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Abstract

Utilizing an integral representation of smooth functions of d variables proved using
properties of delta and Heaviside distributions we estimate variation with respect to
half-spaces in terms of “flows through hyperplanes”. Consequently we obtain condi-
tions which guarantee £, approximation error rate of order O(\/Lﬁ) by one-hidden-layer
networks with n sigmoidal perceptrons.
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1 Introduction

Approximating functions from R? to R™ by feedforward neural networks has been
widely studied in recent years, and the existence of an arbitrarily close approximation,
for any continuous or £, function defined on a d-dimensional box, has been proven
for one-hidden-layer networks with perceptron or radial-basis-function units with quite
general activation functions (see, e.g. Mhaskar and Micchelli [14], Park and Sandberg
15))

However, estimates of the number of hidden units that guarantee a given accuracy of
an approximation are less understood. Most upper estimates grow exponentially with
the number of input units, i.e. with the number d of input variables of the function f to
be approximated (e.g., Mhaskar and Micchelli [14], Kurkova [12]). A general result by
deVore et al. [7] confirms that there is no hope for a better estimate when the class of
multivariable functions being approximated is defined in terms of the bounds of partial
derivatives. But in applications, functions of hundreds of variables are approximated
sufficiently well by neural networks with only moderately many hidden units (e.g.,
Sejnowski and Yuhas [18]).

Jones [10] introduced a recursive construction of approximants with “dimension-
independent” rates of convergence to elements in convex closures of bounded subsets
of a Hilbert space and together with Barron proposed to apply it to the space of
functions achievable by a one-hidden-layer neural network. Applying Jones’ estimate
Barron [1] showed that it is possible to approximate any function satisfying a certain
condition on its Fourier transform within £, error of (’)(Ln) by a network whose hidden
layer contains n perceptrons with a sigmoidal activation function.

Using a probabilistic argument Barron [2] extended Jones’ estimate also to supre-
mum norm. His estimate holds for functions in the convex uniform closure of the set
of characteristic functions of half-spaces multiplied by a real number less than or equal
to B. He called the infimum of such B the variation with respect to half-spaces and
noted that it could be defined for any class of characteristic functions.

In this paper, we prove two main results which are complementary. The first (3.2)
bounds variation with respect to half-spaces for functions represented by a “neural
network with a continuum of Heaviside perceptrons”. Our second result (4.1) gives such
a representation with output weights corresponding to flows orthogonal to hyperplanes
determined by the input weights and biases. As a result, we show that the variation
with respect to half spaces of a sufficiently smooth, compactly supported function f
defined on R?, for d odd, is bounded above by a constant of order O(27)'~¢ times
the integral over parameters of all perceptrons of an integrand which is the absolute
value of the integral of the d-th directional derivative of f over the cozero hyperplane
of the affine functions determined by perceptron parameters (weight vector and bias).
So variation with respect to half-spaces is bounded above by the supremum of absolute
values of integrals of directional derivatives of order d over orthogonal hyperplanes
multiplied by a d-dimensional volume. For single variable functions our bound is
identical with a well-known bound on total variation, which in the 1-dimensional case
is the same as variation with respect to half-spaces.

Consequently, for d odd and f a compactly supported, real-valued function on R?



with continuous partial derivatives of order d, we can guarantee approximations for
Lo-norm with error rate at most O(ﬁ) by one-hidden-layer networks with n sigmoidal
perceptrons for any bounded sigmoidal activation function.

Our proof is based on properties of the Heaviside and delta distributions. We also
use a representation of the d-dimensional delta distribution as an integral over the unit
sphere in R? that is valid only for d odd. To obtain a representation for all positive
integers d, one could extend functions f defined on R? to R+ by composition with a
projection.

The remainder of the paper is organized as follows: Section 2 investigates functions
in the convex closures of parameterized families of continuous functions and integral
representations. Section 3 considers variation with respect to half-spaces, while section
4 gives an integral representation theorem and its consequence for a bound on variation.
Section 5 is about rates of approximation and dimension independence. Section 6 is a
brief discussion, while the proofs are given in section 7.

2 Approximation of functions in convex closures

Let R, NV denote the set of real and natural numbers, respectively.

Recall that a convex combination of elements sy, ..., s, (m € N) in a linear space
is a sum of the form 7", a;s;, where the a; are all non-negative and .7, a; = 1.
A subset of a vector space is conver if it contains every convex combination of its
elements; we denote the set of all convex combinations of elements of X by conv(X),
which is clearly a convex set, and call it the conver hull of X.

For a topological space X C(X) denotes the set of all continuous real-valued func-
tions on X and ||.||c denotes the supremum norm. For a subset X of R? and a positive
integer d C%(X) denotes the set of all real-valued functions on X with continuous
partial derivatives of order k; C*(X) the set of all functions with continuous partial
derivatives of all orders. For p € [1,00) and a subset X of R? L£,(X) denotes the
space of £, functions and ||.||, denote the £,-norm.

For any topological space X with a topology 7, we write ¢l.(A) for the closure of
a subset A of X (smallest closed subset containing A). So ¢lc denotes the closure in
the topology of uniform convergence and cl;, the closure with respect to £,-topology.
Closure of the convex hull is called the convex closure. For a function f: X — R the
support of f denoted by supp(f) is defined by supp(f) = cl.{x € X; f(x) # 0}. For
f:X = Rand A C X, f|a denotes the restriction of f to A; when it is clear from
context, we omit the subscript.

Jones [10] estimated rates of approximation of functions from convex closures of
bounded subsets of a Hilbert space. The following is a slight reformulation of his
result.

Theorem 2.1 Let H be a Hilbert space, with a norm ||.||, B a positive real number and
G a subset of H such that for every g € G ||g|| < B. Then for every f € cl(conv(G))
and for every natural number n there exists f, that is a convexr combination of n



elements of G such that
171+5B _ 28

N

To use this theorem to estimate the number of hidden units in neural networks,

1f = fall <

we need to investigate the convex closures of sets of functions computable by single-
hidden-unit networks for various types of computational units. Convex combinations
of n such functions can be computed by a network with n hidden units and one linear
output unit.

Several authors have derived characterizations of such sets of functions from integral
representations (e.g., Barron [1] used Fourier representation, Girosi and Anzellotti [8]
convolutions with signed measures). Here we formulate a general characterization of
this type for parameterized families of functions.

For XY topological spaces, a function ¢ : X xY — R, a positive real number B and
a subset J C X define G(¢, B, J)={f:J = R; f(x) = we(x,y);w € R,|w| < B,y €
Y}. So G(¢, B,J) consists of a family of real-valued functions on .J parameterized by
y € Y and then scaled by a constant at most B in absolute value.

Theorem 2.2 Let d be any positive integer and let f € C(R?) be any function that can
be represented as f(x) = [y w(y)d(x,y)dy, where Y C RF for some positive integer
k, w € C(Y) compactly supported and ¢ € C(R? x Y'). Then for every compact subset
J C R f € cle(conv(G(, B,J))), with B = [;. |w(y)|dy where J* = {y € Y;(Fx €
) (w(y)o(z,y) # 0)}.

To apply this theorem to perceptron type networks with an activation function
p: R — Rput Y =R x R and define ¢(x,v,b) = (v -x+b). Let (v, B,J) =
G(o, B, J). So &(v, B, J) denotes the set of functions computable by a network with
d inputs, one hidden perceptron with an activation function ¢ and one linear output
unit. Typically, ¢ is sigmoidal, i.e. it satisfies lim;—o. ¥(f) = 1 and lim;—_, ¥(1) = 0.

Corollary 2.3 Let ¢ : R — R be a continuous activation function, d be any pos-
itive integer and f € C(R?Y) be any function that can be represented as f(x) =
Jra [rw(v, ) (v -x +b)dbdv, where w € C(R? x R) is compactly supported. Then for
every compact subset J C R f € cle(conv(Eq(1, B, J))), where B = [;. [w(v,b)|d(v,b),
where J* = {(v,b) € R x R;(Ix € J)(w(v,b)p(v-x+b#0)}.

So for functions computable by perceptron networks with a “continuum” of hidden
units, we can find a suitable bound B for Jones’ theorem by taking B = [, |w(v, b)|d(v,b).

3 Variation with respect to half-spaces

Let ¥ denote the Heaviside function (d(x) = 0 for < 0 and d(x) = 1 for @ > 0).
It is easy to see that the non-constant functions in & (9, B,.J) are exactly the set
{g:J = R;g(x) =wdle-x+b),ec S wbe R, |w < B}, where S9! denotes
the unit sphere in R,



Let J C R? and let F(J) be a set of functions from J to R and 7 be a topology on
F(J). For f e F(J) put

V(f,r,J)=inf{B € R; f € cl;(conv(&(V, B, J)))}

and call V(f,7,J) the variation of f on J with respect to half-spaces and topology T.
For f: R — R, if f|; € F(J), then we write V(f, 7,J) instead of V(f|s,7,J).

It is easy to verify that when the topology 7 is induced by a norm, this infimum
is achieved, i.e., f € el (conv(E(D, V(f,7,J),J)))}. Also, for every f,g € F(J),
V(f+g,7,J) <V(fr,J)+V(g,7,J) and for every « € R, V(af,7,J) = |a|V(f,7,J]).
In particular, V(f 4+ ¢,7,J) = V(f,7,J) + ¢ for every constant c.

Let p € [1,00]. Since for every X C L,(J) we have cle(X) C ¢l (X), clearly
V(f, Ly d) S V(£.C.).

Recall that for a function f: R — R and an interval [s, 1] C R total variation of f
on [s, 1] denoted by T(f,[s,1]) is defined by T'(f, [s,t]) = sup{>r_, |f(tiz1) — F(t:)];s =
ty < ... <t =1tk € N} (see eg. [13]). For functions of one variable satisfying
f(s) = 0, the concept of total variation on [s,?] coincides with the concept of variation
with respect to half-spaces (half-lines) and the topology of uniform convergence, since
T(f,[s,t]) = V(f,C,[s,1]) (see Barron [2], also Darken et al. [5, Theorem 6]).

When generalizing to functions of several variables, there is no unique way to extend
the notion of total variation since we lose the linear ordering property. One well-known
method divides d-dimensional cubes into boxes with faces parallel to the coordinate
hyperplanes. One defines T(f,J) = sup{>%, |f(J;)|, where {J;;i = 1,....k} is a
subdivision of .J into boxes }, f(J;) = Z?il(—l)”(j)f(xij), {x;57 = 1,...,2%} are the
corner points of J; and v(j) = £1 is a parity [13]. For d > 2 this concept is different
from Barron’s variation with respect to half-spaces. For example, the characteristic
function y of the set {(z1,z,) € [0,1]%; ;1 > )} has the variation w.r.t. half-spaces
and any topology equal to 1, while the total variation 7'(y,[0,1]?) is infinite.

For a differentiable function, total variation can be characterized as an integral of
the absolute value of its derivative. Formally, if J C R is an interval and f’ € £4(.J)
then T'(f,J) = [, («)|dx [13, p.242]. The corollary below extends this to variation
with respect to half-spaces.

Theorem 3.1 Let d be any positive integer and let f € C(R?) be any function that
can be represented as f(x) = [sam1 [pw(e,b)d (e - x + b)dbde, where w € C(ST™! x R)
is compactly supported. Then for every compact subset J in R* and every p € [1,00)
f €z, (conv(Eq(V, B, J))), where B = [}, |w(e,b)|d(e,b), where J* = {(e,b) € 577 x
R;(Ix € J)(w(e,b)d(e-x+b) #0)}.

Corollary 3.2 Let d be any positive integer and let f € C(R?) be any function that
can be represented as f(X) = [gur [rw(e, b)d(e-x+ b)dbde, where w € C(S™ x R) is
compactly supported. Then for every compact subset J C RY and for every p € [1,00)
V([ Ly, J) < [y lwle, b)ld(e, b).




4 Integral representation theorem

To estimate variation with respect to half-spaces using Corollary 3.2 we need an integral
representation theorem of the form of a neural network with continuum of Heaviside
perceptrons {J(e - x + b);e € S¥ 1 b € R}. The following theorem provides such a
representation with output weights w(e, b) corresponding to orthogonal “flows of order
d” of f through cozero hyperplanes Hey, = {y € R%e-y +b=0}.

Recall [17] that the directional derivative Def(y) of f in direction e is defined by
Def(y) = limi_o w and the k-th directional derivative is inductively defined
by D((gk)f(y) = De(D((gk_l)f(y)). It is well-known (see e.g., [17, p.222] ) that Def(y) =
v f(y)-e. More generally, the k-th order directional derivative is a weighted sum of the
corresponding k-th order partial derivatives, where the weights are polynomials in the
coordinates of e multiplied by multinomials [6, p.130]. Hence existence and continuity
of partial derivatives implies existence and continuity of directional derivatives.

Theorem 4.1 For every odd positive integer d every compactly supported function
f € CYRY) can be represented as

o ==ai [ | ( N De(d)f(y)dy) J(e - x + b)dbde,

d—1
—-17 2
where ag = 3(En)aT -

Our proof of Theorem 4.1 makes use of the theory of distributions. For a positive
integer k, denote by 6, the delta distribution operating by convolution as the identity
on the linear space D(R") of all test functions (i. e. the subspace of C**(R¥) containing
compactly supported functions). For d odd, one can represent the delta distribution
64 as an integral over the unit sphere 64(x) = a4 [ga- 51(d_1)(e -x)de [4, p.680] ( by
51(d_1) is denoted the d-1-st distributational derivative of 6;). We also utilize the fact
that 6; is the first distributional derivative of ¥.

Extension to all compactly supported functions with continuous partial derivatives
of order d follows from a basic result of distribution theory: each continuous com-
pactly supported function can be uniformly approximated on R? by a sequence of test
functions [19, p.3].

Integral representation 4.1 together with Corollary 3.2 give the following estimate
of variation with respect to half-spaces.

Theorem 4.2 For every odd positive integer d, a compact subset J C R¢, f € C4{R?)
and for every p € [1,00)

VL) < e [ | [ D31y d(e.n

where |ag| = (1/2)(27)' =% and J* = {(e,b) € 57! x R;(Ix € J)(w(e,b)d(e-x+b) #
0)}.



It is easy to verify that when d = 1 Theorem 4.2 gives estimate V(f,C,J) <
J51f/(b)|db which agrees with the above mentioned characterization of total variation
for functions of one variable.

Estimating the integrals in Theorem 4.2 we get the following corollary. We write
M\t to denote the Lebesgue measure on RE.

Corollary 4.3 For every odd positive integer d, a compact J C R?, f € CYR?) with
supp(f) a d-dimensional cube and for every p € [1,00)

V(Lo ) < V2Jas Ml ) asupp(F) sup{| D (v) |y € supp(f). e € 5771},

Using the Radon transform, Ito [9] obtained an integral representation as in Corol-
lary 3.2. Our proof of Theorem 4.1 uses a different approach and describes coefficients
w(e,b) in terms of directional derivatives.

5 Dimension-independent rates of approximation
by neural networks

Since ¥ can be approximated in £,-norm (p € [1,00)) by a sequence of steep sigmoidals,
estimates of variation with respect to half-spaces can be used to bound approxima-
tion error achievable by one-hidden-layer neural networks with o perceptrons for any
bounded sigmoidal activation function o.

Lemma 5.1 Let o : R — R be a bounded sigmoidal function. Then for every positive
integer d, for every compact J C R and for every p € [1,00)

cle,(conv(&(V, B, J))) C clg,(conv(&y(o, B, J))).

Let f € C4(R?) be a compactly supported function and J C R? be compact. Denote
by By the estimate of V/(f, £,, J) given by Theorem 4.2, i.e. By = |aa| [5+ |[5,, De(d)f(y)dy‘ d(e,b).

Theorems 2.1, 4.2 and Lemma 5.1 imply the following estimate of rates of approx-

imation by one-hidden-layer networks with sigmoidal perceptrons.

Theorem 5.2 Let d be an odd positive integer, f € CY(R?) compactly supported and
o : R — R be a bounded sigmoidal function. Then for every n € N there exists
a function f, computable by a neural network with a linear output unit and n o-

perceptrons in the hidden layer such that ||f — full2 < Bf%w.

6 Discussion

A result of DeVore et al. [7] shows that an upper bound on partial derivatives is not
sufficient to guarantee dimension-independent rates of approximation by one-hidden-
layer neural networks. Our results show that it ¢s sufficient to bound the d-th directional
derivatives multiplied by the product of the d-dimensional volume of the support of the



function and the d-dimensional volume of J*. Since d-dimensional volume can grow
exponentially with increasing dimension, to keep V(f,L2,J) bounded by the same
bound B, the flows of order d must be decreasing with increasing d.

Thus, the dimension-independent rates of approximation must be interpreted and
used carefully. The constant factor 2B can at realistic scales, dominate the ﬁ factor.
The size of spaces of functions that can be approximated with rates of approximation
O(ﬁ) is decreasing with increasing input dimension d.

7 Proofs

First, we prove several technical lemmas.

Lemma 7.1 Let X,Y besets, J C X, ¢ : X XY — R be a function and B be a positive
real number. Then conv(G(¢, B, J)) = {f : J — R;f(z) = X wio(x,y:);y: €
Yiw € R, 3 |lwi| < B}

Proof. It is easy to verify once you recall that any convex combination of elements,
each of norm not exceeding B, also is bounded in norm by B. O

Lemma 7.2 Let (F(X),||.||) be a normed linear space of real-valued functions on X,
f:X =R, {fi: X - R;ie N} be a sequence of functions such that lim;_., f; = f
in ||.||. Let ¢ : X xY — R be such that sup,y ||¢(z,y)|| < co. Let {Bi;i € N}
be a sequence of real numbers such that lim;_... B; = B and let for every i €¢ N
fi € cl(conv(G(¢, B, X)), where ¢l denotes the closure in the topology induced by ||.]|.
Iflim;—o fi = f in ||.||, then f € cl(conv(G(o, B, X))).

Proof. Put ¢ = sup,y [[¢(z,y)||. For every ¢ > 0 choose i. € N such that for
every ¢ > i. |B— By < §and ||f — fil| < §. Since fi € cl(conv(G(o, B;, X))) there
exists ¢; € conv(G(¢, B;X)) such that || f; — ¢:i]| < 5. So gi(x) = 372, asjui;o(x, ys5),
where a;; are coefficients of convex combination and |u;;| < B;. Put 4;; = u;; — =
for u;; > 0 and t;; = wy; + 5 for uy; < 0. Put gi(x) = 271 agté(x,yq;). Since for
alli € M and j € {1,...,m;} & < B we have §; € conv(G(4, B, X)). For every
§2 0 i S 1 — B I = ol 1 = il < 2 4 3% a2 |6, wi] < = So.
f € cl(conv(G(¢, B, X))). O

Proof of Theorem 2.2. Let {P;;i € N} be a sequence of partitions of J* such
that for every 1 € N' Py is refining P; and diameters of all sets from P; are smaller
than n;, where lim;_..n; = 0. Let P, = {P;;;7 € I} and y,;; € P;;. For x € J, put
fZ(X) = Z]EL‘ w(y”)qﬁ(x,y”))\(ﬂ) and let BZ = Z]EL‘ w(y”)|)\(P”) By Lemma 71,
for every i € N f; € conv(G(9, B;, J)).

Since lim,;_., n; = 0, the sequence { f;;i € N'} converges to f on J pointwise. Since
w is continuous and compactly supported, the integral [;. [w(y)|dy = B exists and
lim; .. B; = B. So by Lemma 7.2 it is sufficient to verify that {f;;i € N} converges
to f uniformly on J.




It is well-known (see e.g. [11, p. 232]) that an equicontinuous family of functions
converging pointwise on a compact set converges uniformly. For some n > 0 choose
20 such that for every ¢ > g % < 1+ 7. We will show that continuity of w¢ implies
equicontinuity of { fi;¢ > ip,7 € N'}. Indeed, fore > 0 put &’ = 1-|6—77' Since J is compact,

w¢ is uniformly continuous on .J. Hence there exists v such that if |x — x| < v
6/

then for every y € Y |w(y)o(x,y) — w(y)é(x',y)| < F. Hence for every ¢ > ¢
[fi(x) = F(X)] = Zjeu

w(yii)IMPip)|o(x, yij) — ¢(X, yiy)| < B < e. O
Proof of Theorem 3.1. Let ¢ : R — R be the logistic sigmoidal function, i.e.
o(t) = 1= For every m € N put f(x) = [sa-1 [ w(e, b)o(m(e - x + b))dbde.

It is easy to verify that lim,, .. frn = f in L£,(J). Let {P;;i € N'} be a sequence of
partitions of supp(w) as in the proof of Theorem 2.2. and let P; = {P;;;j € I;} and let
(€ij, bij) € Pyj. Put Bi = 3¢, [wleq, bij)[MPj) and frni(x) = 32 5¢p, weij, bij)o(m(ei;-
X + bij)A(F;5)-

Since J is compact we have as in the proof of Theorem 2.2 for each m € M
lim; oo frmi = [ uniformly on J. Put ¢, = sup{|loc(m(e-x+ b)) —d(e-x+b)||,;e €
S4=1'b € R} where ||.||, denotes the £,-norm on J. Since lim,, .o f, = f uni-
formly, lim;_. fini = fn01n £,, im;_ B; = B and lim,,,_., ¢,, = 0, we can construct
recursively two strictly increasing sequences of natural numbers {m,;n € N} and
{in;n € N} such that for all n € N ||f = fonlly < 555 [finw = frminlle < 3= and
CmnBin < 31—n

For every n € N put h,(x) = ¥jes w(e;, bi,j)0(€i,; - X 4 by, j)A(F,;). Since
for all n € N h, € conv(&(Y, B;,,J) by Lemma 7.2 it is sufficient to verify that
lim, oo by = [ in £,(J). Indeed, for every n € N we have || f — hu|l, < [|f = fanllp +

To prove Theorem 4.1 we need two technical lemmas. The first one can be found

in [4, p.680].

Lemma 7.3 For every odd positive integer d

ba(x) = a/sd_l & V(e - x)de,

d—1

—1) 2

where ag = 2T

Lemma 7.4 For all positive integers d,k, for every function f € CY(R?) and for every
unit vector e € R and for every b€ R % Jtrey fV)dy = [, (De(k)f(y)) dy.

Proof. First, we will verify that the statement is true for & = 1:

9 e
3 S T3}y = lingi~ ( f Jwdy = f(y)dy) _

lim ¢~ /Heb(f(y +te) — f(y))dy = / mt™(f(y +te) = f(y)) = | Def(y)dy.

t—0 Hep t—0 Hey



Suppose that the statement is true for £ — 1. Then

o 1
_- — lim#™ (k=1) _
o sy =t ([ Dy - [

lim ¢t /Heb(De(k_l)f(y+te)_De(k—l)f(y))dy _ /He lingt_l (De(k—l)f(y + te) — De(k‘l)f(y)) —

t—0

| D py)dy.
Hep
O

Proof of Theorem 4.1. We first prove the theorem for test functions. For f € D(R?)

we have f(x) = (f*64)(x) = [ra [(2)04(x —2)dz (see [19]). By Lemma 7.3 64(x —z) =

aq g1 6TV (e-x — e -z)de. Thus, f(X) = aq [sa-1 fra [(2)6;"V(x - e — z - e)dzde.

So rearranging the inner integration, we have f(x) = ag fsi-1 [r [3,, F(y)6, Y (x -

e + b)dydbde, where He, = {y € R;y - e = —b}. Let u(e,b) = aq [y, f(y)dy, so

F(X) = [oar [ru(e,0)8,"V(x - e+ b)dbde.

By definition of distributional derivative [ u(e, b)5l(d_1)(e-x—|—b)db = (=) fn %51(6-

x + b)db for every e € S and x € R%. Since d is odd, we have [y u(e, b)5l(d_1)(e .

x + b)db = [ 24V s (e x + b)db.

Hbd—1
Since the first distributional derivative of the Heaviside function is the delta distri-

bution [19, p.47], it follows that for every e € S9! and x € R? [, u(e, b)5l(d_1)(e X+
bydb = — [, 24t (e . x + b)db.

5bd

By Lemma 7.4 adggﬁ’b) = g—;fHeb fy)dy = [u,, Do f(y)dy. Hence, f(x) =
—adfga-1fp (fHebDe(d)f(Y)dY) V(e x + b)dbde.

Let f € CY(R?) be compactly supported. Then there exists a sequence {fi;7 € N}
of test functions converging to f uniformly on R [19, p.3]. It is easy to check that
for every e € S9! {De(d)fi;i € N} converges uniformly on R? to DD . Hence
we can interchange limit and integration [6, p.233]. So lim,; .. [y, De(d)fi(y)dy =
St D f(y)dy. Put gi(x,e,b) = St (De(d)fi(Y)dY) J(e-x +b) and g(x,e,b) =
St (De(d)f(y)dy) J(e-x+b). It is easy to see that for every x € R? lim,;_.. gi(x, e, b) =
g(x, e, b) uniformly on S“"!xR. Hence for every x € R? f(x) = lim; o, [ga—1 [ g:(X, bfe, b)dbde =
Joar Jr g(x,e,b)dbde = [is [ (fuo, Do F(y)dy)) (bfe - x + b)dbde (using again
interchangebility of integration and limit for a sequence of functions converging uni-
formly). O

Proof of Corollary 4.3. For any hyperplane H C R, A\y_1(X N H) < cq( X)Aa(X),
where ¢4(X) is the geometric constant that describes the ratio of the largest possible

Aa—1(X N H) divided by the smallest Ay_1(X"), where X’ is a face of X. Ball [3] proved
that for every d and for every d-dimensional cube X ¢;(X) = /2. O

Proof of Lemma 5.1. Let f € clg (conv(&(Y, B,J))). Then for every e > 0 || f —
Sk a;ud(e;x+b;)|[, < 5 where a; are coeflicients of convex combination and all |u;| <

B. By boundedness of o, for every i € {1,...,k} limy_c o(m(e;x+0b;)) = J(e;-x+b;)

9



in £,(J). So there exists mo € N such that for every m > mg and for all i = 1,...,k
lo(m(e; -x + b;)) — (e - x + b;)||, < 55. Hence ||f — SF L auio(m(vi - x + b)), <
1f =2 asuid(ei - x + b)l, + || Dy asui(D(e; - x + bi) — o(mfe; - x + by, < e. O
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