
Contributed article

Encoded pattern classification using constructive learning algorithms
based on learning vector quantization

C. N. S. Ganesh Murthy1, Y. V. Venkatesh*
Computer Vision and Artificial Intelligence Laboratory, Department of Electrical Engineering, Indian Institute of Science, Bangalore–560012, India

Received 13 December 1996; accepted 4 August 1997

Abstract

A novel encoding technique is proposed for the recognition of patterns using four different techniques for training artificial neural
networks (ANNs) of the Kohonen type. Each template or model pattern is overlaid on a radial grid of appropriate size, and converted to
a two-dimensional feature array which then acts as the training input to the ANN. The first technique employs Kohonen’s self-organizing
network, each neuron of which is assigned, after training, the label of the model pattern. It is found that a graphical plot of the labels of the
neurons exhibits clusters (which means in effect that the feature array pertaining to distorted versions of the same pattern belongs to a specific
cluster), thereby justifying the coding strategy used in this paper. When the new, unknown pattern is input to the network, it is classified to
have the same label of the neuron whose corresponding model pattern is closest to the given pattern.

In an attempt to reduce the computational time and the size of the network, and simultaneously improve accuracy in recognition,
Kohonen’s learning vector quantization (LVQ) algorithm is used to train the ANN. To further improve the network’s performance and to
realize a network of minimum size, two constructive learning algorithms, both based on LVQ, are proposed: (1) multi-step learning vector
quantization (MLVQ), and (2) thermal multi-step learning vector quantization (TLVQ). When the proposed algorithms are applied to the
classification of noiseless and noisy (and distorted) patterns, the results demonstrate that the pattern encoding strategy and the suggested
training techniques for ANNs are efficient and robust. For lack of space, only the most essential results are presented here. For details, see
Ganesh Murthy and Venkatesh (1996b).q 1998 Elsevier Science Ltd. All rights reserved.

Keywords:Kohonen network; Learning; Learning vector quantization; Pattern classification; Pattern encoding; Self-organization

1. Introduction

Many models of artificial neural networks (ANNs) have
been proposed to solve the problem of automatic recogni-
tion of patterns. They seem to offer better performance and
distinct computational advantages over other non-neural
models in handling this problem. An ANN consists of inter-
connected elementary processors which interact at discrete
time steps, and is specified by (1) its node characteristics
(response function) and (2) its dynamics (or the updating of
the neurons). A neuron in an ANN performs a weighted sum
of its inputs, compares this with an internal threshold value,
and turns on (or fires) if this level is exceeded; otherwise it is
off. The state of each processor at any instant is determined

by the states of other processors connected to it, and is
weighted by the strengths of the appropriate links. The
ANN is ‘taught’ the transformation (F) of a given input to
the (desired) output by changing the weights of the links
according to a well-defined strategy.

The perceptron (Minsky and Pappert, 1969) was the
earliest neural architecture, comprising a single layer of
units, meant to classify input patterns into two or more
classes. But it can ‘learn’ to recognize only linearly separ-
able patterns. The multilayer perceptron (MLP) (Lippmann,
1987), which overcomes the limitations of the perceptron,
contains neurons whose states are real, and the response
function is sigmoidal. However, an MLP treats patterns as
vectors, and such an architecture cannot satisfactorily recog-
nize shifted/scaled/rotated patterns. For example, consider
the pattern in Fig. 1(a) and its distorted versions in Fig. 1(b)
and (c). The MLP has been found to be unsatisfactory in
analysing such patterns, because it treats each variation of
the same pattern as a distinct vector.

* Requests for reprints should be sent to Professor Y. V. Venkatesh. Tel.
0091 80 309 2572, 334 1566; Fax: 0091 80 334 1683, 334 2085.

1 Present address: Department of Electrical Engineering, University of
Victoria, Victoria, BC, Canada

0893–6080/98/$19.00q 1998 Elsevier Science Ltd. All rights reserved
PII S0893-6080(97)00098-1

Neural Networks 11 (1998) 315–322

Neural
Networks

Pergamon

In general, ANNs cannot be directly used for distortion-
invariant recognition. The patterns first have to be pre-
processed to extract invariant features before the ANNs
are used to classify. The present paper deals with the encod-
ing of patterns in such a way as to achieve their recognition
by the ANN, in spite of changes (to a limited extent) in
scale, shift and rotation of the input patterns.

The paper is organized as follows. After a brief survey of
recent literature on ANNs in section 2, we present our pro-
posed technique for pattern recognition and illustrate its
application. In section 3 we deal with (1) learning vector
quantization (LVQ) and its multi-step version, and (2) train-
ing the ANN with the thermal perceptron rule. In section 4,
we analyse the experimental results obtained by the pro-
posed method.

2. ANNs and pattern recognition

In an attempt to imitate human vision, pattern recognition
research has shifted emphasis from (traditional) image
analysis-based techniques to ANN’s. Yoshida (1993)
describes an ANN with a neocognitron type of architecture
(see Fukushima, 1991), which is trained to recognize hand-
written alphanumeric characters. The ANN of Fukushima
(1991) consists of an input layer and four or five intermedi-
ate layers before the final output layer. The middle layers are
trained using an unsupervised learning techique based on a
combination of competitive and Hebbian learning schemes.
See Ganesh Murthy and Venkatesh (1991) and Ganesh
Murthy and Venkatesh (1996a) for results of some experi-
ments on the neocognitron.

For a small-sized input array, Nakanishi and Fukui (1993)
propose a multilayered ANN using hierarchical feature
types and their locations for training and recognition.
Kojima et al. (1993) describe a handwritten numeric char-
acter recognition system, the main classifier of which is a
fuzzy vector quantizer, involving an improved version of
the vector quantization algorithm. Features are extracted
from the pre-processed input pattern, and used for training
the network. Zufira (1993) presents some improvements on
a neural network structure of the multilayered perceptron,
with a pre-processing network to perform translation-,
rotation- and scale-invariant pattern recognition.

You and Ford (1994) propose a three-stage network
architecture for invariant object recognition and rotation
angle estimation. However, no specific features are

extracted. Ghorpade and Ray (1993) deal with a new
adaptive and connectionist architecture for English alpha-
betic patterns.

In terms of feature extraction, the work which has some
relation to our coding strategy is that of Jian and Chen
(1992), who proposed a non-neural system for recognition
of handwritten Chinese characters, containing short line
segments. The input is a two-dimensional pattern which is
pre-processed—mainly thinning and line approximation—
to extract the following features: the centre point coordinate,
the slope and the relations between the line segment and its
neighbouring line segments. Classification of these charac-
ters is made in three stages. First, short line segments are
extracted, for which a new efficient algorithm is proposed
(based on accumulated chain codes) for line approximation.
A coarse classification is made using the directions of the
short line segments (based on the histogram of their quan-
tized directions). In the second stage, feature extraction,
features of each character are computed as indicated
above. In the last stage, matching, dynamic programming
is first used to calculate the similarity between a segment of
each of the input and reference characters, using the feature
vectors of the segments. The overall similarity between the
two characters is then computed for the next operation of
recognition. However, the effects of scaling and rotation are
not discussed.

For other published results, including those on invariant
pattern recognition using neural networks, see Fukumi et al.
(1992), Khotanzad and Lu (1990), Khotanzad and Hong
(1990), Srinivasa and Jounch (1992) and Perantonis and
Lisboz (1992).

3. A new technique for pattern encoding and recognition

In contrast to the results in the literature, we present a
technique to convert a pattern to a feature array in such a
way that the encoded version of the pattern is invariant to
pattern transformations such as shift, scaling and (moderate)
rotation. A distinct departure from the traditional published
methods is the use of this array of codes as the training
vector to train the self-organizing network, the neurons of
which are appropriately labelled. The plot of the labels is
then checked for the formation of clusters of the labels of the
neurons. With this procedure, we intend to confirm the rele-
vance or otherwise of the feature array to pattern classifica-
tion. The steps involved in encoding the given pattern are as
follows:

• Find the centroid (h,k) of the input pattern P (Fig. 2a).
• Find the furthest point (p,q) of the pattern P from the

centroid (h,k) (Fig. 2a).
• Now place the pattern P on the radial grid with (h,k) as

the centre and withd[(h,k),(p,q)], the Euclidean distance
between the points (h,k) and (p,q), as the radius of the
outermost circle (Fig. 2b).

Fig. 1. A pattern and its distorted versions.

316 C.N.S. Ganesh Murthy, Y.V. Venkatesh/Neural Networks 11 (1998) 315–322

• Count the number of points in each of the radial grids to
obtain the feature array, inp[][]. Normalize inp[][] with
respect to max(inp[][]).

For details, including the pseudocode for obtaining the
input array of codes inp[][] from the input pattern P, see
Ganesh Murthy and Venkatesh (1994, 1996b). Fig. 3(a)
shows a subset of exemplar patterns, and Fig. 3(b) a subset
of the typical random variations of the exemplars, from
which the inp[][] are calculated and used for training.

3.1. Training of the self-organizing network

As the first stage in evolving an efficient recognition
strategy, the array inp[][] obtained in the manner described
above is then fed to a Kohonen-type self-organizing net-
work (Kohonen, 1990a). After training, each neuron is

given the label of the pattern to which it responds most,
and then the plot of the labels is checked for the formation
of clusters. If the plot exhibits clusters, the aptness of the
feature extraction procedure is established.

In our simulation studies, inp[][] of the given pattern has
been calculated using a grid in which the angular measure
has been quantized to 12 levels, and the radial distance
to five. Hence the number of weights for each neuron is
12 3 5. In the actual implementation, the input array
inp[][] has been obtained for 1000 variations of 28 different
exemplar patterns (i.e. a total of 28,000 patterns).

In the creation of variations of the exemplars, each
exemplar (of size 313 31) is subjected to random indepen-
dent magnifications (in thex andy directions) and rotation.
The value of magnification ranges from 1.0 to 2.0, and the
random rotation from¹ 158 to þ 158. In Fig. 4, typical
examples of the variations of the patterns are shown. These
28,000 inp[][] arrays are randomly (and repeatedly) selected
to train a self-organizing network with 253 25 neurons. See
Ganesh Murthy and Venkatesh (1996b) for details of the
training procedure. At the end of maxiter¼ 2,800,000 itera-
tions, each of the 28,000 inp[][] arrays will have been
selected,100 times. The next step after training the self-
organizing network is to label each neuron corresponding to
the exemplar which it represents.

3.2. Labelling of the neurons

The neurons are labelled to correspond to the patterns

Fig. 2. (a) Pattern with the furthest point (p,q) and the centroid (h,k).
(b) Pattern in (a) overlaid on the radial grid.

Fig. 3. (a) Subset of the 28 exemplars used in simulation. (b) Subset of the typical variations of the exemplars used for training and testing. (c) Examples of
severely distorted patterns used to demonstrate the performance of the proposed techniques.

317C.N.S. Ganesh Murthy, Y.V. Venkatesh/Neural Networks 11 (1998) 315–322

which they represent. To this end, each exemplar is
subjected to random variations, and the coded input array
inp[][] of the distorted exemplar is fed to each neuron of the
network in the following sequence. First, consider a specific
neuron at location, say, (i,j). Feed it with a set having one
distorted version per exemplar pattern. Note the label of the
(distorted) exemplar that is closest to the weight vector of
the neuron. Next, repeat this process several times with the
next set of distorted exemplars. Keep track of the number of
times each (distorted) exemplar is closest to the neuron
under consideration. Identify the exemplar that gets the
maximum count, and label the neuron at location (i,j)
correspondingly.

From Fig. 4, it is seen that the labels of the 253 25
neuron array do exhibit the formation of clusters, thereby
admirably justifying the coding method used. It is also evi-
dent from the same figure that the feature arrays of the
distorted versions of the same pattern form clusters.

3.3. Discussion of the results

To test the network, an inp[][] array for 1000 random
variations of each exemplar is fed to it. This procedure is
repeated three times. Typical results are summarized in
Table 1. The network is also tested for its performance
with noisy input patterns. Noise, which is introduced into
the pattern by flipping the pixels with a specified probabil-
ity, gives rise to breaks and isolated dots in the pattern.
However, isolated dots can easily be removed by a threshold

scheme, and the breaks can be filled in by using simple
morphological techniques Serra (1982), such as dilation
followed by thinning. For each exemplar, 1000 variations
are used, and the entries denote the number of misclassi-
fications for the cases NL (noiseless), 10NM (10% noisy
patterns pre- processed using morphological operations)
and 20NM (20% noisy patterns pre-processed using
morphological operations).

The first column for each test contains the results of the
experiments when noiseless patterns are used. The second
and third columns contain the results when 10% and 20%
noisy patterns are first pre-processed by morphological tech-
niques and then used. Table 1 indicates that the worst case
for noiseless patterns is with respect to pattern P5 where
,150 variations are misclassified out of 1000. The worst
case for 10% and 20% noisy patterns (after pre-processing)
is found to be,190/1000 and,210/1000 respectively.
To save space, results for only a subset of patterns (P1
to P14) are shown, whereas the total misclassifications
and % misses (the last two rows in Table 1) have been
computed on the basis of the results for the full set of 28
patterns.

The percentage misclassification over all patterns for the
noiseless case is found to be only,3.0, which is believed to
be very impressive. In contrast, for noisy patterns with 10%
and 20% noise, the corresponding number is,3.8. This
clearly shows that the proposed self-organization scheme
can classify the patterns quite successfully. Further results
of our experiments, with the angular measure and the radial

Fig. 4. The labels of the 253 25 neurons (after training and labelling), indicating the clusters formed.

318 C.N.S. Ganesh Murthy, Y.V. Venkatesh/Neural Networks 11 (1998) 315–322

distance each quantized to different levels, are given in
Ganesh Murthy (1996).

4. Other schemes of learning

In an attempt to improve on the learning algorithm
described above, but using the same encoding technique,
we now summarize the results obtained from other schemes
of learning, along with the corresponding ANNs; for details,
see Ganesh Murthy and Venkatesh (1996b):

• Kohonen’s learning vector quantization (LVQ)
• First constructive algorithm based on LVQ, called the

multi-step learning vector quantization (MLVQ).
• Second constructive algorithm based on LVQ, called the

thermal multi-step learning vector quantization (TLVQ).

4.1. Training using the LVQ algorithm

We apply Kohonen’s learning vector quantization algo-
rithm (LVQ) (Kohonen, 1990b) to learn recognition of pat-
terns, using the feature arrays described in the previous
section. To this end, we train an array of five neurons per
pattern with the help of the LVQ algorithm, using 10, 50,
100 and 200 variations of the given patterns, and analyse the
results for both noiseless and noisy patterns. For details of
the technique, see Ganesh Murthy and Venkatesh (1996b).

It has been found that the LVQ is faster than Kohonen’s
self-organization scheme, because in each iteration (of the
LVQ) only one neuron needs to have its weight updated.
Furthermore, the LVQ performs better with fewer neurons
than Kohonen’s. After 100,000 number of repetitions of step
3, the training is stopped. Typically, training takes,40 s on

an HP-9000/715 workstation to complete the required num-
ber of iterations. On the basis of the results obtained by
testing the network with noisy patterns and pre-processed
noisy patterns, it is found that the performance of the LVQ is
superior to that of Kohonen’s self-organizing network.

In an attempt to improve the LVQ technique, we propose
two new variants for a step-by-step constructive design of
the network. The variants are superior to LVQ in terms of
training speed and accuracy.

4.2. Multi-step learning vector quantization

In the LVQ, our choice of five neurons per class is appar-
ently ad hoc. We now present a technique to construct sys-
tematically a multilayered neuronal network with the
required number of neurons to accomplish the classification
of patterns. First, we start with a network having only one
layer of neurons, with one neuron representing each class.
We use this network to classify correctly as many training-
set patterns as possible. If there are still any wrongly classi-
fied training-set patterns, we add another layer of neurons to
the network. The training of this layer is done using only the
patterns that are not unambiguously classified in the pre-
vious layer. We repeat the process until all the training set
patterns are correctly classified.

This technique enables one to develop a network of the
required size systematically, thereby avoiding ad hoc
assumptions. As before, the network is trained withT ¼

10, 50, 100, 200, and for each case the network is tested
with 3000 random variations of the patterns. For a descrip-
tion of the testing scheme, see Ganesh Murthy and
Venkatesh (1996b). Further improvement is achieved by a
multi-step scheme using the ‘thermal perceptron’ (TP)
learning rule which follows.

Table 1
Results of the three tests on the self-organizing network after training

Pattern Test 1 Test 2 Test 3

NL 10NM 20NM NL 10NM 20NM NL 10NM 20NM

P1 0 0 0 0 0 1 0 0 0
P2 30 33 20 28 27 38 29 35 31
P3 8 28 30 13 40 33 16 35 34
P4 14 22 20 24 16 21 20 23 22
P5 143 190 204 139 208 216 155 187 208
P6 0 0 0 0 0 0 0 0 2
P7 9 3 11 7 3 10 10 2 9
P8 0 0 0 0 0 0 0 0 2
P9 42 38 57 47 63 65 45 34 49
P10 0 0 1 0 2 1 0 0 2
P11 6 9 10 4 8 4 6 6 11
P12 1 1 3 0 3 5 0 2 5
P13 29 35 31 50 43 39 28 37 42
P14 7 23 29 9 23 26 5 26 30
… … … … … … … … … …
Total 823 1035 1037 856 1022 1139 893 1024 1085
% Misses 2.94 3.70 3.70 3.06 3.65 4.07 3.19 3.66 3.88

319C.N.S. Ganesh Murthy, Y.V. Venkatesh/Neural Networks 11 (1998) 315–322

4.3. Multi-step scheme trained with the TP learning rule

The second constructive technique uses the TP learning
rule (Frean, 1992) to modify the weights instead of the LVQ
algorithm. The result is a significant improvement in
performance compared with the MLVQ. The TP, which is
a simple extension of Rosenblatt’s perceptron learning rule
for training individual linear threshold units, finds stable
weights for linearly separable as well as non-separable pat-
tern sets. The learning rule stabilizes the weights (learns)
over a fixed training period, and tries to classify correctly as
many patterns as possible.

The perceptron convergence theorem (Minsky and Pappert,
1969) states that if there exist sets of weights for which the
classification is perfect, then the PLR converges to one such
set after a finite number of pattern presentations. The set of
patterns for which such a weight set exists is known to be
linearly separable. Clearly, when the pattern set is not line-
arly separable (i.e. when there is no weight set for which the
classification is perfect), the weights do not converge under
PLR. In such a case, it would be worth while to come up
with a learning rule by which the weights converge while as
many patterns as possible are correctly classified.

In the following, theith element of an input pattern is
denoted byy i, and the associated weight byWi. In response
to a given pattern, a perceptron goes into one of the two
output states given by:

o¼
1(ON) if f . 0

0(OFF) otherwise

(

wheref ¼
∑N

i ¼ 1 Wiyi andN is the dimension of the pattern
vector.

The difficulty with the PLR is that wheneverf is too

large, then the changes in the weights needed to correct
this error often misclassify the other patterns that were cor-
rectly classified previously. One solution to overcome this
problem is to make the change in weights dependent onf in
such a way that the weight changes are biased towards
correcting errors for whichf is small. The thermal percep-
tron (TP) learning rule is used as follows:

DWi ¼ a(tm ¹ om)ym
i e¹ lfl=Q

The parameterQ determines the strength of attenuation for
largef: a high value ofQ means less attenuation, and a low
value ofQ more attenuation. IfQ is very close to zero, the
weights are frozen at their current values. In practice,Q is
started off with some high value, and gradually reduced to
zero with iteration number, thus stabilizing the weights.
When used for linearly non-separable patterns, the TP learn-
ing rule would give a stable set of weights, with the property
that as many patterns as possible would be correctly
classified.

The TP learning rule is adapted to develop the thermal
multi-step learning vector quantization (TLVQ). When it is
applied to linearly non-separable patterns, it gives a stable
set of weights, thereby classifying correctly as many pat-
terns as possible. As a consequence, the above modification
enables the network to improve its performance signifi-
cantly. Furthermore, the size of the network is reduced,
and in fact on most occasions only one layer of neurons is
sufficient to classify the training set patterns completely.

To highlight the nature of the results obtained, only one
set of peformance results is presented in Table 2. For other
results, see Ganesh Murthy and Venkatesh (1996b). The
testing is carried out using noiseless, noisy and pre-
processed noisy patterns, and the training with 200 varia-
tions of each pattern, i.e. 2003 28 patterns. The MLVQ

Table 2
Performance of LVQ, MLVQ and TLVQ when tested with 3000 variations of each pattern, i.e. a total of 30003 28 patterns

Class Noiseless 10% Noise 10% Noiseþ morphology

LVQ MLVQ TLVQ LVQ MLVQ TLVQ LVQ MLVQ TLVQ

P1 11 43 10 18 75 28 8 49 43
P2 84 59 19 100 84 22 108 66 18
P3 134 62 41 143 303 53 175 184 97
P4 192 138 55 262 199 108 240 146 91
P5 142 184 70 251 286 96 239 269 115
P6 140 19 29 131 44 59 153 8 38
P7 53 85 27 115 199 49 32 106 27
P8 59 98 80 75 115 45 61 112 43
P9 18 36 12 84 116 121 48 76 30
P10 1 16 3 29 67 28 7 12 10
P11 64 18 7 100 69 19 78 23 23
P12 2 35 28 14 44 37 16 46 56
P13 335 50 20 441 121 32 364 76 11
P14 37 50 55 117 141 119 59 116 59
… … … … … … … … … …
Total 2191 1721 954 3203 3219 1720 2817 2572 1536
% Misses 2.6 2.0 1.1 3.8 3.8 2.0 3.4 3.1 1.8

320 C.N.S. Ganesh Murthy, Y.V. Venkatesh/Neural Networks 11 (1998) 315–322

needs five layers to classify the training set completely, but
the TLVQ needs only one layer for this. To save space,
results for a subset of patterns (P1 to P14) are shown, whereas
the total misclassifications and % misses (the last two rows in
Table 2) have been computed on the basis of the results for
the full set of 28 patterns. The entries indicate the number of
misclassifications out of 3000 test inputs for each pattern.

4.4. Discussion of the results

All the three techniques (LVQ, MLVQ and TLVQ) have
been extensively tested for their performance with respect to
a different number of patterns (typically, 10, 50, 100, 200
variations of each pattern as different cases) used for train-
ing. The test set consists of 3000 random variations of each
pattern. Both noisy and pre-processed noisy patterns have
been used for testing in addition to the noiseless patterns.
Their performance has been tested for each of the different
training cases, and a typical analysis of the results is pre-
sented later below.

The training set consists of 100 variations of each pattern,
and the percentage misclassification for the noiseless case
for the three techniques is 4.1, 3.0 and 2.2 respectively.
Considering the amount of distortion allowed in the patterns
(non-uniform scaling with scale factor between 1.0 and 2.0
and rotation between¹158 andþ158), a training set of 100
variations for each pattern is quite reasonable. In this case the
MLVQ needs three layers to classify the training set. In remark-
able contrast, the TLVQ can do the same with only one layer.
The percentage misclassifications for the noisy test set for the
three methods is 5.2, 4.6 and 3.3 respectively, whereas for the
pre-processed noisy patterns it is 5.0, 4.4 and 2.9.

The time taken by MLVQ and TLVQ to complete the
training depends on the number of layers they require to
classify the training set completely. For MLVQ, there are
100,000 presentations of inp[][] for each layer, whereas for
TLVQ the number is 300,000. The simulations were carried
out on a HP-9000/715 workstation. Typically, for a training
set of size 2003 28, the MLVQ needs five layers and the
time taken for training is 30 s. In contrast, for the TLVQ the
corresponding figures are one layer and 37 s.

So far as published results on the application of NNs to
OCR are concerned, the best reported (Ganesh Murthy &
Venkatesh, 1995b) accuracy of 97.5% is achieved by a
probabilistic neural network.

The above discussion demonstrates the efficacy of
MLVQ and TLVQ techniques in comparison with the con-
ventional LVQ. Note that the networks generated by MLVQ
and TLVQ have to preserve additional information (viz. the
distance of the nearest misclassified pattern) with each neu-
ron, but the number of neurons involved is much fewer than
that needed by the LVQ. Apart from being constructive
techniques for building a network to accomplish the task,
the MLVQ and TLVQ yield networks with better perfor-
mance than that of the LVQ. Finally, comparison of the
performance of the MLP with that of LVQ, MLVQ and
TLVQ shows that the training time for the former is con-
siderably more than that for the latter. Similar results have
been obtained for the characters from the NIST database.
See Ganesh Murthy and Venkatesh (1996b) for details.
Table 3 summarizes the final results of all the four tech-
niques (LVQ, MLVQ, TLVQ and MLP) for training sets
of different sizes (see also Ganesh Murthy and Venkatesh
1995a). The entries in this table are percentage misclassifi-
cations on noiseless (NL), noisy (10N, i.e. 10% noise) and
preprocessed noisy (10NM, i.e. 10%noiseþ morphology)
test patterns.

5. Conclusions

A new efficient method for encoding patterns has been
proposed, to provide a feature array as input to a self-
organizing neural network (SONN) for classification of pat-
terns. Encoding of patterns consists of overlaying them on a
certain radial grid for conversion to a two-dimensional array
to form the input to the SONN. After training, the neurons
are labelled appropriately, and the plot of the labels of the
array of neurons exhibits clusters, thereby justifying the
method of encoding.

When the SONN is tested with both noiseless and noisy
variations of the exemplars, it is found in general that accu-
racy in the recognition of patterns is,90%. In an attempt to
increase the speed and improve the performance of the net-
work, three techniques based on LVQ have been proposed.
These three techniques are found to be highly accurate
(,95% recognition accuracy) and robust with respect to
noise. More details and experimental results are found in
Ganesh Murthy and Venkatesh (1996b) and Ganesh Murthy
(1996).

Table 3
Comparison of performance of various techniques for different training set sizes

Method Number of patterns in the
training set 103 28

Number of patterns in the
training set 503 28

Number of patterns in the
training set 1003 28

Number of patterns in the
training set 2003 28

NL 10N 10NM NL 10N 10NM NL 10N 10NM NL 10N 10NM

LVQ 10.0 11.6 11.3 4.0 5.1 4.7 4.1 5.2 5.0 2.6 3.8 3.4
MLVQ 15.7 18.0 16.8 6.5 8.1 8.5 3.0 4.6 4.4 2.0 3.8 3.1
TLVQ 12.6 13.1 13.8 4.1 5.0 5.9 2.2 3.3 2.9 1.1 2.0 1.8
MLP 21.07 28.45 26.21 5.26 10.4 9.0 2.5 6.6 5.6 1.21 4.6 3.87

321C.N.S. Ganesh Murthy, Y.V. Venkatesh/Neural Networks 11 (1998) 315–322

Acknowledgements

The authors wish to thank the referees and the editor for
their critical comments which have led to an improved,
compressed version of the paper.

References

Frean, M. (1992). Thermal perceptron learning rule.Neural Computation,
4, 946–957.

Fukumi, M., Omato, S., Taketo, F., & Kosaka, T. (1992). Rotation invariant
pattern recognition.IEEE Trans. on Neural Networks, 3, 272–279.

Fukushima, K. (1991). Hand written alphanumeric character recognition by
the neocognitron.IEEE Trans. on Neural Networks, 2, 355–365.

Ganesh Murthy, C. N. S. (1996). Pattern recognition techniques based on
self-organization and learning vector quantization. Ph.D. Thesis, Indian
Institute of Science, Bangalore.

Ganesh Murthy, C. N. S. & Venkatesh, Y. V. (1995a). A comparison of the
performances of the backpropagation network and constructive learning
algorithms based on LVQ for classification of encoded patterns. Tech-
nical Report, Department of Electrical Engineering, Indian Institute of
Science, Bangalore.

Ganesh Murthy, C. N. S. & Venkatesh, Y. V. (1995b). Character recogni-
tion using encoded patterns as inputs to neural networks. InProc.
National Conference on Neural Networks and Fuzzy Systems NCNNFS
(pp. 220–225). Anna University, Madras, India.

Ganesh Murthy, C. N. S., & Venkatesh, Y. V. (1996a). Modified neocogni-
tron for improved 2-D pattern recognition.IEE Proceedings I, Vision,
Image and Signal Processing, 143, 31–40.

Ganesh Murthy, C. N. S. & Venkatesh, Y. V. (1996b). Classification of
encoded patterns uisng constructive learning algorithms based on learn-
ing vector quantization (LVQ). Technical Report, Department of Elec-
trical Engineering, Indian Institute of Science, Bangalore.

Ganesh Murthy, C. N. S., & Venkatesh, Y. V. (1994). Efficient classifica-
tion by neural networks using encoded patterns.Electronics Letters, 31,
400–403.

Ganesh Murthy, C. N. S. & Venkatesh, Y. V. (1991). Experimental
investigations on the performance of neocognitron for 2-D pattern

recognition. In International Conference on Information Processing
(pp. 127–132). Singapore.

Ghorpade, S. W., & Ray, A. K. (1993). Connectionist network for feature
extraction and classification of English alphabetic characters. In
ICNN’93 Munich: International Neural Network Conference, Vol. 4
(pp.1606-1611).

Jian, H., & Chen, B. (1992). Recognition of handwritten Chinese characters
via short line segments.Pattern Recognition, 25, 5543–5552.

Khotanzad, A., & Hong, Y.H. (1990). Invariant image recognition by
Zernike moments.IEEE Trans. on Pattern Analysis and Machine Intel-
ligence, 12, 489–497.

Khotanzad, A., & Lu, J. (1990). Classification of invariant image represen-
tations using a neural network.IEEE Trans. ASSP, 38, 1028–1038.

Kohonen, T. (1990a).Self Organization and Associative Memory. New
York: Springer Verlag.

Kohonen, T. (1990b). Learning Vector Quantization for Pattern
Recongition. Technical Report TKK-F-A602, Helsinki University of
Technology, Finland.

Kojima, Y., Yamamoto, H., Kohda, T., Sakaue, S., Maruno, S., Shimeki,
Y., Kawakami, K., & Mizutani, M. (1993). Recognition of handwritten
numeric characters using neural networks designed on approximate
reasoning architecture.Proc. IJCNN, 3, 2161–2164.

Lippmann, R.P. (1987). An introduction to computing with neural nets.
IEEE ASSP Magazine, 4, 4–22.

Minsky, M. & Pappert, S. (1969).Perceptrons. MIT Press: Cambridge,
MA.

Nakanishi, I., & Fukui, Y. (1993). Pattern recognition using hierarchical
feature type and location.Proc. IJCNN, 3, 2165–2168.

Perantonis, S.J., & Lisboz, P.J.G. (1992). Translation, rotation, and scale
invariant pattern recognition by high-order neural networks and
moment classifiers.IEEE Trans. on Neural Networks, 3, 241–251.

Serra, J. (1982).Image Analysis and Mathematical Morphology. New
York: Academic Press.

Srinivasa, N., & Jounch, M. (1992). A neural network model for invariant
pattern recognition.IEEE Trans. on Signal Processing, 4, 1595–1599.

Yoshida, T. (1993). Construction of a feature set for character recognition.
Proc. International Conference on Neural Networks, 3, 2153–2156.

You, S.D., & Ford, G.E. (1994). Network model for invariant object recog-
nition. Pattern Recognition Letters, 15, 761–768.

Zufira, P. (1993). Extended BP for invariant pattern recognition neural
network.Proc. IJCNN, 3, 2097–2100

322 C.N.S. Ganesh Murthy, Y.V. Venkatesh/Neural Networks 11 (1998) 315–322

