S1, C1) to convert

universal shape orientation information to numeric represen-

tations, (3) extracts and displays the numeric values in the

curvature dimension in the 3D figure layer, (4) employs the

second module (S2, C2) to format shape features in layer S2,

and finally (5) classifies MCCs in layer C2.

3. Classification of MCCs in layer C2

3.1. Probabilistic neural networks

There are two reasons of choosing the PNN as a

candidate for the classifier used in layer C2. One is that

unlike a multilayer perceptron with backpropagation which

requires long training time, a PNN requires much less

training time to achieve Bayes classification. It also has

generalisation ability and been proved to be successful in

many classification problems. The other is that the output of

a PNN can provide class estimates, which provide the

likelihood of malignance for MCCs. Thus PNN can be very

useful in medical diagnosis where likelihood values are

more acceptable than yes–no results. The structure of a

PNN is depicted in Fig. 8. In the PNN, there is an input

layer, a hidden layer, a summation unit layer and an output

layer where the hidden layer is also called the training

pattern unit layer in the sense that each hidden node is

represented by a training pattern. A brief description of PNN

is given below.

Let {xA
i }

nA

i¼1 and {xB
j }

nB

j¼1 be L-dimensional training

pattern vectors belonging to class A and class B,

respectively, where nA þ nB ¼ n: Let fcðxÞ be the con-

ditional probability density function of an L-dimensional

random vector x given that x belongs to class c. Then using

Parzen’s windows method, we can approximate fcðxÞ by the

following expression:

fcðxÞ <
1

ð2pÞL=2sL

1

nc

Xnc

k¼1

exp 2
ðx 2 xc

kÞ
Tðx 2 xc

kÞ

2s2

( )" #
ð1Þ

where c ¼ A or B.

If we assume that all sample vectors are normalised, i.e.

xTx ¼ ðx
nc

k ÞTx
nc

k ¼ 1 for nc ¼ nA or nB then based on Eq. (1)

we can derive a Bayes classifier as follows:

dðxÞ ¼ nA

if
1

nA

XnA

i¼1

exp
ðxtxA

i 2 1Þ

s2

( )

$
1

nB

XnB

i¼1

exp
ðxtxB

i 2 1Þ

s2

( ) ð2Þ

otherwise, dðxÞ ¼ nB:

As a result, a neural network described in Fig. 8 can be

used to implement Eq. (2), in such a way that the inner

product, xTx
nc

k of the input vector x with a training vector x
nc

k

can be realised in the training pattern unit layer by setting

weights wmk ¼ x
nc

mk where xk ¼ ðx
nc

1k; x
nc

2k;…; x
nc

Nk
ÞT (this

operation is delineated by the rectangles in the network)

and the summation

Sc ¼
1

nc

Xnc

i¼1

exp
xTxc

i 2 1

s2

( )
ð3Þ

in Eq. (3) can be realised in the summation unit layer by

assigning 1 to weights going to the class to which the

training vector belongs and 0, otherwise. The decision unit

layer in the network is used to determine which class is

supposed to be assigned to the input pattern. The desired

class membership is the one which yields the maximum

among outputs generated by the summation unit layer.

Fig. 7. Flow Chart of S-Cognitron.
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3.2. Classification of MCCs

The classification task presented in this section is

accomplished by formatting shape features from S2 and

feeding them to a PNN in layer C2. All features in Table 2

will serve as an input set of the PNN in layer C2 for

classification. The procedure in layer C2 can be described

as follows:

1. There are eight nodes in the input layer to take shape

features in Table 2.

2. The training pattern unit layer is made up of all training

patterns which are 8D vectors, each having its own

node. (Note that the weights from the input to the

training pattern unit layer are fixed and determined by

the associated training vector.)

3. The summation unit layer with weights determined by

the classes to which the training vectors belong, in this

case, only two classes, malignant and benign MCCs.

4. The decision unit layer is the last layer that determines

which class is the winner. The criterion is the maximum

output of the summation unit layer.

4. Experiments

In this section, the 40-mammogram database provided by

the Department of Radiology at the University of Hospital

Nijmegen in Netherlands was used for experiments to

evaluate the proposed system. There are 21 cases with seven

cases being benign and 14 cases being malignant. One

hundred and two ROIs were selected from these 40

mammograms, among which 29 ROIs are benign and 73

ROIs are malignant. The size of each ROI, N £ N is set to

256 £ 256. From these selected 102 ROIs, 52 were

randomly chosen for training cases (15 are benign and 37

are malignant) and the remaining 50 (14 are benign and 36

are malignant) for test cases. These sets of training patterns

and test patterns were applied to the PNN in layer C2. The

parameter s 2 used in the PNN is set to 200.

Table 3 shows the classification results for the test cases

in number of patterns. The rejection (R) in Table 3

represents that the case is undetermined when applied to

the system and thus, no classification is made. This is

primarily due to small probabilities generated in both

classes, in which case, we would rather not make a decision.

The classification rates of the result in Table 3 are shown in

Table 4. Table 5 shows the classification rates when the

rejection cases are excluded from our calculation.

Fig. 8. Probabilistic neural network.

Table 3

Classification results using S-Cognitron are tabulated in benign cases and

malignant cases

Benign MCCs (14 cases) Malignant MCCs (36 cases)

B M R B M R

10 1 3 0 31 5

Total number: 50; B: benign; M: malignant; R: rejected.
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Let nmm and nbm be the numbers of malignant cases

classified correctly and benign cases classified incorrectly,

respectively. Similarly, nbb and nmb are the numbers of

benign cases classified correctly and malignant cases

classified incorrectly, respectively. Let nm, nb and n be the

number of malignant MCC cases, the number of benign MCC

cases, and the total number of MCC test cases. We can define

the true positive rate by TP ¼ nmm=nm; false positive rate by

FP ¼ nmb=nb; false negative rate by FN ¼ nbm=nm and true

negative rate by TN ¼ nbb=nb where nm ¼ 36 and nb ¼ 14 in

our experiments. Then the rejection rate for malignancy is

Rm ¼ ðn 2 nmm 2 nbmÞ=n and Rb ¼ ðn 2 nbb 2 nmbÞ=n is the

rejection rate for benignancy. In these rejection cases, we

assume that doctors will encourage biopsy. In Table 6, TP,

FP, TN, FN are also calculated where FN for the third feature

set can reach 0% which means that it does not miss any true

malignant MCC case in 36 malignant MCC test cases in spite

of one false alarm (FP) case. It should be noted that if there is

no rejection, that is, Rm ¼ 0 and Rb ¼ 0; then TP þ FN ¼ 1

and TN þ FP ¼ 1. Our experimental results also indicate

that the proposed alternative approach, PNN-based classifier

in S-Cognitron, produces encouraging performance in

clustered MCC classification. Furthermore, because of the

modular architecture, this network model can be easily

modified/improved by replacing any plane with a better one

in the future.

5. Conclusions

The classification of MCC’s is one of the most difficult

tasks encountered in computer aided diagnostic (CAD)

systems. According to medical literatures, geometric pat-

terns of clustered MCC’s generally provide valuable

information about differentiation between malignant and

benign MCCs. In this paper, a new shape recognition-based

neural network, S-Cognitron was designed and developed for

the purpose of capturing geometric information of MCCs.

The S-Cognitron built with universal feature planes is to

convert the geometric curvature features of each pixel into

numeric values by fusing first- and higher-order shape

geometric features extracted by cascaded network layers.

With this approach, geometric features can be extracted and

displayed in a 3D figure as the elevation in the third

dimension. The extracted features are fed into a classification

layer for benign and malignance likelihood determination.

Experimental results have shown that the proposed S-Cogni-

tron neural network can effectively extract the geometrical

features of MCCs. They also demonstrate the effectiveness of

the extracted features in classifying benignancy and

malignancy of MCCs.

Finally, it is worth mentioning that since the S-Cognitron

uses universal feature planes in its front layers, it possesses

the potential capability for the recognition of characters.

However, the current version of S-Cognitron is not feasible

for the recognition of characters, since its feature formation

layer is designed only particularly for MCCs.
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Appendix A

BI-RADS is recommended by the American College of

Radiology to standardise the language used in mammo-

graphy reports. Calcifications in BI-RADS are interpreted in

types and distribution. Types include coarse, large rod-like,

round, lucent-centred, eggshell, milk of calcium, dys-

trophic, punctate, amorphous, pleomorphic, and fine linear

calcifications; distributions are grouped, linear, segmental,

regional, and scattered. Obviously, it is impossible to

identify high level specific shape features for the type and

distribution characteristics. In our approach, SCNN is used

to construct these characteristics from integrating some low

level universal patterns. In order to represent characteristics

of types and distributions, eight features which contribute

the maximum classification ability in discriminating

benignancy and malignancy are selected by experiments.

To form the eight features, the following prior information

is required: the area cover of MCCs—AR, and the number of

blobs—NB. The AR is defined as the total area covered by

Table 6

TP, FP, TN, FN rates for Table 3

TP FP TN FN

86.1% 7.1% 71.4% 0.0%

Table 5

Classification rates with rejection ignored for Table 3

Classification rate (%)

Correct Incorrect

97.6 2.4

Table 4

Classification rates for Table 3

Classification rate (%)

Correct Incorrect Rejected

82.0 2.0 16.0

S.-K. Lee et al. / Neural Networks 16 (2003) 121–132 131



sets of 32 £ 32 windows which overlap with MCCs. Thus, it

can be regarded as a loosely defined MCC area size. These

two values can be easily obtained in the segmentation stage

of MCCs. Let Ni be the total number of pixels which form

shape feature dimension i in 3D figure layer within an ROI.

Then, the eight features selected to represent types and

distributions can be constructed from the outputs of 3D

figure layer as follows:

1. Average size per blob ð �ABÞ : There are several blobs in a

cluster of MCCs. A blob consists of MCC pixels which

connected together. The average size of blobs is defined

as �AB ¼ Ac=NB; where Ac is the number of pixels of

MCCs. This feature is used to represent the distributed

types like segmental, regional, and grouped.

2. Scattering density of blobs within an ROI ðSdÞ : Sd ¼

NB=AR: In this feature, it is useful to represent the

distributed type like scattered.

3. Density of MCCs (Md): Md ¼ N12=AR; where no. 12

represents the nonboundary pixels of MCCs and N12 can

be considered as the area of MCCs.

4. Irregularity of boundary of MCCs (I ): To evaluate

calcifications like dystrophic, amorphous, and pleo-

morphic calcifications, irregularity of MCCs is an

important clue to these features. Irregularity of MCCs

are represented by nos. 2, 3, and 4 dependent on the

curvature of shape. Therefore, it is defined by I ¼

N2 þ N3 þ N4:

5. Elongation of MCCs (E ): To evaluate calcifications like

large rod-like and fine linear calcifications, the

elongation of MCCs is an important clue to these

features. In our observation, elongation of MCCs is

associated with nos. 5–9. Therefore, elongation of

MCCs is defined as E ¼ N5 þ N6 þ N7 þ N8 þ N9:

6. Circularity of MCCs (Mc): To evaluate calcifications like

round, lucent-centred, and eggshell calcifications, circu-

larity of MCCs is an important clue to these features. In

our observation, circularity of MCCs is associated with

nos. 4, 5, 8, and 9. Therefore, circularity of MCCs is

defined as Mc ¼ N4 þ N5 þ N8 þ N9:

7. Compactness (CP): The boundary pixel of blobs is

represented in nos. 2–9 of the shape feature dimensional

number. Therefore, it is reasonable to define the

perimeter of blobs P ¼
P9

i¼2 Ni: Then, the compactness

is defined as CP ¼ P2=NB:

8. Defective degree (C ): The zigzag boundary of a round

MCC is also the measured score of classifications, called

defective degree, in the paper. Nos. 10 and 11 always

occur on the cave of the corner. They are used to measure

the defective degree of MCCs. The defective degree C ¼

N10 þ N11:
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