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Abstract

We investigated the properties of mixed states in a sparsely encoded associa-

tive memory model with a structural learning method. When mixed states

are made of s memory patterns, s types of mixed states, which become equi-

librium states of the model, can be generated. To investigate the properties of

s types of the mixed states, we analyzed them using the statistical mechanical

method. We found that the storage capacity of the memory pattern and the

storage capacity of only a particular mixed state diverge at the sparse limit.

We also found that the threshold value needed to recall the memory pattern

is nearly equal to the threshold value needed to recall the particular mixed

state. This means that the memory pattern and the particular mixed state

can be made to easily coexist at the sparse limit. The properties of the model

obtained by the analysis are also useful for constructing a transform-invariant

recognition model.

I. INTRODUCTION

When an associative memory model is made to store memory patterns as a result of
correlation learning, not only the memory patterns but also states generated by mixing
of arbitrary memory patterns automatically become the equilibrium state of the model.
These states are called the mixed states, and they are not simply a side effect unnecessary
for information processing. For example, Amari discussed “concept formation” using the
stability of the mixed states [1]. The correlated attractor [2] [3], which is a model of the
Miyashita attractor [?], is considered to be a mixed state in a broad sense.

The sparse coding scheme is thought to be used in the brain according to some physiolog-
ical findings [4] and theoretical viewpoints [5] [6] [7] [8] [9]. Thus, it is necessary to analyze
the properties of mixed states in the sparsely encoded associative memory model. Kimoto
and Okada analyzed the mixed states in a sparsely encoded associative memory model [10].
They found that when the s memory patterns are mixed, s types of the mixed states can
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be generated by them and all mixed states can become equilibrium states by adjusting the
threshold value of the model. Moreover, among s types of the mixed states, the performance
of OR mixed state generated by OR operation through each element of memory patterns is
the highest at the sparse limit for two reasons. (1) At the sparse limit of firing rate f → 0,
the storage capacity of the OR mixed state diverges as 1/|f log f |, and the storage capacities
of the other mixed states become 0. (2) At the sparse limit of firing rate f → 0, the thresh-
old value needed to recall the memory pattern approximately corresponds to the threshold
value needed to recall the OR mixed state, and is greatly different from the threshold values
needed to recall the other mixed states. Therefore, the memory pattern and the OR mixed
state becomes the equilibrium state without any readjustment to the threshold value.

Parga and Rolls proposed a transform-invariant recognition model based on an associa-
tive memory model and analyzed the properties of the model using the statistical mechanics
[11]. Their proposed model uses a modified Hebbian learning method that includes cross-
correlation terms between various views (memory patterns) of the same object. When the
strength of the cross-correlation terms is small, the equilibrium state of the model becomes
the view itself. When the strength exceeds a certain threshold, the equilibrium state of the
model becomes the mixed state, which is generated by all views of the same object, inde-
pendent of the particular view that was presented as a stimulus. Parga and Rolls showed
that, in the case of strong cross-correlation terms, the state of the model is drawn into a
peculiar mixed state of the object, and the model becomes able to recognize the object by
observing the drawn mixed state regardless of the coordinate transformation. Their model
is very interesting for two reasons. (1) Since all views of the same object are related by
cross-correlation terms and the views of different objects are not related, there is a structure
in the learning method. (2) The equilibrium state changes from the view to the mixed state
depending on the strength of the cross-correlation terms.

Elliffe et al. added a sparse coding scheme to the model proposed by Parga and Rolls and
examined the properties of the mixed state by computer simulation [12]. Since the sparse
coding scheme is thought to be used in the brain, their model is very interesting. Then
the model should be analyzed not only by computer simulation but also by the statistical
mechanics. Moreover, though their model uses sgn(·) as the neuron output function, its
storage capacity does not diverge at the sparse limit for this output function. The advantage
of using the sparse coding scheme is thus reduced by half, so the output function should be
modified.

We have therefore added a sparse cording scheme and a modified output function to
an associative memory model with a learning method including cross-correlation terms and
analyzed the properties of the model using the statistical mechanical method.

II. MODEL

We consider an associative memory model consisting of N neurons with output function
Θ(·). We use synchronous dynamics,

xt+1
i = Θ(

N
∑

j 6=i

Jijx
t
j + ht), i = 1, 2 · · · , N, (1)
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Θ(u) =
{

1 u ≥ 0
0 u < 0

, (2)

where xt
i represents the state of the ith neuron at discrete time t, and Jij denotes the synaptic

coupling from the jth neuron to the ith neuron. The threshold value ht is assumed to be
independent of the serial number i of a neuron. Its concrete value is described later. The
output function Θ(·) is assumed to be a step function, as shown in Eq. (2). Elliffe’s model
(1999) used the output function as follows,

sgn(u) =
{

+1 u ≥ 0
−1 u < 0

, (3)

In this function, the storage capacity does not grow at the sparse limit [9].
Memory pattern η

µν is a vector of N dimensions composed of the elements 0-1, µ stands
for the number of group to which the memory pattern belongs, and ν stands for the number
of memory patterns in that group. Each group includes smemory patterns. Each component
ηµνi of memory pattern η

µν is independently generated by the firing rate f ,

Prob[ηµνi = 1] = 1− Prob[ηµνi = 0] = f,

i = 1, 2, · · · , N. (4)

A memory pattern with a small firing rate is called a sparse pattern, and the use of a
sparse pattern for the memory pattern is called sparse coding. The synaptic coupling Jij is
determined by the following learning method,

Jij =
1

Nf(1− f)

αN
∑

µ=1

s
∑

ν=1

s
∑

ν′=1

(ηµνi − f)Bνν′(η
µν′

j − f), (5)

where αN is the number of stored groups, α is the loading rate, and Bνν′ is the strength of
the cross-correlation terms between the memory patterns (ν and ν ′) of the same group.

Bνν′ = δνν′ + b(1− δνν′). (6)

Next, we explain “mixed state”. We discuss the mixed state composed of the s memory
patterns that belong to the same group. We explain the generating method of a mixed state
as an example of the memory patterns η1,1,η1,2, · · · ,η1,s, belonging to the first group. The
ith element of the mixed state is set to ’1’ if the number of firing state ’1’ is k or more in
the ith elements η1,1i , η1,2i , · · · , η1,si of the s memory patterns η

1,1,η1,2, · · · ,η1,s. Otherwise,
it is set to ′0′. According to this definition, the s types of mixed states exist because
1 ≤ k ≤ s. Even if the discussion is limited only to the mixed states generated by the
memory patterns belonging to the first group, as mentioned above, the result does not
lose generality. Hereafter, we discuss the mixed states under this assumption, and describe
the mixed state as γ

(s,k). Therefore, among s types of mixed states, mixed state γ
(s,1) is

considered to be the OR mixed state, where its ith element is given by the OR operation
through the ith elements of the s memory patterns. The mixed state γ

(s,s) is considered
to be the AND mixed state, where its ith element is given by the AND operation. Mixed
state γ(s,[ s+1

2
]) is the majority-decision mixed state that regards the element value with more

numbers of 0 or 1 for the ith elements of s memory patterns. [·] stands for the Gauss’
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symbol. These mixed states can be made to automatically become the equilibrium states by
choosing an appropriate threshold value, even if they are under the un-learning condition.

Threshold value h in Eq. (1) is determined as follows. The threshold value is calculated
using the firing rate of the recalled pattern as described below. The threshold value obtained
by this method corresponds approximately with the optimum threshold value by which the
storage capacity is maximized [9]. Since the firing rate of the equilibrium state is f when
the memory pattern is recalled, threshold value h is determined by solving the equation,

f =
1

N

N
∑

i=1

Θ





N
∑

j 6=i

Jijx
t
j + ht



 . (7)

When recalling mixed state γ(s,k), f in Eq. (7) is replaced with the firing rate f (s,k) of mixed
state γ

(s,k),

f (s,k) = E[γ
(s,k)
i ] =

s
∑

v=k

sCvf
v(1− f)s−v, (8)

to determine the threshold value. Where, C is the number of combinations. The overlap
between the state x and the memory pattern η

µν is defined as

mµν =
1

Nf(1− f)

N
∑

i=1

(ηµνi − f)xi. (9)

If the state x is completely equal to η
µν , then mµ = 1. The overlap between the state x

and the mixed state γ
(s,k) is defined in a manner similar to Eq. (9),

M (s,k) =
1

Nf (s,k)(1− f (s,k))

N
∑

i=1

(γ
(s,k)
i − f (s,k))xi. (10)

If the state x is completely equal to γ
(s,k), then M (s,k) = 1.

III. RESULTS

A. OR mixed state

In this section, we explain why the storage capacity of the OR mixed state diverges at
the sparse limit, and why the storage capacity of the other mixed states becomes 0.

We first discuss whether the memory pattern η
1,1 can become the equilibrium state of

the present model, by the following 1step-S/N analysis [8] [9]. If initial state x
0 of the

model is set as the memory pattern η
1,1, internal potential ui of the ith neuron is described

as follows using Eqs. (5) and (9).

ui =
N
∑

j 6=i

Jijη
1,1
j + h

=
s
∑

ν=1

s
∑

ν′=1

(η1,νi − f)Bνν′m
1,ν′ + h + z̄i, (11)
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m1,ν =
1

Nf(1− f)

N
∑

i=1

(η1,νi − f)η1,1i , (12)

z̄i =
1

Nf(1− f)

αN
∑

µ=2

s
∑

ν=1

s
∑

ν′=1

N
∑

j 6=i

(ηµνi − f)Bνν′(η
µν′

j − f)η1,1j , (13)

where, at the limit of N → ∞, each overlap becomes m1,1 = 1, m1,2 =, · · · ,= m1,s = 0 by
Eqs. (4) and (9). The internal potential becomes

ui = (η1,1i − f) + b
s
∑

ν=2

(η1,νi − f) + h+ z̄i. (14)

The first term in this equation is a signal term to recall the memory pattern η
1,1. The

second term is the contribution from the other memory patterns belonging to the same
group. The third term is the threshold value, which distributes the internal potential to
the positive value or negative value. And the fourth term z̄i is the cross-talk noise that
prevents recalling the memory pattern. According to Eq. (13), z̄i has a normal distribution,
N(0, αfs(1 + b2(s − 1))), at the limit N → ∞. When the number of memory patterns is
O(1) in N → ∞, the loading rate α becomes 0, and the variance of z̄i becomes 0.

To keep η1,1i as an equilibrium state of the model, state xi should be 1 at the next step if
the neuron is set to η1,1i = 1, and state xi should be 0 at the next step if the neuron is set to
η1,1i = 0. This method of evaluating the stability of the memory pattern using the condition
above is called the 1step-S/N analysis. The input (the first and second terms in Eq. (14))
of the neuron set to η1,1i = 1 becomes

(1− f) + b
s
∑

ν=2

(η1,νi − f). (15)

According to this equation, the input of the neuron that has η1,2i =, · · · ,= η1,si = 0 is the
smallest, and the value is given by

(1− f)− b(s− 1)f. (16)

On the other hand, the input of the neuron set to η1,1i = 0 becomes

− f + b
s
∑

ν=2

(η1,νi − f). (17)

According to this equation, the input of the neuron that has η1,2i =, · · · ,= η1,si = 1 is the
largest, and the value is given by

− f + b(s− 1)(1− f). (18)

Let us choose the threshold value between Eqs. (16) and (18). If we assume that the
threshold value is the mean value of Eqs. (16) and (18),

h = −(1− 2f)(1 + b(s− 1))/2, (19)
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the memory pattern η
1,1 can become the equilibrium state of the model. At sparse limit

f → 0, the threshold value becomes

h = −(1 + b(s− 1))/2. (20)

Next, we analyze whether mixed state γ
(s,k) can become the equilibrium state of the

model, and explain why the OR mixed state γ(s,1) is the only object that should be discussed.
If initial state x

0 of the model is set as the mixed state γ
(s,k), the internal potential ui of

the ith neuron is described as follows using Eqs. (5) and (9).

ui =
N
∑

j 6=i

Jijγ
(s,k)
j + h

=
s
∑

ν=1

s
∑

ν′=1

(η1,νi − f)Bνν′m
1,ν′ + h+ z̄i, (21)

m1,ν =
1

Nf(1− f)

N
∑

i=1

(η1,νi − f)γ
(s,k)
i , (22)

z̄i =
1

Nf(1− f)

αN
∑

µ=2

s
∑

ν=1

s
∑

ν′=1

N
∑

j 6=i

(ηµνi − f)Bνν′(η
µν′

j − f)γ
(s,k)
j . (23)

At the limit N → ∞, since the overlaps become m1,1 = m1,2 =, · · · ,= m1,s by Eqs. (4) and
(9), these overlaps are put with m(s,k) and the internal potential becomes

ui = m(s,k)(1 + b(s− 1))
s
∑

ν=1

(η1,νi − f) + h+ z̄i. (24)

The first term in this equation is a signal term to recall the mixed state γ
(s,k), the second

term is the threshold value, and the third term z̄i is cross-talk noise. Since the overlap m(s,k)

determines the strength of the signal term, let us evaluate its value. At the sparse limit, the
overlap m(s,k) is calculated based on Eqs. (4) and (22) and becomes

m(s,k) =
s−1
∑

v=0
s−1Cv(1− f)s−v−1f v [Θ(1 + v − k)−Θ(v − k)] , (25)

where, C is the number of combinations. Let us evaluate this equation at the sparse limit. At
sparse limit f → 0, (1− f)s−v−1 is 1, and f v is 1 in v = 0 and 0 in v ≥ 1. Consequently, the
summation for v in the equation has to be taken into account only when v = 0. Therefore,
the Eq. (25), at the sparse limit, becomes

m(s,k) = [Θ(1− k)−Θ(−k)] . (26)

This equation says thatm(s,k) = 1 only when k = 1 (the OR mixed state), and thatm(s,k) = 0
when k ≥ 2 (the other mixed states), at the sparse limit. Note that Θ(0) = 1 as in Eq. (2).

Figure 1 shows the relationship between the firing rate f and the overlap m(s,k) for
s = 3. It shows that m(s,k) → 1 only when k = 1 and that m(s,k) → 0 when k ≥ 2, at the
sparse limit. From these results, mixed states excluding the OR mixed state do not become
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the equilibrium state of the model at the sparse limit. Therefore, we limit our remaining
discussion to the OR mixed state.

To keep the OR mixed state γ
(s,1)
i as an equilibrium state of the model, state xi should

be 1 at the next step if the neuron is set to γ
(s,1)
i = 1, and state xi should be 0 at the next

step if the neuron is set to γ
(s,1)
i = 0. If the neuron is set to γ

(s,1)
i = 1, since one or more

of the s memory patterns included in the signal term is 1, the input (the first term in Eq.
(24)) of the neuron becomes

m(s,1)(1 + b(s− 1))(n− sf), (1 ≤ n ≤ s). (27)

According to this equation, the input of the neuron with n = 1 is the smallest, and the value
is given by

m(s,1)(1 + b(s− 1))(1− sf). (28)

In the neuron set to γ
(s,1)
i = 0, since all of the memory patterns included in the signal term

are 0, the input of the neuron is

m(s,1)(1 + b(s− 1))(−sf). (29)

Let us choose the threshold value between Eqs. (28) and (29). If we assume the threshold
value is the mean value of Eqs. (28) and (29),

h = −m(s,1)(1 + b(s− 1))(1− 2sf)/2, (30)

The OR mixed state γ
(s,1) can become the equilibrium state of the model. At sparse limit

f → 0, the threshold value reaches the following value because m(s,k) = 1,

h = −(1 + b(s− 1))/2. (31)

Since this threshold value and that of the memory pattern in Eq. (20) are the same forms,
those values are the same even if the b and/or s change.

From these results, we found that only the memory pattern and the OR mixed state
become the equilibrium states at the sparse limit, and that the memory pattern and the OR
mixed state can be made to easily coexist at the sparse limit because their threshold values
are the same. We proved that the properties of the present model does not change from
those of the sparsely encoded conventional model (Kimoto & Okada, 2001).

B. Quantitative evaluation using SCSNA analysis

Using the 1step-S/N analysis, we proved that the memory pattern and the OR mixed
state are the objects that should be evaluated. However, the cross-talk noise in Eqs. (13)
and (23) cannot be quantitatively evaluated using the 1step-S/N analysis. In this section,
we quantitatively analyze the storage capacities and the threshold values of the memory
pattern and of the OR mixed state using the SCSNA(self-consistent signal-to-noise analysis)
proposed by Shiino and Fukai (1992). The order parameter equations of the equilibrium state
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derived by the SCSNA reach the order parameter equations of the equilibrium state derived
by the replica theory of the statistical mechanical theory.

We consider the case where the equilibrium state x has nonzero overlaps, m1,ν =
1

Nf(1−f)

∑N
i=1(η

1,ν
i − f)xi, with s memory patterns η

1,ν , (1 ≤ ν ≤ s). This means the case
where the memory pattern belonging to the first group or the mixed state generated by
the memory patterns of the first group is recalled. To derive the SCSNA order parameter
equations of the present model, we first transform Jij into the following form, which can
easily be applied to the SCSNA. The synaptic coupling Jij is divided into the term related
to the first group memory pattern and the other term:

Jij =
1

Nf(1 − f)

s
∑

ν=1

s
∑

ν′=1

(η1,νi − f)Bνν′(η
1,ν′

j − f)

+
1

Nf(1− f)

αN
∑

µ=2

s
∑

ν=1

s
∑

ν′=1

(ηµνi − f)Bνν′(η
µν′

j − f). (32)

We introduce a set of i.i.d. patterns σµν
i to the (ηµνi − f):

E[σµν
i ] = 0, (33)

E[σµν
i σµν′

i ] = 0. (ν 6= ν ′) (34)

The second term of the synaptic coupling in Eq. (32) is rewritten using σµν
i as

Jij =
1

Nf(1− f)

s
∑

ν=1

s
∑

ν′=1

(η1,νi − f)Bνν′(η
1,ν′

j − f)

+
1

Nf(1− f)

αN
∑

µ=2

s
∑

ν=1

s
∑

ν′=1

σµν
i Bνν′σ

µν′

j . (35)

Let eν ,(ν = 1, 2, · · · , s) be a set of s dimensional normalized eigenvectors of the matrix B in
Eq. (6). We introduce a set of rotated patterns, σ̄µ

i = (σ̄µ,1
i , σ̄µ,2

i , · · · , σ̄µ,s
i ):

σ
µ
i = Tσ̄

µ
i , (36)

T = (e1, e2, · · · , es). (37)

Since the rotated patterns σ̄µ
i is simply rotated using the matrix T, the distribution is the

same as that of σµ
i . Using rotated pattern σ

µ
i , the synaptic coupling Jij in Eq. (35) is

rewritten as

Jij =
1

Nf(1− f)

s
∑

ν=1

s
∑

ν′=1

(η1,νi − f)Bνν′(η
1,ν′

j − f)

+
1

Nf(1− f)

αN
∑

µ=2

s
∑

ν=1

λν σ̄µν
i σ̄µν

j , (38)

where λν is the eigenvalue of the matrix B for normalized eigenvector eν : λ1 = 1+(s−1)b2C
λν = 1 − b2, (2 ≤ ν ≤ s). The internal potential ui is written as follows, using Jij in Eq.
(38) and the overlap m1,ν in Eq. (9):
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ui =
N
∑

j 6=i

Jijxj

=
s
∑

ν=1

s
∑

ν′=1

(η1,νi − f)Bνν′m
1,ν′ +

αN
∑

µ=2

s
∑

ν=1

λν σ̄µν
i m̄µν − αsxi, (39)

where,

m̄µν =
1

Nf(1− f)

N
∑

i=1

σ̄µν
i xi. (40)

Hereafter, following the SCSNA [13] [14] [15], we can easily derive the SCSNA order
parameter equations:

Yi = Θ

(

s
∑

ν=1

s
∑

ν′=1

(η1,νi − f)Bνν′m
1,ν′ + ΓYi +

√
αrz + ht

)

, (41)

m1,ν =

∫∞
−∞ Dz < (η1,νi − f)Yi >η

f(1− f)
, (42)

q =
∫ ∞

−∞
Dz < (Yi)

2 >η , (43)

U =
1√
αr

∫ ∞

−∞
Dzz < Yi >η, (44)

Dz =
dz√
2π

exp(−z2

2
), (45)

r = q
s
∑

ν=1

(λν)2

(1− λνU)2
, (46)

Γ = α
s
∑

ν=1

(λν)2U

1− λνU
, (47)

where, < · · · >η stands for an ensemble average over the first group memory patterns,

η = (η1,1i , η1,2i , · · · , η1,si ). Equation (41) may have more than one solution by the “Maxell
equal area rule”, which originated in thermodynamics. According to this rule, Yi in Eq. (41)
can be rewritten as

Yi = Θ

(

s
∑

ν=1

s
∑

ν′=1

(η1,νi − f)Bνν′m
1,ν′ +

1

2
Γ +

√
αrz + ht

)

. (48)

We can continuously obtain the following SCSNA order parameter equations by integrating
Eqs. (42)-(48):

m1,ν = <
η1,ν − f

2f(1− f)
erf(

∑s
ν=1

∑s
ν′=1(η

1,ν − f)Bνν′m
1,ν′ + ht + Γ

2√
2αr

) >η,

(1 ≤ ν ≤ s), (49)

q =
1

2
+

1

2
< erf(

∑s
ν=1

∑s
ν′=1(η

1,ν − f)Bνν′m
1,ν′ + ht + Γ

2√
2αr

>η , (50)
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U =
1√
2παr

< exp(−(

∑s
ν=1

∑s
ν′=1(η

1,ν − f)Bνν′m
1,ν′ + ht + Γ

2√
2αr

)2 >η,

(51)

r = q
s
∑

ν=1

(λν)2

(1− λνU)2
, (52)

Γ = α
s
∑

ν=1

(λν)2U

1− λνU
. (53)

We can derive the relationship between m1,ν and α by solving the simultaneous equations
(49)-(53). Note that threshold value h must be determined to solve these equations (49)-
(53) because they include h. The following order parameter equation, which determines the
threshold value, is derived from Eq. (7):

f =
∫ ∞

−∞
Dz < Yi >η ,

=
1

2
+

1

2
< erf(

∑s
ν=1

∑s
ν′=1(η

1,ν − f)Bνν′m
1,ν′ + ht + Γ

2√
2αr

) >η . (54)

In the case of recalling the OR mixed state γ
(s,1), the threshold value is determined by the

following order parameter equation in which f in Eq. (54) is replaced with the firing rate
f (s,1) of the OR mixed state:

f (s,1) =
1

2
+

1

2
< erf(

∑s
ν=1

∑s
ν′=1(η

1,ν − f)Bνν′m
1,ν′ + ht + Γ

2√
2αr

) >η . (55)

The overlap M (s,1) between the equilibrium state x and the OR mixed state γ(s,1) is defined
by

M (s,1) =<
γ(s,1) − f (s,1)

2f (s,1)(1− f (s,1))
erf(

∑s
ν=1

∑s
ν′=1(η

1,ν − f)Bνν′m
1,ν′ + ht + Γ

2√
2αr

) >η . (56)

Next, to investigate the effectiveness of the SCSNA to the present model, we compare the
results of the SCSNA with those of the computer simulation. Figure 2 shows the overlaps
m1,1, m1,2, and m1,3 for various loading rates α, when recalling the memory pattern η

1,1. We
used s = 3, b = 0.25, and f=0.1. The data points and error bars show the results of the
computer simulation, and the lines connecting the data points are the results of the SCSNA.
In the computer simulation, number of neurons N was set to 10,000, and the simulation was
run 11 times for each parameter. The data points show the median, and the ends of the
error bars show the 1/4 and 3/4 deviations. The results of the SCSNA show that the overlap
m1,1 gradually decreased from 1 as the loading rate α was increased from 0, and that the
equilibrium state disappeared at α ≃ 0.08. The storage capacity αc was then αc ≃ 0.08. The
results of the computer simulation corresponded to those of the SCSNA when 0 ≤ α ≤ 0.08,
and the equilibrium state became unstable at α > 0.08. The results of the SCSNA and the
simulation also corresponded well for the overlaps m1,2 and m1,3.

Figure 3 shows the overlap M (3,1) for various loading rates when recalling the OR mixed
state γ

(3,1). We used s = 3, b = 0.25, and f=0.1. The data points and error bars show
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the results of the computer simulation, and the line connecting the data points shows the
result of the SCSNA. The results of both corresponded well. Since the results of the SCSNA
explain the results of simulation fairly well, as shown in Figs. 2 and 3, we hereafter examine
the properties of the memory pattern and of the OR mixed state using the SCSNA.

Figure 4 shows the storage capacity of the memory pattern and of the OR mixed state
for various value b. We used s = 3 and f=0.01. The storage capacity αc of the memory
pattern was about 1.4 at b = 0. Since each group includes s memory patterns, the total
number of memory patterns that can become an equilibrium state is sαcN ≃ 4.2N . Since
b = 0 means the model without the cross-correlation term, the storage capacity is equal that
of the conventional model which sparsely encoded by the firing rate f = 0.01. The storage
capacity of the memory pattern gradually decreased as b was increased. The storage capacity
of the OR mixed state was about 0.5 at b = 0, gradually increased as b was increased, and
was about 1.45 at b = 1.0. Thus, the b dependency of the storage capacity of the memory
pattern is different from that of the OR mixed state.

To analyze the properties of the memory pattern and of the OR mixed state at the
sparse limit f → 0, we plotted the asymptotes of the storage capacity in Fig. 5. We
used b = 0, 0.25, 0.6. Since b = 0 means the model without the cross-correlation term,
the present model corresponds to the conventional model. The asymptotes of the memory
pattern and of the OR mixed state diverged as 1/|f log f | at the sparse limit, as reported
by Kimoto and Okada (2001). Even when b was 0.25 or 0.6, at sparse limit f → 0, the
asymptotes of the memory pattern and of the OR mixed state diverged as 1/|f log f |. Thus,
the asymptotic properties of the storage capacity of the present model are the same as those
of the conventional model. Moreover, the storage capacity of the memory pattern decreased
as b was increased, and the storage capacity of the OR mixed state increased as b was
increased. These results correspond to those shown in Fig. 4.

Figure 6 shows the threshold values calculated using Eqs. (54) and (55) to recall the
memory pattern and the OR mixed state. We used f = 0.01, s = 3, b = 0, 0.25, 0.6. The lines
are drawn to the point where the loading rates reach the storage capacities. As shown in the
figure, when the loading rate was small, the threshold values needed to recall the memory
pattern were nearly equal to the threshold values needed to recall the OR mixed state. When
the loading rate was increased, the threshold values at b = 0 approximately corresponded,
while at b = 0.25 or 0.6 they gradually separated. Although the threshold value of the
memory pattern corresponded to that of the OR mixed state in the 1step-S/N analysis, they
did not necessarily correspond in the quantitative analysis using SCSNA. In the conventional
model, the threshold value needed to recall the memory pattern approximately corresponds
to the threshold value needed to recall the mixed state at the sparse limit (Kimoto & Okada,
2001). We found that the properties of the threshold value of the present model differ from
those of the conventional model.

Here, we examine whether the results obtained by the 1step-S/N analysis are much
different from the properties of the threshold value of the model. Consider, a slight change
in the threshold value set in the model from that shown in Fig.6. The equilibrium state of
the model will shift to the neighborhood of the equilibrium state from the memory pattern
or from the OR mixed state. Moreover, when the threshold value exceeds the boundary
value, a first order phase transition will occur, and the equilibrium state of the model will
rapidly change to a state having zero overlap with the memory pattern or with the OR mixed
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state. Figure 7 shows the regions of the threshold values in which the equilibrium state of
the model stayed in the neighborhood of the memory pattern or of the OR mixed state.
We used f = 0.01, s = 3, b = 0, 0.25, 0.6. These regions narrowed gradually as the loading
rate was increased, and the regions disappeared when the loading rate reached the storage
capacity. Let’s see the regions until either the loading rate of the memory pattern or of the
OR mixed state reached the storage capacity. When b = 0 or 0.6, the regions overlapped
each other, meaning that the memory pattern and the OR mixed state can coexist at the
same threshold value. When b = 0.25, the region overlapped each other until the loading
rate α reached 0.6. Thus, the memory pattern and the OR mixed state can become the
equilibrium state of the model using the same threshold value, if the equilibrium state can
be expanded to the neighborhood of the memory pattern or of the OR mixed state. These
results confirm that the results of the 1step-S/N analysis qualitatively indicate the properties
of the model.

IV. CONCLUSION

We investigated the properties of the mixed states in an associative memory model that
includes cross-correlation terms in the learning method.

We found that, under the condition of a fixed firing rate, the storage capacities of the
memory pattern decreases and that of the OR mixed state increases, as the strengths of the
cross-correlation terms are increased. We also found that, at the sparse limit, the storage
capacity of the memory pattern and of the OR mixed state diverges, and that of the other
mixed states becomes 0. Additionally, we found that the threshold value needed to recall the
memory pattern does not correspond to the threshold value needed to recall the mixed state
in the present model. However, if the equilibrium state can be expanded to the neighborhood
of the memory pattern and the OR mixed state, both thresholds can be set to the same
value.

Of further interest, although the present model, that of Parga and Rolls, and that of
Elliffe et al. use uniformly distributed patterns (uncorrelated patterns), in general, the
views of the same object do not appear to be mutually uncorrelated patterns. We will
discuss about the associative memory model storing correlated patterns elsewhere.
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FIGURES

FIG. 1. Relationship between firing rate f and overlap m(s,k) for s = 3.

FIG. 2. Overlap m1,1,m1,2, and m1,3 for various loading rates α when recalling memory

pattern η
1,1; f = 0.1, b = 0.25, s = 3, N = 10, 000.

FIG. 3. Overlap M (3,1) for various loading rates α when recalling OR mixed state γ
(3,1);

f = 0.1, b = 0.25, s = 3, N = 10, 000.

FIG. 4. Storage capacity αc of memory pattern and OR mixed state for various b;

f = 0.01, s = 3.
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FIG. 5. Asymptotic properties of storage capacity αc for memory pattern and OR mixed state;

b = 0, 0.25, 0.6, s = 3.

FIG. 6. Threshold values needed to recall memory pattern and OR mixed state;

f = 0.01, s = 3, b = 0, 0.25, 0.6.

FIG. 7. Threshold values in which equilibrium state stay in neighborhood of memory pattern

and OR mixed state; f = 0.01, s = 3, b = 0, 0.25, 0.6.
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Figure 1: Relationship between firing rate f and overlap m(s,k) for s = 3.
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Figure 6: Threshold values needed to recall memory pattern and OR mixed state; f =
0.01, s = 3, b = 0, 0.25, 0.6.
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Figure 7: Threshold values in which equilibrium state stay in neighborhood of memory
pattern and OR mixed state; f = 0.01, s = 3, b = 0, 0.25, 0.6.
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