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� Introduction

Approximating functions from Rd to Rm by feedforward neural networks has been
widely studied in recent years� and the existence of an arbitrarily close approximation�
for any continuous or Lp function de
ned on a d�dimensional box� has been proven
for one�hidden�layer networks with perceptron or radial�basis�function units with quite
general activation functions 
see� e�g� Mhaskar and Micchelli ����� Park and Sandberg
������

However� estimates of the number of hidden units that guarantee a given accuracy of
an approximation are less understood� Most upper estimates grow exponentially with
the number of input units� i�e� with the number d of input variables of the function f to
be approximated 
e�g�� Mhaskar and Micchelli ����� K�urkov�a ������ A general result by
deVore et al� ��� con
rms that there is no hope for a better estimate when the class of
multivariable functions being approximated is de
ned in terms of the bounds of partial
derivatives� But in applications� functions of hundreds of variables are approximated
su�ciently well by neural networks with only moderately many hidden units 
e�g��
Sejnowski and Yuhas ������

Jones ���� introduced a recursive construction of approximants with �dimension�
independent	 rates of convergence to elements in convex closures of bounded subsets
of a Hilbert space and together with Barron proposed to apply it to the space of
functions achievable by a one�hidden�layer neural network� Applying Jones� estimate
Barron ��� showed that it is possible to approximate any function satisfying a certain
condition on its Fourier transform within L� error of O
 �p

n
� by a network whose hidden

layer contains n perceptrons with a sigmoidal activation function�
Using a probabilistic argument Barron ��� extended Jones� estimate also to supre�

mum norm� His estimate holds for functions in the convex uniform closure of the set
of characteristic functions of half�spaces multiplied by a real number less than or equal
to B� He called the in
mum of such B the variation with respect to half�spaces and
noted that it could be de
ned for any class of characteristic functions�

In this paper� we prove two main results which are complementary� The 
rst 
����
bounds variation with respect to half�spaces for functions represented by a �neural
network with a continuum of Heaviside perceptrons	� Our second result 
���� gives such
a representation with output weights corresponding to �ows orthogonal to hyperplanes
determined by the input weights and biases� As a result� we show that the variation
with respect to half spaces of a su�ciently smooth� compactly supported function f
de
ned on Rd� for d odd� is bounded above by a constant of order O
�����d times
the integral over parameters of all perceptrons of an integrand which is the absolute
value of the integral of the d�th directional derivative of f over the cozero hyperplane
of the a�ne functions determined by perceptron parameters 
weight vector and bias��
So variation with respect to half�spaces is bounded above by the supremum of absolute
values of integrals of directional derivatives of order d over orthogonal hyperplanes
multiplied by a d�dimensional volume� For single variable functions our bound is
identical with a well�known bound on total variation� which in the ��dimensional case
is the same as variation with respect to half�spaces�

Consequently� for d odd and f a compactly supported� real�valued function on Rd

�



with continuous partial derivatives of order d� we can guarantee approximations for
L��norm with error rate at most O
 �p

n
� by one�hidden�layer networks with n sigmoidal

perceptrons for any bounded sigmoidal activation function�
Our proof is based on properties of the Heaviside and delta distributions� We also

use a representation of the d�dimensional delta distribution as an integral over the unit
sphere in Rd that is valid only for d odd� To obtain a representation for all positive
integers d� one could extend functions f de
ned on Rd to Rd�� by composition with a
projection�

The remainder of the paper is organized as follows� Section � investigates functions
in the convex closures of parameterized families of continuous functions and integral
representations� Section � considers variation with respect to half�spaces� while section
� gives an integral representation theorem and its consequence for a bound on variation�
Section � is about rates of approximation and dimension independence� Section � is a
brief discussion� while the proofs are given in section ��

� Approximation of functions in convex closures

Let R� N denote the set of real and natural numbers� respectively�
Recall that a convex combination of elements s�� � � � � sm 
m � N � in a linear space

is a sum of the form
Pm

i�� aisi� where the ai are all non�negative and
Pm

i�� ai � ��
A subset of a vector space is convex if it contains every convex combination of its
elements� we denote the set of all convex combinations of elements of X by conv
X��
which is clearly a convex set� and call it the convex hull of X�

For a topological space X C
X� denotes the set of all continuous real�valued func�

tions on X and k�kC denotes the supremum norm� For a subset X of Rd and a positive
integer d Cd
X� denotes the set of all real�valued functions on X with continuous

partial derivatives of order k� C�
X� the set of all functions with continuous partial

derivatives of all orders� For p � ����� and a subset X of Rd Lp
X� denotes the
space of Lp functions and k�kp denote the Lp�norm�

For any topological space X with a topology � � we write cl�
A� for the closure of
a subset A of X 
smallest closed subset containing A�� So clC denotes the closure in
the topology of uniform convergence and clLp the closure with respect to Lp�topology�
Closure of the convex hull is called the convex closure� For a function f � X � R the
support of f denoted by supp
f� is de
ned by supp
f� � cl�fx � X� f
x� �� �g� For
f � X � R and A � X� f jA denotes the restriction of f to A� when it is clear from
context� we omit the subscript�

Jones ���� estimated rates of approximation of functions from convex closures of
bounded subsets of a Hilbert space� The following is a slight reformulation of his
result�

Theorem ��� Let H be a Hilbert space� with a norm k�k� B a positive real number and

G a subset of H such that for every g � G kgk � B� Then for every f � cl
conv
G��
and for every natural number n there exists fn that is a convex combination of n

�



elements of G such that

kf � fnk � kfk�Bp
n

� �Bp
n
�

To use this theorem to estimate the number of hidden units in neural networks�
we need to investigate the convex closures of sets of functions computable by single�
hidden�unit networks for various types of computational units� Convex combinations
of n such functions can be computed by a network with n hidden units and one linear
output unit�

Several authors have derived characterizations of such sets of functions from integral
representations 
e�g�� Barron ��� used Fourier representation� Girosi and Anzellotti ���
convolutions with signed measures�� Here we formulate a general characterization of
this type for parameterized families of functions�

ForX�Y topological spaces� a function � � X	Y � R� a positive real numberB and
a subset J 
 X de
ne G
��B� J� � ff � J � R� f
x� � w�
x� y��w � R� jwj � B� y �
Y g� So G
��B� J� consists of a family of real�valued functions on J parameterized by
y � Y and then scaled by a constant at most B in absolute value�

Theorem ��� Let d be any positive integer and let f � C
Rd� be any function that can

be represented as f
x� �
R
Y w
y��
x�y�dy� where Y 
 Rk for some positive integer

k� w � C
Y � compactly supported and � � C
Rd 	 Y �� Then for every compact subset

J � Rd f � clC
conv
G
��B� J���� with B �
R
J� jw
y�jdy where J� � fy � Y � 
�x �

J�
w
y��
x� y� �� ��g�

To apply this theorem to perceptron type networks with an activation function
� � R � R put Y � Rd 	R and de
ne �
x�v� b� � �
v � x � b�� Let Ed
��B� J� �
G
��B� J�� So Ed
��B� J� denotes the set of functions computable by a network with
d inputs� one hidden perceptron with an activation function � and one linear output
unit� Typically� � is sigmoidal� i�e� it satis
es limt�� �
t� � � and limt��� �
t� � ��

Corollary ��� Let � � R � R be a continuous activation function� d be any pos�

itive integer and f � C
Rd� be any function that can be represented as f
x� �R
Rd

R
Rw
v� b��
v �x� b�dbdv� where w � C
Rd	R� is compactly supported� Then for

every compact subset J � Rd f � clC
conv
Ed
��B� J���� where B �
R
J� jw
v� b�jd
v� b��

where J� � f
v� b� � Rd 	R� 
�x � J�
w
v� b��
v � x� b �� ��g�

So for functions computable by perceptron networks with a �continuum	 of hidden
units� we can 
nd a suitable bound B for Jones� theorem by takingB �

R
J� jw
v� b�jd
v� b��

� Variation with respect to half�spaces

Let � denote the Heaviside function 
�
x� � � for x 	 � and �
x� � � for x 
 ���
It is easy to see that the non�constant functions in Ed
��B� J� are exactly the set
fg � J � R� g
x� � w�
e � x � b�� e � Sd��� w� b � R� jwj � Bg� where Sd�� denotes
the unit sphere in Rd�
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Let J � Rd and let F
J� be a set of functions from J to R and � be a topology on
F
J�� For f � F
J� put

V 
f� �� J� � inffB � R� f � cl�
conv
Ed
��B� J���g

and call V 
f� �� J� the variation of f on J with respect to half�spaces and topology � �
For f � Rd � R� if f jJ � F
J�� then we write V 
f� �� J� instead of V 
f jJ � �� J��

It is easy to verify that when the topology � is induced by a norm� this in
mum
is achieved� i�e�� f � cl�
conv
Ed
�� V 
f� �� J�� J���g� Also� for every f� g � F
J��
V 
f � g� �� J� � V 
f� �� J��V 
g� �� J� and for every a � R� V 
af� �� J� � jajV 
f� �� J��
In particular� V 
f � c� �� J� � V 
f� �� J� � c for every constant c�

Let p � ������ Since for every X 
 Lp
J� we have clC
X� 
 clLp
X�� clearly
V 
f�Lp� J� � V 
f� C� J��

Recall that for a function f � R � R and an interval �s� t� � R total variation of f
on �s� t� denoted by T 
f� �s� t�� is de
ned by T 
f� �s� t�� � supfPk

i�� jf
ti����f
ti�j� s �
t� 	 � � � 	 tk � t� k � Ng 
see e�g� ������ For functions of one variable satisfying
f
s� � �� the concept of total variation on �s� t� coincides with the concept of variation
with respect to half�spaces 
half�lines� and the topology of uniform convergence� since
T 
f� �s� t�� � V 
f� C� �s� t�� 
see Barron ���� also Darken et al� ��� Theorem ����

When generalizing to functions of several variables� there is no unique way to extend
the notion of total variation since we lose the linear ordering property� One well�known
method divides d�dimensional cubes into boxes with faces parallel to the coordinate
hyperplanes� One de
nes T 
f� J� � supfPk

i�� jf
Ji�j� where fJi� i � �� � � � � kg is a

subdivision of J into boxes g� f
Ji� � P�d

j��
�����j�f
xij�� fxij� j � �� � � � � �dg are the
corner points of Ji and 

j� � �� is a parity ����� For d 
 � this concept is di�erent
from Barron�s variation with respect to half�spaces� For example� the characteristic
function � of the set f
x�� x�� � ��� ���� x� 
 x�g has the variation w�r�t� half�spaces
and any topology equal to �� while the total variation T 
�� ��� ���� is in
nite�

For a di�erentiable function� total variation can be characterized as an integral of
the absolute value of its derivative� Formally� if J � R is an interval and f � � L�
J�
then T 
f� J� �

R
J jf �
x�jdx ���� p������ The corollary below extends this to variation

with respect to half�spaces�

Theorem ��� Let d be any positive integer and let f � C
Rd� be any function that

can be represented as f
x� �
R
Sd��

R
Rw
e� b��
e � x� b�dbde� where w � C
Sd�� 	R�

is compactly supported� Then for every compact subset J in Rd and every p � �����
f � clLp
conv
Ed
��B� J���� where B �

R
J� jw
e� b�jd
e� b�� where J� � f
e� b� � Sd��	

R� 
�x � J�
w
e� b��
e � x� b� �� ��g�

Corollary ��� Let d be any positive integer and let f � C
Rd� be any function that

can be represented as f
x� �
R
Sd��

R
Rw
e� b��
e �x�b�dbde� where w � C
Sd�� 	R� is

compactly supported� Then for every compact subset J � Rd and for every p � �����
V 
f�Lp� J� � R

J� jw
e� b�jd
e� b��

�



� Integral representation theorem

To estimate variation with respect to half�spaces using Corollary ��� we need an integral
representation theorem of the form of a neural network with continuum of Heaviside
perceptrons f�
e � x � b�� e � Sd��� b � Rg� The following theorem provides such a
representation with output weights w
e� b� corresponding to orthogonal ��ows of order
d	 of f through cozero hyperplanes Heb � fy � Rd� e � y� b � �g�

Recall ���� that the directional derivative Def
y� of f in direction e is de
ned by

Def
y� � limt��
f�y�te��f�y�

t
and the k�th directional derivative is inductively de
ned

by D
�k�
e f
y� � De
D

�k���
e f
y��� It is well�known 
see e�g�� ���� p����� � that Def
y� �

�f
y��e� More generally� the k�th order directional derivative is a weighted sum of the
corresponding k�th order partial derivatives� where the weights are polynomials in the
coordinates of e multiplied by multinomials ��� p������ Hence existence and continuity
of partial derivatives implies existence and continuity of directional derivatives�

Theorem ��� For every odd positive integer d every compactly supported function

f � Cd
Rd� can be represented as

f
x� � �ad
Z
Sd��

Z
R

�Z
Heb

De
�d�f
y�dy

�
�
e � x� b�dbde�

where ad �
�� d���
�����d��

�

Our proof of Theorem ��� makes use of the theory of distributions� For a positive
integer k� denote by �k the delta distribution operating by convolution as the identity
on the linear space D
Rk� of all test functions 
i� e� the subspace of C�
Rk� containing
compactly supported functions�� For d odd� one can represent the delta distribution
�d as an integral over the unit sphere �d
x� � ad

R
Sd�� ��

�d���
e � x�de ��� p����� 
 by
��

�d��� is denoted the d���st distributational derivative of ���� We also utilize the fact
that �� is the 
rst distributional derivative of ��

Extension to all compactly supported functions with continuous partial derivatives
of order d follows from a basic result of distribution theory� each continuous com�
pactly supported function can be uniformly approximated on Rd by a sequence of test
functions ���� p����

Integral representation ��� together with Corollary ��� give the following estimate
of variation with respect to half�spaces�

Theorem ��� For every odd positive integer d� a compact subset J � Rd� f � Cd
Rd�
and for every p � �����

V 
f�Lp� J� � jadj
Z
J�

����
Z
Heb

De
�d�f
y�dy

����d
e� b�
where jadj � 
�
��
�����d and J� � f
e� b� � Sd�� 	R� 
�x � J�
w
e� b��
e � x� b� ��
��g�

�



It is easy to verify that when d � � Theorem ��� gives estimate V 
f� C� J� �R
J jf �
b�jdb which agrees with the above mentioned characterization of total variation
for functions of one variable�

Estimating the integrals in Theorem ��� we get the following corollary� We write
�k to denote the Lebesgue measure on Rk�

Corollary ��� For every odd positive integer d� a compact J � Rd� f � Cd
Rd� with
supp
f� a d�dimensional cube and for every p � �����

V 
f�Lp� J� �
p
�jadj�d
J���d
supp
f�� supf

���De
�d�
y�

��� �y � supp
f�� e � Sd��g�

Using the Radon transform� Ito ��� obtained an integral representation as in Corol�
lary ���� Our proof of Theorem ��� uses a di�erent approach and describes coe�cients
w
e� b� in terms of directional derivatives�

� Dimension�independent rates of approximation

by neural networks

Since � can be approximated in Lp�norm 
p � ������ by a sequence of steep sigmoidals�
estimates of variation with respect to half�spaces can be used to bound approxima�
tion error achievable by one�hidden�layer neural networks with � perceptrons for any
bounded sigmoidal activation function ��

Lemma ��� Let � � R � R be a bounded sigmoidal function� Then for every positive

integer d� for every compact J � Rd and for every p � �����

clLp
conv
Ed
��B� J��� � clLp
conv
Ed
��B� J����

Let f � Cd
Rd� be a compactly supported function and J � Rd be compact� Denote

byBf the estimate of V 
f�Lp� J� given by Theorem ���� i�e� Bf � jadj RJ�
���RHeb De

�d�f
y�dy
��� d
e� b��

Theorems ���� ��� and Lemma ��� imply the following estimate of rates of approx�
imation by one�hidden�layer networks with sigmoidal perceptrons�

Theorem ��� Let d be an odd positive integer� f � Cd
Rd� compactly supported and

� � R � R be a bounded sigmoidal function� Then for every n � N there exists

a function fn computable by a neural network with a linear output unit and n ��

perceptrons in the hidden layer such that kf � fnk� � Bf�kfk�p
n

�

� Discussion

A result of DeVore et al� ��� shows that an upper bound on partial derivatives is not
su�cient to guarantee dimension�independent rates of approximation by one�hidden�
layer neural networks� Our results show that it is su�cient to bound the d�th directional
derivatives multiplied by the product of the d�dimensional volume of the support of the
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function and the d�dimensional volume of J�� Since d�dimensional volume can grow
exponentially with increasing dimension� to keep V 
f�L�� J� bounded by the same
bound B� the �ows of order d must be decreasing with increasing d�

Thus� the dimension�independent rates of approximation must be interpreted and
used carefully� The constant factor �Bf can at realistic scales� dominate the �p

n
factor�

The size of spaces of functions that can be approximated with rates of approximation
O
 �p

n
� is decreasing with increasing input dimension d�

� Proofs

First� we prove several technical lemmas�

Lemma ��� LetX�Y be sets� J � X� � � X	Y � R be a function and B be a positive

real number� Then conv
G
��B� J�� � ff � J � R� f
x� �
Pm

i��wi�
x� yi�� yi �
Y �wi � R�P jwij � Bg

Proof� It is easy to verify once you recall that any convex combination of elements�
each of norm not exceeding B� also is bounded in norm by B� �

Lemma ��� Let 
F
X�� k�k� be a normed linear space of real�valued functions on X�

f � X � R� ffi � X � R� i � Ng be a sequence of functions such that limi�� fi � f
in k�k� Let � � X 	 Y � R be such that supy�Y k�
x� y�k 	 �� Let fBi� i � Ng
be a sequence of real numbers such that limi��Bi � B and let for every i � N
fi � cl
conv
G
��Bi�X���� where cl denotes the closure in the topology induced by k�k�
If limi�� fi � f in k�k� then f � cl
conv
G
��B�X����

Proof� Put c � supy�Y k�
x� y�k� For every � � � choose i� � N such that for
every i � i� jB � Bij 	 �

�
and kf � fik 	 �

�
� Since fi � cl
conv
G
��Bi�X��� there

exists gi � conv
G
��BiX�� such that kfi � gik 	 �

�
� So gi
x� �

Pmi

j�� aijuij�
x� yij��
where aij are coe�cients of convex combination and juijj � Bi� Put  uij � uij � �

�c

for uij � � and  uij � uij �
�

�c for uij 	 �� Put  gi
x� �
Pmi

j�� aij uij�
x�yij�� Since for
all i � N and j � f�� � � � �mig j uijj � B we have  gi � conv
G
��B�X��� For every
i 
 i� kf �  gij � kf � fik� kfi � gik� kgi �  gik � ��

�
�
Pmi

j�� aij
�
�c
k�
x� yij�k 	 �� So�

f � cl
conv
G
��B�X���� �

Proof of Theorem ���� Let fPi� i � Ng be a sequence of partitions of J� such
that for every i � N Pi�� is re
ning Pi and diameters of all sets from Pi are smaller
than �i� where limi�� �i � �� Let Pi � fPij� j � Iig and yij � Pij � For x � J � put
fi
x� �

P
j�Ii w
yij��
x�yij��
Pij � and let Bi �

P
j�Ii jw
yij�j�
Pij�� By Lemma ����

for every i � N fi � conv
G
��Bi� J���
Since limi�� �i � �� the sequence ffi� i � Ng converges to f on J pointwise� Since

w is continuous and compactly supported� the integral
R
J� jw
y�jdy � B exists and

limi��Bi � B� So by Lemma ��� it is su�cient to verify that ffi� i � Ng converges
to f uniformly on J �

�



It is well�known 
see e�g� ���� p� ����� that an equicontinuous family of functions
converging pointwise on a compact set converges uniformly� For some � � � choose
i� such that for every i 
 i�

Bi

B
	 � � �� We will show that continuity of w� implies

equicontinuity of ffi� i 
 i�� i � Ng� Indeed� for � � � put �� � �

���
� Since J is compact�

w� is uniformly continuous on J � Hence there exists 
 such that if jx � x�j 	 

then for every y � Y jw
y��
x�y� � w
y��
x��y�j 	 ��

B
� Hence for every i 
 i�

jfi
x�� f
x��j � P
j�Ji jw
yij�j�
Pij�j�
x�yij�� �
x��yij�j 	 ��Bi

B
	 �� �

Proof of Theorem ���� Let � � R � R be the logistic sigmoidal function� i�e�
�
t� � �

��e�t � For every m � N put fm
x� �
R
Sd��

R
R w
e� b��
m
e � x� b��dbde�

It is easy to verify that limm�� fm � f in Lp
J�� Let fPi� i � Ng be a sequence of
partitions of supp
w� as in the proof of Theorem ���� and let Pi � fPij � j � Iig and let

eij� bij� � Pij� Put Bi �

P
j�Ii jw
eij� bij�j�
Pij� and fmi
x� �

P
j�Ii w
eij� bij��
m
eij �

x� bij��
Pij��
Since J is compact we have as in the proof of Theorem ��� for each m � M

limi�� fmi � fm uniformly on J � Put cm � supfk�
m
e � x� b��� �
e � x� b�kp� e �
Sd��� b � Rg where k�kp denotes the Lp�norm on J � Since limm�� fm � f uni�
formly� limi�� fmi � fm� in Lp� limi��Bi � B and limm�� cm � �� we can construct
recursively two strictly increasing sequences of natural numbers fmn�n � Ng and
fin�n � Ng such that for all n � N kf � fmnkp 	 �

�n � kfmn � fmninkC 	 �
�n and

cmnBin 	
�
�n �

For every n � N put hn
x� �
P

j�Jin w
einj � binj��
einj � x � binj��
Pinj�� Since
for all n � N hn � conv
Ed
��Bin� J� by Lemma ��� it is su�cient to verify that
limn�� hn � f in Lp
J�� Indeed� for every n � N we have kf � hnkp � kf � fmnkp �
kfmn � fmninkp � kfmnin � hnkp 	 �

n
� �

To prove Theorem ��� we need two technical lemmas� The 
rst one can be found
in ��� p������

Lemma ��� For every odd positive integer d

�d
x� � a
Z
Sd��

��
�d���
e � x�de�

where ad �
���� d���
�����d��

�

Lemma ��� For all positive integers d�k� for every function f � Cd
Rd� and for every

unit vector e � Rd and for every b � R �k

�bk

R
Heb

f
y�dy �
R
Heb

�
De

�k�f
y�
�
dy�

Proof� First� we will verify that the statement is true for k � ��

�

�b

Z
Heb

f
y�dy � lim
t��

t��
�Z

Heb

f
y�dy�
Z
Heb�t

f
y�dy

�
�

lim
t��

t��
Z
Heb


f
y � te�� f
y��dy �
Z
Heb

lim
t��

t��
f
y � te�� f
y�� �
Z
Heb

Def
y�dy�

�



Suppose that the statement is true for k � �� Then

�k

�bk

Z
Heb

f
y�dy � lim
t��

t��
�Z

Heb

De
�k���f
y�dy�

Z
Heb�t

De
�k���f
y�dy

�
�

lim
t��

t��
Z
Heb


De
�k���f
y�te��De

�k���f
y��dy �
Z
Heb

lim
t��

t��
�
De

�k���f
y � te��De
�k���f
y�

�
�

Z
Heb

De
�k�f
y�dy�

�

Proof of Theorem ���� We 
rst prove the theorem for test functions� For f � D
Rd�
we have f
x� � 
f � �d�
x� � R

Rd f
z��d
x�z�dz 
see ������ By Lemma ��� �d
x�z� �
ad
R
Sd�� ��

�d���
e � x� e � z�de� Thus� f
x� � ad
R
Sd��

R
Rd f
z���

�d���
x � e � z � e�dzde�
So rearranging the inner integration� we have f
x� � ad

R
Sd��

R
R
R
Heb

f
y���
�d���
x �

e � b�dydbde� where Heb � fy � R�y � e � �bg� Let u
e� b� � ad
R
Heb

f
y�dy� so

f
x� �
R
Sd��

R
R u
e� b���

�d���
x � e� b�dbde�

By de
nition of distributional derivative
R
R u
e� b���

�d���
e�x�b�db � 
���d��
R
R

�d��u�e�b�
�bd��

��
e�
x � b�db for every e � Sd�� and x � Rd� Since d is odd� we have

R
R u
e� b���

�d���
e �
x� b�db �

R
R

�d��u�e�b�
�bd��

��
e � x� b�db�
Since the 
rst distributional derivative of the Heaviside function is the delta distri�

bution ���� p����� it follows that for every e � Sd�� and x � Rd
R
R u
e� b���

�d���
e �x�

b�db � � R
R

�du�e�b�
�bd

�
e � x� b�db�

By Lemma ��� �du�e�b�
�bd

� �d

�bd

R
Heb

f
y�dy �
R
Heb

De
�d�f
y�dy� Hence� f
x� �

�adR Sd��RR �RHebDe
�d�f
y�dy

�
�
e � x� b�dbde�

Let f � Cd
Rd� be compactly supported� Then there exists a sequence ffi� i � Ng
of test functions converging to f uniformly on Rd ���� p���� It is easy to check that
for every e � Sd�� fDe

�d�fi� i � Ng converges uniformly on Rd to De
�d�f � Hence

we can interchange limit and integration ��� p������ So limi��
R
Heb

De
�d�fi
y�dy �R

Heb
De

�d�f
y�dy� Put gi
x� e� b� �
R
Heb

�
De

�d�fi
y�dy
�
�
e � x � b� and g
x� e� b� �R

Heb

�
De

�d�f
y�dy
�
�
e�x�b�� It is easy to see that for every x � Rd limi�� gi
x� e� b� �

g
x� e� b� uniformly on Sd��	R� Hence for everyx � Rd f
x� � limi��
R
Sd��

R
R gi
x� bfe� b�dbde �R

Sd��

R
R g
x� e� b�dbde �

R
Sd��

R
R
�R

Heb
De

�d�f
y�dy�
�
�
bfe � x � b�dbde 
using again

interchangebility of integration and limit for a sequence of functions converging uni�
formly�� �

Proof of Corollary ���� For any hyperplane H � Rd� �d��
X �H� � cd
X��d
X��
where cd
X� is the geometric constant that describes the ratio of the largest possible
�d��
X �H� divided by the smallest �d��
X ��� where X � is a face of X� Ball ��� proved
that for every d and for every d�dimensional cube X cd
X� �

p
�� �

Proof of Lemma ���� Let f � clLp
conv
Ed
��B� J���� Then for every � � � kf �Pk
i�� aiui�
ei�x�bi�kp 	 �

� where ai are coe�cients of convex combination and all juij �
B� By boundedness of �� for every i � f�� � � � � kg limm�� �
m
ei�x�bi�� � �
ei�x�bi�

�



in Lp
J�� So there exists m� � N such that for every m 
 m� and for all i � �� � � � � k
k�
m
ei � x � bi�� � �
ei � x� bi�kp 	 �

�B � Hence kf �Pk
i�� aiui�
m
vi � x� bi��kp 	

kf �Pk
i�� aiui�
ei � x� bi�kp � kPk

i�� aiui
�
ei � x� bi�� �
m
ei � x� bi�kp 	 �� �

��
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