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Abstract

The chaotic neural network constructed with chaotic neuron shows the associative memory function, but its memory searching process

cannot be stabilized in a stored state because of the chaotic motion of the network. In this paper, a pinning control method focused on the

chaotic neural network is proposed. The computer simulation proves that the chaos in the chaotic neural network can be controlled with this

method and the states of the network can converge in one of its stored patterns if the control strength and the pinning density are chosen

suitable. It is found that in general the threshold of the control strength of a controlled network is smaller at higher pinned density and the

chaos of the chaotic neural network can be controlled more easily if the pinning control is added to the variant neurons between the initial

pattern and the target pattern.

q 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Recently the chaotic neural network constructed with

chaotic neurons has received much attention because of its

complex dynamics and its potential application in the

associative dynamics, optimization and information proces-

sing, etc. (Adachi & Aihara, 1997; Aihara, Takabe, &

Toyoda, 1990; Tokuda, Nagashima, & Aihara, 1997).

Besides, the electrophysiological experiments of animals

have proved that chaos dynamics exists in real neurons and

neural networks play an important role in neuron activity

(Degn, Holden, & Olsen, 1987; Freeman, 1987; Tsuda,

1991). It is believed that the investigation of the dynamics

characters of chaotic neural networks is helpful to an

understanding of the memory rules of the brain.

In Adachi and Aihara (1997), the non-periodic associat-

ive dynamics of the chaotic neural network was studied in

detail. The network can retrieve the stored patterns, but they

appear nonperiodically since the network is in chaos. So it is

difficult to distinguish the stored patterns from each other in

the chaotic neural network (Kobori, Ikoda, & Nakayama,

1996), which limits the applications of the associative

memory function of the network. If one wants to realize the

information processing in the associative dynamics system,

the chaotic orbit of the network should be controlled in a

certain expected way and the network should be stabilized

in a stored pattern. The problem of controlling the chaos of

the chaotic neural network therefore is put forward.

Since the initial work on chaotic control was made by

Ott, Grebogi, and Yorke (1990) (OGY), much progress has

been achieved in this field. Several control methods were

put forward, such as chaos synchronization (Pecora &

Carroll, 1990), OPF (Hunt, 1991) and delayed controlling

feedback (Pyragas, 1992). But all the above methods

only suited to the low dimension chaotic systems. For a

high dimension spatial-temporal chaotic system, Hu pro-

posed a control method, i.e. the chaotic pinning control

method, which has been used to successfully control the

chaos of a coupled map lattice systems in one dimension

(Hu & Qu, 1994).

The chaotic neural network shows the more complex

spatial-temporal chaotic dynamics compared to the

coupled map lattice system in which each lattice site of

coupled map lattice systems is only coupled to its nearest
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ones. Besides the neurons in the chaotic neural networks

are connected to each other in whole spatial, the delay

feedback of the networks is more complicated than the

coupled map lattice system. We applied Hu’s pinning

control method to the chaotic neural network and found

that the method was not succeeded in controlling the

chaos of the chaotic neural network. Several other

attempts have been made to control the chaos of the

network, but the target of the control are spatially uniform

or periodic states which are far from some states useful

for information processing (Adachi, 1995; Mizutani, Sato,

Uchiyama, & Sonehara, 1995). In this work, we propose a

pinning method focused on the chaotic neural network.

The feedback control in our pinning method is imposed

on the internal state of neurons while the feedback control

in Hu’s method is put to the output of the system. The

computer simulation proved that the chaos of the chaotic

neural network could be controlled by the pinning control

method and the output of the network could be stabilized

in a stored pattern. In Section 2, the chaotic neural

network used as a controlling object in the work is

described. Our pinning control method and its mathemat-

ical model are proposed in Section 3. In Section 4 are

given the computer simulation results and the discussion

about two control parameters, pinning distance and

strength of control. Conclusion and discussion are in

Section 5.

2. Chaotic neural network model

The chaotic neural network model used in the paper is

constructed with chaotic neurons by considering the spatio-

temporal summation of both external inputs and feedback

inputs from other chaotic neurons (Adachi & Aihara, 1997;

Aihara et al., 1990). Fig. 1 shows the structure of the

neural network. The dynamics of the ith chaotic neuron in

the chaotic neural network is described as follows:

xiðt þ 1Þ ¼f
XM
j¼1

vij

Xt

d¼0

kd
e Ajðt 2 dÞ þ

XN
j¼1

wij

Xt

d¼0

kd
f xjðt 2 dÞ

2
4

2a
Xt

d¼0

kd
r g{xiðt 2 dÞ} 2Qi

#
ð1Þ

where Aj is the ith external stimulation, f ð·Þ and gð·Þ are

the output function and the refractory function of the

neuron, respectively, a is the refractory scaling parameter,

Qi is the threshold of the ith neuron, vij and wij are

synaptic weights to the ith constituent neuron from the jth

external input and from the jth constituent neuron,

respectively. A neuron does not receive a feedback from

itself, i.e. wii ¼ 0: ke; kf and kr are the decay parameters

for the external inputs, the feedback inputs, and the

refractoriness, respectively.

We can transform Eq. (1) into the following reduced and

simultaneous forms:

jiðt þ 1Þ ¼
XM
j¼1

vijAjðtÞ þ kejiðtÞ ð2Þ

hiðt þ 1Þ ¼
XN
j¼1

wijxjðtÞ þ kfhiðtÞ ð3Þ

ziðt þ 1Þ ¼ 2ag{xiðtÞ} þ krziðtÞ2 ui

ui ; Qið1 2 krÞ ð4Þ

xiðt þ 1Þ ¼ f {jiðt þ 1Þ þ hiðt þ 1Þ þ ziðt þ 1Þ} ð5Þ

where: jiðt þ 1Þ; hiðt þ 1Þ and ziðt þ 1Þ are internal state

terms for external inputs, feedback inputs from the

constituent neurons in network and refractoriness,

respectively.

The chaotic neural network is constructed with 100

chaotic neurons in this paper. As the external input term Aj

is taken as a temporally constant in the chaotic neural

network (Adachi & Aihara, 1997), jiðtÞ can be included in

the threshold. If we define a new threshold ai; Eq. (5) can be

simplified as the following form with only two internal

states hi and zi :

xiðt þ 1Þ ¼ f {hiðt þ 1Þ þ ziðt þ 1Þ} ð6Þ

hiðt þ 1Þ ¼ kfhiðtÞ þ
X100

j¼1

wijxjðtÞ ð7Þ

ziðt þ 1Þ ¼ krziðtÞ2 ag{xiðtÞ} þ ai ð8Þ

We take the output function of the neuron f ðxÞ as Sigmoid

function with the steepness parameter 1; i.e. f ðyÞ ¼ 1={1 þ

expð2y=1Þ}; refractoriness function as gðxÞ ¼ x: The feed-

back weights are defined according to the following

symmetric auto-associative matrix of n binary patterns:

wij ¼
1

n

Xn

p¼1

ð2x
p
i 2 1Þð2x

p
j 2 1Þ ð9Þ

Fig. 1. Chaotic neural network model.
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where x
p
i is the ith component of the pth binary pattern. In

this way, the binary patterns can be stored as basal memory

patterns. We use a picture composed of 10 £ 10 matrix to

show the stored patterns of the neural network constructed

with 100 neurons. A neuron with its output xi equal to 1 is

represented by a block ‘B’ while a neuron with its output xi

equal to 0 is denoted by a dot ‘·’. Four stored patterns

employed in this paper are shown in Fig. 2. When the decay

parameters of the network are set to certain values, the

network generates nonperiodic sequential patterns including

the stored ones as its output sequence. The states of the

network are usually described by the Hamming distance

between the output pattern of the network and one of the

four stored patterns, which is defined by

Hp ¼
X100

i¼1

lxi 2 x
p
i l

for the pth stored pattern. When the network retrieves the

pth stored pattern or its reverse one exactly, the Hamming

distance will be 0 or 100.

3. Pinning control method focused on the chaotic

neural network

Each neuron in the chaotic neural network defined by

Eqs. (6)–(8) is coupled with others and evolve in nonlinear

way as time. If a part of the neurons in the network

are controlled, the controlling effect can be spread to the

entire neural network as time elapses because of its space

coupling and delay feedback. That is the main idea of the

pinning control. The dynamics of our chaotic neural

network is different from those of Hu’s coupled map lattice

system (Hu & Qu, 1994). First, any neuron is coupled to all

other neurons in the network while each site is only coupled

to its nearest ones in the coupled map lattice system, and

then the input of each neuron in our network is related to not

only its own history but also the history of other neurons

while only last outputs are feedback in Hu’s model. Our

simulation proved that the pinning control method used in

the coupled map lattice system was not suitable for our

network.

We propose a pinning control method focused on the

chaotic neural network. The chaotic neural network with

pinning control is described in the following way:

xiðt þ 1Þ ¼ f {hiðt þ 1Þ þ ziðt þ 1Þ} ð10Þ

hiðt þ 1Þ ¼ kfhiðtÞ þ
X100

j¼1

wij xjðtÞ þ
X100=I

l¼0

dðj2 Il2 1ÞKujðtÞ

( )

ð11Þ

ujðtÞ ¼ xjðtÞ2 ~xj ð12Þ

ziðt þ 1Þ ¼ krziðtÞ2ag{xiðtÞ}þ ai ð13Þ

where dð·Þ is a pulse function which is used to distinguish

the pinned neurons from the unpinned ones. The jth neuron

is pinned if j2 Il–1 ¼ 0: uj is controlling signal which is

constructed by comparing the last output and the expected

output ð~xjÞ for each pinned neuron. I is pinning distance, a

distance between two nearest pinned neurons, K is a control

strength.

The delay feedback is determined by the feedback input

of the internal state and the refractoriness in the chaotic

neural network. We therefore believe that the control aim

can be reached more easily by changing the internal state

than by adding control to its output. As shown in Fig. 3, the

feedback control in our pinning method is imposed on the

internal state of neurons while the feedback control in Hu’s

method is put to the output of the system (Hu & Qu, 1994).

The role of the feedback control on the network is carried

out through the output function of the neurons, which is

nonlinear in the chaotic neural network. Though we take a

linear feedback control signal in our control method, its

function is non-linear. In Hu’s pinning method, a non-linear

feedback control was considered.

4. Computer simulation

Our computer simulation is made according to Eqs.

(10)–(13). We take a ¼ 10:0; kr ¼ 0:95; kf ¼ 0:20 and ai ¼

2:0 (i ¼ 1,2,…,100) in our simulation. The network without

control signal will be in chaos under the above parameters

and the stored patterns in Fig. 2 are retrieved nonperiodi-

cally. The initial state of the network is given in Fig. 4. The

fourth stored pattern (shown in Fig. 2d) is chosen as our

expected output pattern, i.e. control target. The Hamming

distance between the initial state and the expected output

pattern is 8. Without the pinning control, its Hamming

distances between the output of the network and the

controlling target at different times are displayed in Fig. 5.

In order to determine whether the network is in chaos, we

Fig. 2. Four stored patterns.
Fig. 3. Sketch map of control methods. (a) Our control method, (b) Hu’s

control method.

NN 1731—29/3/2003—12:48—SHYLAJA—65591— MODEL 5

G. He et al. / Neural Networks xx (2003) 1–6 3

ARTICLE IN PRESS

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336



calculated the Lyapunov spectrum (Shimada & Nagashima,

1979), the largest Lyapunov exponent lm ¼ 0:000280:

Obviously, the system is in chaos. The detail duscussion

about chaotic dynamics of the neural network can be found

in Adachi and Aihara (1997).

When the pinning control is added to the network, its

Hamming distances at different times are shown in Fig. 6. In

the simulation, we take the pinning distance I ¼ 2 and the

control strength K ¼ 20:0: The control signals are added to

the system from 12,000 simulation step to 16,000 simulation

step. In Fig. 6, one can find that when the pinning control is

added to the system the network is stabilized to the reverse

of the control target whose Hamming distance from the

target is 100. The output of the stabilized network is given in

Fig. 7. The chaos control of the network is realized, but the

stable output of the controlled network is the reverse of the

stored patterns. Our control aim is to let the network be

stabilized in one of the stored patterns. We performed a

simulation by taking the reverse of the fourth stored pattern

as the control target. Fortunately, it was found that the

outputs of the controlled network converge in the fourth

stored pattern. Carrying out further simulations by taking

different initial states and control targets, we found that the

output of the controlled network always converge in the

reverse of the target with the pinning control method given

in Eqs. (10)–(13). If the state of every neuron of a target

pattern, ~xi; is replaced by 1 2 ~xi; the target pattern will

become its reverse. Obviously, the network will be

stabilized in the target patterns if one replaces the

controlling signals of Eq. 12 by the following equation:

ujðtÞ ¼ xjðtÞ2 ð1 2 ~xjÞ ð14Þ

In following simulation, we will replace Eq. (12) by Eq. (14)

and the network will be stabilized in our expect patterns.

From the simulation of I ¼ 2; we found that the chaos of

the network is controlled only when K is taken to be larger

than a threshold. To find out the correlation among the

pinning distance, the control strength and the control effect,

we make simulation under the different pinning distances

and control strengths. For a fixed pinning distance, the

control target can be reached only when the control strength

is larger than a threshold or is called minimal control

strength. If the control strength is smaller than the threshold,

the system is still in chaos. The thresholds of the control

strength for the different pinning distances are listed in case

A of Table 1. The data are obtained by using the state given

in Fig. 4 as the initial state and the fourth stored pattern as

the target pattern. It is observed from Table 1 that threshold

of the control strength is non-linear to the pinning distance.

The threshold of the control strength is the smallest when

the pinning distance is 3. By comparison with the expected

output, the variations in the initial pattern exist in neurons 6,

Fig. 5. The Hamming distance between the orbit and the expected output pattern without the pinning control.

Fig. 4. Initial state.
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22, 23, 46, 52, 62, 72, 89. When the pinning distance I is 3,

there are three variant neurons pinned, which are neurons

22, 46 and 52, according to j ¼ nI þ 1: For I ¼ 2; there are

two variant neurons pinned while there is only one variant

neuron pinned for I ¼ 4 and I ¼ 5; and no variant neuron

pinned for I ¼ 6: For I ¼ 3; more variant neurons are

pinned than any other case. Besides, we found that the

threshold of the control strength is independent on when the

pinning is added. Based on the above results, we guess that

the threshold of the control strength may be related to the

pinned sites. The chaos of the chaotic neural network can be

controlled more easily if more variant neurons are pinned.

To demonstrate our conjecture, we calculated the

thresholds of the control strength of the controlled

networks with the same pinned density and the different

pinned sites. Beside the neurons pinned according to j ¼

nI þ 1; we added the pinning control to other three

variant neurons for case B and other three un-variant

neurons for case C. The way of pinning these neurons is

the same as described in Eqs. (11) and (14). Their

thresholds of the control strength are also listed in

Table 1. The initial state and target pattern in both case

B and C are the same as in case A. The pinned density

is same in both case B and case C, but the pinned sites

are different in both cases. In case B, more variant

neurons are pinned. As we expected, the threshold of the

control strength of case B is smaller than that of case C

at the same pinning density except I ¼ 3 in which the

threshold values for both cases are the same.

The results of Table 1 are obtained by taking the state

shown in Fig. 4 as the initial state. In Table 2, we listed

the thresholds of the control strength in different initial

states. In our simulation, the nearest stored pattern of an

initial state is chosen as the control target. From Tables 1

and 2, one can find that in general the threshold value of

the control strength is dependent on both the pinning

density and the pinning site. The threshold of the control

strength of a controlled network is smaller at

higher pinned density. At the same pinned density,

the control aim of the chaotic neural network can be

Fig. 6. The Hamming distance between the orbit and the expected output pattern under the pinning control added from 12,000 step to 16,000 step.

Fig. 7. Output of the stabilized network.

Table 1

The correlation between pinning distance and control strength

Pinning distance I 2 3 4 5 6

Minimal control strength Kmin A 20 18 48 80 59

B 16 17 30 39 35

C 19 17 40 61 59

Note: case A: the control is described by Eqs. (11) and (14); case B: besides

the neurons pinned as in case A, other three variant neurons are pinned.

Case C: besides the neurons pinned as in case A, other three un-variant

neurons are pinned.
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reached more easily if more variant neurons are pinned.

Besides, one can observe that the chaos of the

network cannot be controlled if the pinning density is

too small.

5. Conclusion and discussion

In this paper, a pinning control method focused on the

chaos control of a chaotic neural network has been

proposed. Our computer simulation proves that the chaos

in the chaotic neural network can be controlled with our

pinning control method. The chaotic neural network can

be stabilized in a stored pattern if the control strength is

larger than its threshold and the pinning density is not too

small. Our study on the correlation among the threshold

value of the control strength, the pinning density and the

pinning site demonstrates that the threshold of the control

strength is dependent on both the pinning density and the

pinning site. In general, the threshold of the control

strength of a controlled network is smaller at higher

pinning density and the chaos control of the chaotic neural

network can be reached more easily if more variant

neurons are pinned. But some exceptions exist in Tables 1

and 2, which indicates a more complex correlation among

the threshold of the control strength, the pinning density

and the pinning site.

This work is the first step of our study on the chaos

control of the chaotic neural network. Since the stored

pattern as the control target is chosen previously, the control

method cannot be applied to information processing

directly. Our next work will be focused on finding the

method to search the control targets automatically and

realizing effective information processing using the chaotic

neural network.
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Table 2

The correlation between pinning distance and control strength under different initial states and pinning site

Pinning distance I 2 3 4 5 6

Minimal control strength Kmin Initial state A 12 34 39 46 117

B 11 30 27 46 78

C 12 34 30 33 117

Initial state A 14 22 78 78 NC

B 14 24 47 59 NC

C 14 24 39 78 NC

Initial state A 14 34 30 77 NC

B 14 34 27 58 NC

C 14 34 30 77 NC

Note: case A, case B and case C are as the same as described in Table 1. NC means that the network cannot be controlled.
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