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Abstract

Networks of coupled neural systems represent an important class of models in com-
putational neuroscience. In some applications it is required that equilibrium points
in these networks remain stable under parameter variations. Here we present a gen-
eral methodology to yield explicit constraints on the coupling strengths to ensure
the stability of the equilibrium point. Two models of coupled excitatory-inhibitory
oscillators are used to illustrate the approach.
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1 Introduction

We consider neural networks of the form

ẋi =F(xi) +
N
∑

j=1

GijH(xj), (1)

where xi is the M-dimensional state vector of the ith node. Each node can
either be a single neuron (M = 1) as in Hopfield types of models [13,27], or a
group of neurons (M > 1), representing e.g. the cortical column of interacting
excitatory and inhibitory neurons [20,26,29]. The dynamics of the individual
node is given by ẋi = F(xi) and H : RM → RM is the coupling function. The
coupling matrix is G = [Gij] where Gij gives the coupling strength from node
j to node i.

Without loss of generality assume that the origin is a stable equilibrium point
for the individual node and remains an equilibrium point for the network. The
stability of the origin under coupling strength variations is the main concern
of the present work. This problem is mainly motivated by some computational
considerations. For example, a class of models assert that the background state
of the network, represented by the equilibrium point at the origin, should
be quiescent in the absence of input [2,3,4,6,17,18,19,28,31]. External inputs,
treated as a slowly increasing and then decreasing function of time, can lead
the network through a Hopf bifurcation to an oscillatory state and then return
it to its background or equilibrium state once the input has been removed.
This natural reset mechanism, requiring the origin to be a stable equilibrium
point, makes the network ready for the next computational cycle. To endow
the oscillatory network the ability to differentiate patterns of inputs, statistical
learning takes place wherein the coupling strengths between the network units
change according to certain learning rules. Without careful consideration the
learning related parameter changes can potentially alter the stability of the
background state, thereby defeating the computational picture established
earlier. It is thus desirable to have constraints on the individual coupling
strengths that can be incorporated into the learning rules so that the stability
of the equilibrium point is ensured for all time.

Previous work on stability constraints have mainly concentrated on recurrent
networks of the Hopfield type [1,5,7,8,11,13,14,16,22,23,24,25,27,30] with M =
1. In this paper we consider a general approach that leads to stability bounds
on the individual coupling strengths in recurrent networks with more complex
local dynamics. Two explicit models of coupled neural populations will be
used to illustrate our approach.
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2 Theory

Our approach consists of three steps.

Step 1. For simplicity, let F(0) = 0,H(0) = 0, and the real parts of the
eigenvalues of the Jacobian DF(0) be negative so that the origin is stable for
the individual node.

Linearizing Eq. (1) around the origin gives (in matrix form)

Ṡ=DF · S+DH · S ·GT , (2)

where S = (x1,x2, · · · ,xN). According to the Jordan canonical form theory,
the stability of Eq. (2) is determined by the eigenvalue λ of G. Let the cor-
responding eigenvector from GT be e and let u = Se. The equation for u

reads

u̇ = [DF+ λ ·DH]u. (3)

The origin of Eq. (1) is stable if this equation is stable for all the eigenvalues
of G. This is true even when the coupling matrix is defective [12].

Step 2. To proceed further we treat λ in Eq. (3) as a complex control parame-
ter. Denote by Ω the region in the Re(λ)- Im(λ) plane where all the eigenvalues
of (DF + λ · DH) have negative real parts. Clearly, the equilibrium point is
stable if all eigenvalues of G lie within Ω. We henceforth refer to Ω as the sta-
bility zone. A schematic of Ω is shown in Figure 1. We note that Ω is usually
obtained numerically. For some situations analytical results are possible (see
below).

Step 3. Thus far the stability criteria are stated in terms of the eigenvalue
of G. The goal in this work is to directly constraint the coupling strengths
themselves. This is done by making use of the Gershgörin disc theorem [15].

Given an n × n matrix A = [aij ], the Gershgörin theorem states that all
eigenvalues of A are located in the union of n discs (called the Gershgörin
discs) where each disc is given by

{z ∈ C : |z − aii| ≤
∑

j 6=i

|aji|}, i = 1, 2, . . . n.

Alternative forms of the n discs are [15]:
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{z ∈ C : |z − aii| ≤
∑

j 6=i

|aij|}, i = 1, 2, . . . n.

Combining the two, we have the form used in the remainder of this paper:

{z ∈ C : |z − aii| ≤
1

2

∑

j 6=i

(|aji|+ |aij |)}, i = 1, 2, . . . n. (4)

This form is more intuitive since it involves incoming and outgoing coupling
strengths for a given node.

The stability conditions for the equilibrium point can now be stated as follows:

(1) The center Gii (i = 1, 2, . . . , N) of every Gershgörin disc of G lies inside
the stability zone Ω;

(2) The radius of every Gershgörin disc is shorter than the distance from the
center of the disc to the boundary of Ω.

In other words, letting δ(x) denote the distance from point x on the real axis
to the boundary of Ω, stability of the equilibrium point is ensured if

(Gii, 0) ∈ Ω and
1

2

∑

j 6=i

(|Gji|+ |Gij|) < δ(Gii) (5)

for i = 1, 2, . . . , N .

3 Examples

3.1 The case of M = 1

When one dimensional systems are coupled together, the matricesDF andDH

are reduced to real numbers. Representing them by µ and ν respectively, the
stability zone is easily obtained as Re(λ) < −µ/ν. The distance from the center
of the ith Gershgörin disc to the boundary of Ω is given by δ(Gii) = −µ/ν−Gii.
Using Eq. (5) we obtain the stability conditions as

1

2

∑

j 6=i

(|Gji|+ |Gij|) +Gii < −µ/ν. (6)

This result was obtained before in [13,27].
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3.2 A coupled oscillator model with M = 2

The general topology for the model is shown in Figure 2. The basic unit in the
model is a neural population consisting of either excitatory or inhibitory cells
[2,17,21,29]. The functional unit in the network is a cortical column consisting
of mutually coupled excitatory and inhibitory populations. The columns are
then coupled through mutually excitatory interactions to form the network.

A single column is described by two first order differential equations

dx

dt
+ ax=−keiQ(y,Qm) + I,

dy

dt
+ by= kieQ(x,Qm).

(7)

Here x, y represent the local field potentials of the excitatory and inhibitory
populations, respectively, and I is the input (I = 0 in the subsequent analy-
sis). The constants a, b > 0 are the damping constants. The parameter kie > 0
gives the coupling gain from the excitatory (x) to the inhibitory (y) population
whereas kei > 0 represents the strength of the reciprocal coupling. The non-
linear neuronal interaction is realized through the sigmoid function Q(·, Qm)
where Qm is a parameter controlling the slope of the function. Here we only
need to specify that Q(0, Qm) = 0 and Q′(0, Qm) = 1.

The N columns are coupled together in the following fashion:

dxn

dt
+ axn =−keiQ(yn, Qm) +

1

N

N
∑

p=1

cnpQ(xp, Qm) + In,

dyn
dt

+ byn = kieQ(xn, Qm),

(8)

where the columns are indexed by n = 1, 2, . . . , N and the coupling strength
cnp is the gain from the excitatory population of column p to the excitatory
population of column n.

Variables used in Eq. (3) can be explicitly evaluated for the present model as

DF =
(

−a −kei
kie −b

)

, [G]np =
cnp
N

, DH =
(

1 0
0 0

)

.

where we have used the fact Q′(0, Qm) = 1.
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To discover the stability zone we study the eigenvalue α of the matrix (DF+
λ · DH) as a function of λ. The characteristic polynomial of this matrix is
given by

f(α) = α2 + α(a+ b− λ) + (keikie + ab− bλ).

For an arbitrary coupling matrix G, its eigenvalues λ could be complex:

λ = λR + iλI .

Then the characteristic polynomial becomes

f(α) = α2 + α(a+ b− λR − iλI) + (keikie + ab− bλR − ibλI).

The range of parameter values which gives Re(α) < 0 can be determined by
applying the generalized Routh-Hurwitz criterion (see Appendix I). Following
this procedure, consider −if(iα):

− if(iα) = iα2 + α(a+ b− λR)− iαλI − i(keikie + ab− bλR)− bλI .

This has to be put into the following standard form:

− if(iα) = b0α
2 + b1α + b2 + i[a0α

2 + a1α + a2].

Comparing the two equations we get

a0=1, a1 = −λI , a2 = −(keikie + ab− bλR),

b0=0, b1 = (a+ b− λR), b2 = −bλI .

Applying the generalized Routh-Hurwitz criterion, we have Re(α) < 0 if the
following two conditions are met:

∇2 =
1 −λI

0 (a+ b− λR)
> 0

and
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∇4 =

1 −λI −(keikie + ab− bλR) 0

0 (a+ b− λR) −bλI 0

0 1 −λI −(keikie + ab− bλR)

0 0 (a+ b− λR) −bλI

> 0.

Evaluating the above determinants and simplifying, we get

(a+ b− λR)> 0,

(keikie + ab− bλR)(a+ b− λR)
2 − bλ2

I(λR − a)> 0.
(9)

Solving the inequalities, the stability zone Ω (see Figure 3) is found to be the
region to the left of the curve

λ2

I =
(keikie + ab− bλR)(a+ b− λR)

2

b(λR − a)
. (10)

The pointed tip of the curve in Figure 3 along the real axis is given by (min(a+
b, a + kiekei/b), 0) and it corresponds to the symmetric coupling case.

The distance δ(Gii) from the center of the ith Gershgörin disc to the boundary
is (see Appendix II for more details)

δ(Gii) =

√

(a−Gii)2 − b2 − 2kiekei + 2
√

kiekei[2b(a+ b−Gii) + kiekei].

So the stability conditions [cf. Eq.(5)] are given by

Gii<min(a + b, a+ kiekei/b),
1

2

∑

j 6=i

( |Gji|+ |Gij|) <

√

(a−Gii)2 − b2 − 2kiekei + 2
√

kiekei[2b(a + b−Gii) + kiekei].

We note that, since the boundary curve of the stability zone asymptotically
approaches the straight line λR = a, we can use this line to define a new
stability zone to obtain some simpler stability constraints. The distance to
the new boundary is easily found to be

δi = |a−Gii|.
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In this case, the stability condition simplifies to

1

2

∑

j 6=i

(|Gji|+ |Gij|) +Gii < a, i = 1, 2, . . . , N. (11)

This simplified condition is a good approximation if min(a+ b, a+ kiekei/b) is
sufficiently close to a. We further note that Eq. (11) is satisfied if

|Gij| < a/N, i, j = 1, 2, . . . , N.

That is, the equilibrium point is stable if

|cnp| < a, ∀ n, p = 1, 2, . . . , N.

This simple stability bound on the individual coupling strengths can be very
useful in practice.

3.3 A coupled oscillator model with M = 4

The previous model represents a neural population by a first order differential
equation. This has the property that its impulse response has a instantaneous
rise phase. Here we consider another model where the neural population is a
second order differential equation possessing a finite rise and decay impulse
response. Each individual column is described by a system of two second order
differential equations [9]:

d2x

dt2
+ (a+ b)

dx

dt
+ abx=−keiQ(y,Qm) + I,

d2y

dt2
+ (a + b)

dy

dt
+ aby= kieQ(x,Qm).

(12)

The parameters have the same interpretation as before. The N column equa-
tions are given by:
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d2xn

dt2
+ (a+ b)

dxn

dt
+ abxn =−keiQ(yn, Qm) +

1

N

N
∑

p=1

cnpQ(xp, Qm) + In, (13)

d2yn
dt2

+ (a + b)
dyn
dt

+ abyn = kieQ(xn, Qm),

where the same network topology in Figure 2 applies.

We first consider the stability of the single column equations given in Eq.
(12). When the input I is zero, the origin x = 0, y = 0 is an equilibrium
point. In order to study its stability properties, we convert the above second
order differential equations to the following system of first order differential
equations:

dz1
dt

= z2,

dz2
dt

=−(a+ b)z2 − abz1 − keiQ(z3, Qm),

dz3
dt

= z4,

dz4
dt

=−(a+ b)z4 − abz3 + kieQ(z1, Qm),

where

z1 = x, z2 =
dx

dt
, z3 = y, z4 =

dy

dt
.

The Jacobian matrix DF is obtained as

DF =











0 1 0 0
−ab −(a + b) −kei 0
0 0 0 1
kie 0 −ab −(a + b)











. (14)

Here we have used the fact that Q′(0, Qm) = 1. For stability of the origin, the
real parts of all eigenvalues of DF should be less than zero. The eigenvalues
are determined from the characteristic equation:

λ4 + 2(a+ b)λ3 + (a2 + 4ab+ b2)λ2 + 2(a2b+ ab2)λ+ kiekei + a2b2 = 0.

Applying the Lienard-Chipart criterion (see Appendix I), the real parts of all
eigenvalues are negative if the following inequalities be satisfied:
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a2b2 + kiekei > 0,

a2b+ ab2 > 0,

a + b > 0,

−kiekei + ab(a + b)2 > 0.

Since a, b, kei, kie > 0, the first three inequalities are automatically satisfied.
After simplification, the last inequality can be written as:

kiekei < ab(a + b)2. (15)

To summarize, the origin is stable for the single column equations if the above
condition is satisfied. Henceforth, we will assume that this is true.

Next, we consider the stability of a network of coupled columns given in Eq.
(13). Here

[G]np =
cnp
N

,

and

DH =











0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0











As before, we examine the eigenvalue α of the matrix DF+λ·DH as a function
of λ. The characteristic polynomial of this matrix is given by

f(α)=α4 + 2(a+ b)α3 + [(a+ b)2 + 2ab− λ]α2

+[2ab(a + b)− λ(a + b)]α + [a2b2 − abλ + kiekei].

For complex λ, we are not able to obtain an analytical form for the stability
zone Ω, since the characteristic equation results in a 8th order polynomial
when applying the generalized Routh-Hurwitz criterion. However, numerical
results are always possible. Figure 4 shows the stability zone Ω when a =
0.22, b = 0.72, kie = 0.1, kei = 0.4. After numerically finding the distance
δ(Gii) from the center of the ith Gershgörin disc to the boundary curve, Eq.
(5) can again be used to give the stability criteria.

If the coupling is symmetric, which implies that λ is real, the stability bound-
ary is just the rightmost tip of the curve along the real axis in Figure 4. Then
the distance δ is given by the absolute difference between the coordinates
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of the tip point and the center of the ith Gershgörin disc. This tip can be
determined as follows.

Again applying the Lienard-Chipart criterion (see Appendix I), the real parts
of all eigenvalues are negative if the following inequalities are satisfied:

a2b2 − abλ+ kiekei> 0,

2ab(a + b)− λ(a+ b)> 0,

(a+ b)> 0,

λ2 − 2(a+ b)2λ+ 4(a3b+ 2a2b2 + ab3 − kiekei)> 0.

(16)

Since a, b are positive, the third inequality is automatically satisfied. After
simplification, the first two inequalities become:

λ<
kiekei + a2b2

ab
,

λ< 2ab.

The last inequality is of the form

a1λ
2 − a2λ+ a3 > 0,

where

a1 = 1, a2 = 2(a+ b)2, a3 = 4[ab(a + b)2 − kiekei].

Note that a1, a2 are obviously positive. It turns out a3 is also positive because
of the local stability condition derived in Eq. (15). The quadratic function
a1λ

2 − a2λ + a3 with a1, a2, a3 positive has a unique global minimum at
λ = a2/2a1. Thus the minimum occurs at a positive value of λ. It is also seen
that

a2
2
− 4a1a3 = 4

[

(a + b)4 − 4[ab(a + b)2 − kiekei]
]

.

This can be simplified as

a2
2
− 4a1a3 = 4

[

(a2 − b2)2 + 4kiekei
]

,

which is positive since kiekei is positive. Thus both the zeros of the quadratic
function (we will denote them η1 and η2 with η1 < η2) are real. Further, since
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a3 > 0 and the global minimum occurs at a positive value, η2 > η1 > 0.
Consequently, the last inequality is satisfied when λ < η1 or λ > η2 where

η1,2 = (a+ b)2 ±
√

(a2 − b2)2 + 4kiekei.

Note that η1 is explicitly seen to be positive by applying Eq. (15). Further,
η2 > (a + b)2 > 2ab. Thus the inequality λ > η2 > 2ab is not possible given
the stability condition λ < 2ab derived earlier. Therefore the last inequality
in Eq. (16) reduces to λ < η1.

Summarizing, we get the following set of stability conditions:

λ<
kiekei + a2b2

ab
,

λ< 2ab,

λ<η1.

Let κ = min{
kiekei + a2b2

ab
, 2ab, η1}, then all these inequalities will be simul-

taneously satisfied if

λ < κ. (17)

Thus the rightmost tip of the boundary curve along the real axis is (κ, 0).
Therefore the distance function δ(Gii) is given by

δ(Gii) = |κ−Gii|, i = 1, 2, . . . , N. (18)

Applying Eq. (5), we obtain the following stability condition for the present
model with symmetric couplings:

1

2

∑

j 6=i

(|Gji|+ |Gij|) +Gii ≤ κ, i = 1, 2, . . . , N. (19)

As we discussed before, this condition is satisfied if the individual coupling
strengths obey the following stability constraints:

|cnp| < κ, for cnp = cpn, n, p = 1, 2, . . . , N. (20)
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4 Conclusions

We have presented a general method for studying the stability of the equi-
librium state in neural network models. When the single-neuron coupled net-
works, such as Hopfield type of models, are studied, the stability result from
our general approach coincides with the known result found in the literature.
As a harder application, two typical neural population models where the in-
dividual nodes are higher dimensional were considered. The stability of the
first model, a coupled network of two dimensional systems, was solved com-
pletely. For the second model, a coupled network of four dimensional systems,
stability criteria for symmetric coupling was given analytically. For the non
symmetric case, our method was used to obtain numerical criteria. Through
the above examples we have demonstrated that our general method is appli-
cable to arbitrary neural networks where the individual nodes can themselves
be high dimensional. When the dimension of the individual node is not too
high, analytical results are possible.

¿From the stability criteria, we also derived simple bounds on the coupling
strengths which ensure stability. These bounds put a limit on the magnitude
of change that the coupling strengths can undergo in the process of statistical
learning.
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Appendix I

In this Appendix, we state the Lienard-Chipart and generalized Routh-Hurwitz
criteria. The statements are taken directly from Gantmacher [10] and are given
here for the sake of completeness.

A. Lienard-Chipart Criterion

Consider a real polynomial

f(z) = a0z
n + a1z

n−1 + · · ·+ an,

with a0 > 0. Necessary and sufficient conditions for all the zeros of the poly-
nomial to have negative real parts can be given in any one of the following
forms [10]:

(1) an > 0, an−2 > 0, . . .; ∆1 > 0, ∆3 > 0, . . .,
(2) an > 0, an−2 > 0, . . .; ∆2 > 0, ∆4 > 0, . . .,
(3) an > 0, an−1 > 0, an−3 > 0, . . .; ∆1 > 0, ∆3 > 0, . . .,
(4) an > 0, an−1 > 0, an−3 > 0, . . .; ∆2 > 0, ∆4 > 0, . . ..

Here ∆p is the Hurwitz determinant of order p given by the formula

∆p =

a1 a3 a5 . . .

a0 a2 a4 . . .

0 a1 a3 . . .

0 a0 a2 a4

·

·

·

ap

, p = 1, 2, . . . , n,

where ak = 0 for k > n. In the literature, the equivalent Routh-Hurwitz
criterion is usually used. But the Lienard-Chipart is better since the number
of determinants that have to be evaluated is half the number that have to
be evaluated for the Routh-Hurwitz criterion. This leads to a simpler set of
inequalities that need to be evaluated. In the main text, we use the third form
of the Lienard-Chipart criterion given above.
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B. Generalized Routh-Hurwitz Criterion

Consider a polynomial f(z) with complex coefficients. Suppose that

f(iz) = b0z
n + b1z

n−1 + · · · bn + i(a0z
n + a1z

n−1 + · · ·+ an),

where a0, a1, . . ., an, b0, b1, . . ., bn are real numbers. If the degree of f(z) is
n, then b0 + ia0 6= 0. Without loss of generality, we may assume that a0 6= 0.
Otherwise, we consider the polynomial g(z) = −if(z) and repeat the analysis
for this polynomial. Both f(z) and g(z) have the same set of zeros and so no
information is lost. This is the case considered in the main text.

If ∇2n 6= 0, then all the zeros of f(z) have negative real parts if

∇2 > 0, ∇4 > 0, . . . , ∇2n > 0,

where

∇2p =

a0 a1 . . . a2p−1

b0 b1 . . . b2p−1

0 a0 . . . a2p−2

0 b0 . . . b2p−2

. . . . . . . . . . . .

, p = 1, 2, . . . , n,

where ak = bk = 0 for k > n. Note that the condition ∇2n 6= 0 would be
satisfied for a generic set of parameter values. This is especially true in our
case where ak, bk are functions of system parameters.

Appendix II

The distance γ from the center (Gii, 0) of the ith Gershgörin disc to any point
on the boundary of the stability zone is given by

γ2 = (λR −Gii)
2 + λ2

I

Substituting λI from Eq. (10) and differentiating with respect to λI , we have
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dγ2

dλR

=

2(λR −Gii)−
(a + b− λR)

2

(λR − a)
+

[(λR − a)2 − b2](ab+ kiekei − bλR)

b(λR − a)2
.

Setting
dγ2

dλR

= 0, we get two solutions:

λR = a± b

√

kiekei
2b(a + b−Gii + kiekei)

.

Since the boundary of Ω lies to the right of the point (a,0), we can discard
the smaller solution. Substituting the remaining solution in the equation for
γ2 and taking the square root, we get the shortest distance as:

δi = γmin =
√

(a−Gii)2 − b2 − 2kiekei + 2
√

kiekei[2b(a+ b−Gii) + kiekei],

i = 1, 2, . . . , N.
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Figure Caption

Figure 1: Schematic of the stability zone.
Figure 2: Schematic of the network configuration.
Figure 3: Stability zone for model Eq.(8)
Figure 4: Stability zone for model Eq.(13)
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