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Contextually Guided Unsupervised Learning using Local

Multivariate Binary Processors

Abstract

We consider the role of contextual guidance in learning and processing
within multi-stream neural networks. Earlier work (Kay & Phillips, 1994,
1996; Phillips et al., 1995) showed how the goals of feature discovery and
associative learning could be fused within a single objective, and made pre-
cise using information theory, in such a way that local binary processors
could extract a single feature that is coherent across streams. In this paper
we consider multi-unit local processors with multivariate binary outputs
that enable a greater number of coherent features to be extracted. Using
the Ising model, we de�ne a class of information-theoretic objective func-
tions and also local approximations, and derive the learning rules in both
cases. These rules have similarities to, and di�erences from, the celebrated
BCM rule. Local and global versions of Infomax appear as by-products of
the general approach, as well as multivariate versions of Coherent Infomax.
Focussing on the more biologically plausible local rules, we describe some
computational experiments designed to investigate speci�c properties of
the processors. The main conclusions are:

1. The local methodology introduced in the paper has the required func-
tionality.

2. Di�erent units within the multi-unit processors learned to respond to
di�erent aspects of their receptive �elds.

3. The units within each processor generally produced a distributed code
in which the outputs were correlated, and which was robust to dam-
age; in the special case where the number of units available was only
just su�cient to transmit the relevant information, a form of com-
petitive learning was produced.

4. The contextual connections enabled the information correlated across
streams to be extracted, and, by improving feature detection with
weak or noisy inputs, they played a useful role in short-term process-
ing and in improving generalization.

5. The methodology allows the statistical associations between distributed
self-organizing population codes to be learned.
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Multivariate Binary Processors, Unsupervised Learning, Information Theory , Con-
textual Guidance, Learning Coherence, Infomax, Coherent Infomax, Population Codes
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1 Introduction

Natural environments provide many diverse sets of data containing information about
many interrelated variables or features. Neural networks can be designed so that fea-
tures are �rst discovered by some form of unsupervised learning and then associations
between them are learned by some form of supervised learning. It is also possible to
combine these two goals into a single objective, however, such that the features that are
discovered are those that are associated, and to do this concurrently with discovering
the associations between them. Furthermore, this latter approach can include the use
of learned associations to enhance the detection of weak or noisy features and to group
together coherent sets of features.

The diverse sets of data may arise from di�erent sensory modalities, from separate
regions of the receptor input space within a modality, or from di�erent streams of
processing that extract di�erent cues from the same general region of input space
within a modality. Consider the perception of an ambiguous speech sound or letter,
for example. Knowledge of the identity of surrounding phonemes or letters, and of
the transitional probabilities between phonemes or letters within words, could be used
to help disambiguate the ambiguous input, and there is a great deal of evidence that
this occurs in both speech perception and reading (e.g. Massaro & Cohen, 1991).
For an example at earlier stages of processing, consider the attempt to detect a faint
edge indicating the position and orientation of the boundary between land and sky in a
distant hazy view. The detection of an edge within any particular region will be greatly
a�ected by the extent to which there is supportive evidence from surrounding regions,
and evidence that local context of evidence of this kind plays a role in edge contrast
sensitivity is provided by Polat & Sagi (1993,1994), using psychophysical studies of
human subjects, and by Kapadia et al. (1995) using parallel psychophysical studies
with humans and neurophysiological studies with monkeys.

This paper is therefore concerned with multi-stream neural networks that discover
statistical structure both within and between the diverse data sets upon which they
operate. These nets can discover and use associative relations between the features
extracted within the di�erent streams because processors within each stream receive
inputs from other streams, and use them as a local context that guides both learning
and processing. The input that processors receive from this local context therefore has
a di�erent role from that which they receive from their receptive �eld, and this has
quite distinct e�ects on the processors' activity. The role of the local processors within
these nets is to select and recode that information within their receptive �eld inputs
that is relevant to their role in the system as a whole. The contextual input from other
streams helps to specify what that role is by providing a local context within which
each processor operates. The contextual input should be able to select and emphasize
any `relevant' information that is present within the receptive �eld input but without
hallucinating evidence that is not there. That is, the local context should make predic-
tions that enhance the selection and interpretation of data in the streams of processing
to which they project, but without becoming self-ful�lling prophecies. Within this
framework, information is `relevant' if it is statistically related to the context within
which it occurs. The overall form of processing produced by this approach is that of
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multiple streams of processing which may converge and diverge in various ways through
multiple levels of processing, and which, at any level, involve many specialized proces-
sors each of which transmits information about speci�c local environmental variables.
These processors coordinate their activities through local contextual interactions so as
to produce patterns of activity across the array of processors as a whole that are as
mutually `coherent' as possible. Here 'coherent' means that their activities are mutu-
ally predictive as speci�ed by the associative knowledge that is embodied within the
strengths of the contextual connections.

From the viewpoint of multivariate statistical data processing, the learning and
processing capabilities of such networks can be seen as an extension of techniques
for latent structure analysis and canonical correlation. They therefore combine the
selective recoding role of techniques such as principal component analysis with the
predictive role of multiple regression within a single objective. In particular, canonical
correlation analysis may be considered as a neural network in which there are two
streams of processing with the outputs of each stream extracting those linear functions
of their input data that are mutually predictive across streams (Hotelling, 1936; Becker,
1992; Kay, 1992). This technique may also deal with more than two diverse data sets
(Gi�, 1990)

Computational studies by several groups of workers have shown that neural net-
works can use coherence across multiple streams of processing as a basis for the dis-
covery of important features within streams (e.g. Becker, 1992; Becker & Hinton,1992;
Schmidhuber & Prelinger, 1993; De Sa, 1994; Stone, 1995; Becker, 1996). Furthermore,
it has also been shown that this can be used with coherence across streams to enhance
the short-term processing dynamics (Kay & Phillips, 1994, 1996; Phillips et al., 1995;
Der & Smyth, 1996). These latter studies were restricted to the case where each local
processor produces just a single probabilistic binary output, however. If the approach
is to have either technological or biological relevance it is important to explore how it
could be extended to processors that produce multiple distinct outputs (Becker, 1996).
Receptive �eld inputs within streams will usually contain more than one bit of relevant
information, and it is then necessary to use processors with more than one binary unit
in a way that ensures that di�erent units within a single processor respond to di�erent
aspects of the input while still maximizing coherence across streams. The primary
goal of this paper is therefore to show how this is possible within the same general
information-theoretic framework that was used in the earlier studies (Kay & Phillips,
1994, 1996; Phillips et al., 1995), and to see what relevance that might have for the
biological plausibility of the general approach.

We begin by considering how the goal of learning within this approach can be
speci�ed formally. The goal of feature discovery can be expressed in information-
theoretic terms, and it can be regarded as recoding to reduce redundancy; see, for
example, Barlow (1961, 1989), Linsker (1988) Atich & Redlich (1993), Redlich (1993)
and Taylor & Plumbley (1993). The basic idea is that the 
ood of data to be processed
can be reduced to more manageable amounts by using the statistical structure within
the data to recode the information that it contains into a more e�cient form. Thus
patterns that recur in the raw data can be translated into codes that contain many
less elements than the patterns themselves. This goal provides a valuable perspective
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from which to view sensory processing; it is clear and simple, and can be speci�ed
formally at the level of the local processor. An important limitation of this goal is that
it is ultimately sub-ordinate to the goal of associative learning, however; there would
be no point recoding information about some variable if that variable bore no relation
to anything else known to the system. Proponents of the goal of feature discovery
therefore see it as preparatory to associative learning and hence feature discovery and
associative learning are seen as separate and successive goals. Here we study ways
that feature discovery and associative learning can be combined into a single algorithm
that is used throughout the various stages of processing. Information theory is used to
specify the goal of this algorithm in a way that is close to that used for feature discovery
and which includes that as a special case. Following Linsker (1988) we call that latter
goal Infomax, and by analogy, we call the goal on which we shall focus Coherent
Infomax, because it seeks to maximize the transmission of just that receptive �eld
information that is coherently related to the context within which it occurs, whereas
Infomax maximizes the transmission of whatever components are most informative
within individual streams considered separately.

It is next necessary to consider how it is possible for context to a�ect the activity
of the units to which they project without interfering with the information that those
units transmit about their receptive �eld input. This can be done by using context to
to modulate the gain of the transfer function that maps receptive �eld inputs into the
output signal; units will then need less evidence to produce a given level of probability
of an output decision if that decision is in agreement with the contextual prediction,
and will require more if there is disagreement. An activation function that provides this
capability was derived (Kay, 1994; Kay & Phillips, 1994) by analogy with physiological
mechanisms for gain control, and it has since been used in several other studies of
contextual integration (Kay &Phillips, 1994, 1996; Phillips et al., 1995; Der & Smyth,
1996). This function is also used in the studies reported here and is speci�ed formally
in Section 3.

Studies of the contextual guidance of learning and processing are worthwhile be-
cause this may be a useful computational strategy, but they are also worthwhile because
there is evidence from neuroanatomy and neurophysiology that some such strategy may
be embodied in the cerebral cortex. This evidence will be reviewed in detail elsewhere
(Phillips & Singer, 1996), but in brief:

� voltage-dependent synaptic receptor channels are common throughout cortex and
would provide a mechanism for gain control; see, for example, Fox et al. (1990);

� long-range horizontal collaterals are also common (Gilbert, 1992) and could pro-
vide contextual input to the gain-control channels;

� synchronisation of the activity of cells with non-overlapping receptive �elds (Singer,
1993) may re
ect the the formation of cooperative population codes resulting
from contextual guidance;

� activity-dependent plasticity of the synapses mediating the response to receptive
�eld stimulation is well established (Singer, 1990);
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� there is now also evidence that the long-range horizontal connections undergo
activity-dependent changes in synaptic strength (Hirsch & Gilbert, 1993; L�owel
& Singer, 1992); �nally, as predicted by our hypotheses, there is evidence that
the long-range horizontal collaterals in V1 have a voltage-dependent { and thus
gain-controlling { synaptic physiology (Hirsch & Gilbert, 1991).

In this paper the methodology proposed by Kay & Phillips (1994,1996) is extended
to the case where each local processor has multivariate binary outputs. The paper
proceeds as follows. In Section 2 we de�ne basic terms, establish our notation and
describe the necessary aspects of the general form of Gibbs distribution on which our
multivariate binary approach is based. In Section 3, we de�ne a general class of objec-
tive functions and derive learning rules based on the probabilistic modelling outlined
in section 2; this provides a formal approach, in particular, to multivariate versions
of the methodology which are based on the Infomax and Coherent Infomax objective
functions. The objective function considered here may be termed global as it seeks
to maximize the throughput of information at the output units based on information
measures calculated using a multivariate probability model. This multivariate approach
leads to comprehensible, but fairly complicated, learning rules that are local at the level
of the processor considered as a whole, but which are not local with respect to the in-
dividual units comprising the output layer. In order to obtain learning rules that are
local at the level of the individual output units { and thus biologically more plausible,
we consider in Section 4 the possibility of local objective functions which lead to local
learning rules. We show one way in which this is possible and derive the learning rules
in this case. In Section 5 we describe some applications of the methodology in computa-
tional experiments using multi-steam networks of multivariate processors of increasing
complexity with respect to the training stimuli, the connectivity and the number of
local processors. Finally in Section 6 we present our conclusions and describe how this
approach may be developed in future work.

2 Probabilistic Modelling

We consider as a basic building-block the idea of a local processor. In this paper a local
processor is a local circuit composed of several output units, variously interconnected,
which share a common receptive �eld input and can also receive contextual input from
other processors in the network. This allows each local processor to represent several
features simultaneously. Such processors may be linked together to form complex
architectures, as desired. For example, we may consider a stream to be a vertical
collection of elements through which the information 
ows from inputs to outputs;
thus a stream may be considered as a column of interconnected local processors. Such
streams may be connected together in a matrix structure via lateral connections at
various levels through which contextual information can 
ow.

A local processor has p outputs which we represent by the collection of random
variables, X = fX1; X2; :::;Xpg, where each Xi is a binary random variable. Each
processor receives information from two distinct sources, namely, (a) its receptive �eld
inputs and (b) its contextual �eld inputs. We also represent these inputs as random
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variables, with R = fR1; R2; :::; Rmg denoting the receptive �eld (RF) inputs and C =
fC1; C2; :::; Cng the contextual �eld (CF) inputs, respectively. If we view a complex
network composed of such local processors as a multi-layer, multi-stream system, we
would normally consider the RF of each local processor to consist of information 
owing
from processing performed at lower layers while the CF connections are from the same
layer of other streams or consist of back-projections from higher layers in the system. As
de�ned, R;C andX are random vectors and we adopt the usual convention of denoting
random variables by upper-case letters and their realised values by the correponding
lower-case letters. To indicate formally the possibility of incomplete connectivity, we
de�ne connection neighbourhoods for each output unit Xi within a local processor. Let
@i(r); @i(c) and @i(x) denote, respectively, the set of indices of the RF input units, the
CF input units and the output units that are connected to the ith output unit Xi.
The corresponding random variables are denoted, respectively, by R@i;C@i and X@i.
We term these links the RF connections, the CF connections and the WP (within-
processor) connections, respectively. The set of all components of X, excluding the ith
component, is denoted by X�i. The weights on the connections into the ith output unit
are given by wij , vij and uij for the jth RF input, the jth CF input and the jth output
unit, respectively, and we assume that the weights connecting each pair of output units
to each other are symmetric (uij = uji) and also that these units are not self-connected
(uii = 0). We now de�ne the integrated �elds in relation to the ith output.

Si(r) =
X

j2@i(r)

wijRj � wi0 (1)

is the random variable representing the integrated receptive �eld input to the ith output.

Si(c) =
X

j2@i(c)

vijCj � vi0 (2)

is the random variable representing the integrated contextual �eld input to the ith
output.

Si(x) =
X

j2@i(x)

uijXj (3)

is the random variable representing the within-processor integrated �eld input to the
ith output.

We take a conditional approach to the modelling of the outputsX given the RF and
CF inputsR and C and assume that X follows a multivariate binary probability model
(Besag, 1974), given the realised values of the RF and CF inputs, with probability mass
function

Pr(X = xjR = r;C = c) =
1

Z(a;u)
exp

0
@ pX
i=1

aixi +
1

2

pX
i=1

X
j2@i(x)

uijxixj

1
A ; (4)

where Z(a;u) is the normalisation constant (i.e. not a function of x) required to ensure
that the probabilities sum to unity. We assume that the output binary levels are 0 and
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1; in applications in which bipolar units are used it is then necessary to adjust output
probabilities using the mapping p 7! 2p� 1. The terms faig and fuijg are parameters
and in general may be functions of r and c. In this article we shall shortly de�ne the
faig as a function of the RF and CF inputs but will take the fuijg to be independent
of these inputs, although there are other possibilities.

Equation (4) de�nes a regression model in two distinct senses. Firstly, via the terms
faig which may be taken to be general nonlinear functions of the RF and CF inputs,
it is a nonlinear regression of the outputs as a function of all of the inputs. Secondly,
when written in conditional form in terms of the distribution of the ith output given its
neighbours, as in equation (5) below, it expresses, for given inputs, an auto-regression
for each output unit in terms of the other output units in its neighbourhood. It is an
example of what has become known as a generalized linear model and the marginal
probability model for the outputs is a generalized linear mixed model, the linearity
referring to the parameters faig and fuijg (McCullagh & Nelder, 1989; Clayton, 1996).

This model, in unconditional form, was used by Ising (1925) in statistical mechan-
ics and developed as a model for spatial data by Besag (1974); however the general
methodology works also with more general graph structures (Geman & Geman, 1984).
The Ising model has been employed in a di�erent way in neural networks by Hop�eld
(1982) and many others within the area of recurrent networks. The formulation de-
scribed in the above model has the advantage of interfacing a feed-forward network
between layers with a recurrent network structure within a layer in a single coherent
probabilistic framework. Not only that, but it is possible to connect the multiple out-
put local processors themselves in a multi-layered and multi-stream network structure
in a probabilistically coherent manner.

It is natural to consider the local conditional distributions for each output unit given
its RF, CF and WP inputs. Under the assumed restrictions on the WP connection
weights, described above, the Hammersley-Cli�ord theorem (Besag, 1974) ensures that
working locally with the conditional distributions is equivalent to assuming a coherent
global model for all the output units. If the WP units are fully connected, then it is
unnecessary to invoke this thereom as the local distributions then automatically have
the form given in equation (5). The local conditional distribution for the ith output,
given the values of its RF, CF and WP inputs, is Bernoulli with success probability

�i � Pr(Xi = 1jR@i = r@i;C@i = c@i;X@i = x@i) = 1= (1 + exp(�Ai)) : (5)

Here Ai = ai + si(x), where ai may be taken to be any di�erentiable function of the
integrated RF and CF �elds and si(x) is de�ned in equation (3). It then remains to
specify the activation function for each output unit.

The activation function at the ith output unit is now a function of three integrated
�elds { how should they be combined ? It will be assumed that the general function
decomposes into the following sum, although there are other possibilities.

Ai = A(si(r); si(c)) + si(x) � ai + si(x): (6)

The learning rules will be derived for the general case, however. This form in which
the output integrated �eld is bound additively to a general function of the integrated
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RF and CF �elds makes the speci�cation of the activation function consistent with the
multivariate probability model for the outputs de�ned above in equation (4). In this
paper, the function A is chosen so that the CF input can modulate the response of the
ith output to the RF input and in the next section we de�ne the particular form used
in this paper.

3 Global Objective Function and Learning Rules

We now consider a global objective function based on the joint distribution of all
outputs, RF inputs and CF inputs. In the case of multivariate outputs, we consider
the general version of the objective function introduced by Kay & Phillips (1994) which
is

F = I(X;R;C) + �1I(X;RjC) + �2I(X;CjR) + �3H(XjR;C); (7)

where, for example, H(XjR;C) denotes the conditional entropy in the distribution
of X given R and C, and I(X;RjC) is the conditional mutual information shared
between X and R given C. The three-way mutual information is de�ned by

I(X;R;C) = I(X;R) � I(X;RjC) (8)

For the purposes of modelling it is more convenient to employ the simple rules of
information theory (Hamming, 1980) and express this as

F = H(X)�  1H(XjR) �  2H(XjC)�  3H(XjR;C); (9)

where  1 = 1 � �2;  2 = 1 � �1 and  3 = �1 + �2 � �3 � 1. For further details, see
Kay (1994) and Kay & Phillips (1994). We now present expressions for the entropic
terms of equation (9) and also develop the learning rules based on the derivatives of
F with respect to the weights. In the sequel, for simplicity, we shall use, in an abuse
of notation, h� � �ix to denote the expectation computed with respect to the probability
distribution of X. So, for example,

hp(xjr; c)i
rjc =

Z
p(xjr; c)p(rjc)dr (10)

denotes the average of the conditional probability density function, p(xjr; c), given by
equation (4), taken with respect to the conditional distribution of R given that C = c;
hence equation (10) gives p(xjc).

Firstly, a simple calculation based on equation (4) shows that the conditional en-
tropy H(XjR,C) may be written as

H(XjR;C) =

*
logZ(a;u)�

pX
i=1

aiei �
1

2

pX
i=1

X
j2@i(x)

uijfij

+
r;c

(11)

where
ei = E(Xijr; c); (12)
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and

fij = E(XiXjjr; c) (13)

denote, respectively, the conditional means of Xi and XiXj given that R = r and
C = c (j 2 @i(x); i = 1; : : : ; p).

The other entropy terms are given by:

H(X) = �

Z
p(x) log p(x)dx (14)

H(XjR) = �

�Z
p(xjr) log p(xjr)dx

�
r

(15)

H(XjC) = �

�Z
p(xjc) log p(xjc)dx

�
c

: (16)

The required marginal and conditional distributions are given by the following equa-
tions.

p(x) = hp(xjr; c)i
r;c (17)

p(xjr) = hp(xjr; c)i
cjr (18)

p(xjc) = hp(xjr; c)i
rjc (19)

Now we require the derivatives of the entropic terms in equations (11) and (14) { (16)
with respect to the weights. Let � be a generic weight, that is, one of the fwijg , fvijg
or fuijg. After some algebra we �nd that these derivatives are as follows.

@H(XjR;C)

@�
=

*
�

pX
i=1

ai
@ei
@�

�
1

2

pX
i=1

X
j2@i(x)

uij
@fij
@�

+
r;c

(20)

where

@ei
@�

=
pX

k=1

@ak
@�

cov(Xi;Xkjr; c) (21)

and
@fij
@�

=
pX

k=1

@ak
@�

cov(XiXj ;Xkjr; c): (22)

Here cov(Y,Zjr,c) denotes the conditional covariance between the random variables Y
and Z given that R = r and C = c. Now

@H(X)

@�
= �

*
pX

k=1

@ak
@�

cov(Xk; log p(X)jr; c)

+
r;c

(23)
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@H(XjR)

@�
= �

*
pX

k=1

@ak
@�

cov(Xk; log p(Xjr)jr; c)

+
r;c

(24)

@H(XjC)

@�
= �

*
pX

i=1

@ak
@�

cov(Xk; log p(Xjc)jr; c)

+
r;c

(25)

Collecting together terms from equations (9), (20) and (23) {(25) gives the derivatives
of F as

@F

@�
=

*
pX

i=1

( 3ai
@ei
@�

� �Oi) +
1

2

pX
i=1

X
j2@i(x)

uij
@fij
@�

+
r;c

(26)

where

�Oi =
@ai
@�

(cov(Xi; log p(X)jr; c) �  1cov(Xi; log p(Xjr)jr; c)

� 2cov(Xi; log p(Xjc)jr; c)): (27)

It remains to specify the partial derivatives of ai with respect to the weights. Simple
calculation gives that

@ai
@wij

=
@Ai

@si(r)
rj (28)

@ai
@vij

=
@Ai

@si(c)
cj (29)

@ai
@uij

=
@Ai

@si(x)
xj (30)

In the learning rules given above, we employ for each output unit the following activa-
tion function, as speci�ed in equation (6).

Ai = ai + si(x); (31)

where

ai =
1

2
si(r)(1 + exp(2si(r)si(c)) (32)

is a member of the class of activation functions introduced by Kay & Phillips (1994).
The partial derivatives are given by

@Ai

@si(r)
=

1

2
+ (

1

2
+ si(r)si(c)) exp(2si(r)si(c)) (33)

@Ai

@si(c)
= si(r)

2 exp(2si(r)si(c)) (34)
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@Ai

@si(x)
= 1: (35)

The use of gradient ascent learning, with learning-rate parameter �, leads to weight
changes given by �� / � @F

@�
.

The methodology developed here for the general class of objective functions de-
�ned in equation (7) contains some important special cases in this multivariate setting.
Taking �1 = 1 and �2 = �3 = 0, and cutting the contextual connections, gives the
Infomax objective function I(X;R). Taking �1 = �2 = �3 = 0 gives the Coherent In-
fomax objective function I(X;R;C), while setting �1 = 1� �; �2 = � and �3 = 0 gives
an information-theoretic analogue of the multivariate version of the objective function
used by Schmidhuber & Prelinger (1993).

The learning rules, particularly the terms f �Oig, are quite complicated; they are
global at the level of the processor in that the weights connected to all the units are
considered simultaneously. The computation of some of the average terms in equation
(27) is particularly cumbersome as they involve entire conditional distributions of X.
It is possible, however, to develop approximations of the zeroth-order, but we don't
present the details here. Despite this, these rules are computable when the number of
units in the processor is limited, but approximations will be required if the number of
output units is large; see Section 6. Primarily out of a wish to develop learning rules
that are more biologically plausible, we now turn our attention to local approximations
of the global objective function considered above, and we shall see that these lead to
local learning rules at the level of the units within the processor.

4 Local Objective Functions with Local Learn-

ing Rules

In a processor with multiple output units, it is natural to consider processing in a local
manner with each output unit using the information available to it from its RF, CF
and WP neighbourhood connections. This suggests that we might focus on the joint
distribution of each output and its RF and CF inputs, conditionally on its WP inputs.
It then seems natural to consider the conditional three-way mutual information that is
shared mutually by the ith output and its RF and CF inputs but not shared with its
WP output units, de�ned by

I(Xi;R@i;C@ijX@i) = I(Xi;R@ijX@i)� I(Xi;R@ijC@i;X@i) (36)

It is possible, in general, to decompose the global three-way mutual information as
follows.

I(X;R;C) = I(Xi;R;CjX�i) + I(X�i;R;C) (37)

which, given the connection structure, may be expressed as

I(X;R;C) = I(Xi;R@i;C@ijX@i) + I(X�i;R;C): (38)
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This decomposition may be repeated recursively and is of particular relevance when the
output units represent some directional structure such as a time series or a predeces-
sor/successor hierarchy; then the well-known general factorization of joint probability
into a product of a marginal and conditional distributions allows the general three-
way mutual information to be written as a sum of local conditional three-way mutual
information terms. Such simplicity is not possible here, although the �rst-step de-
composition, given in equation (38), shows that the conditional three-way information
is a part of the global three-way information in a well-de�ned sense. Note that, un-
der these local objective functions de�ned in equation (36), each output unit within
the multiple-output local processor is attempting to transmit the information shared
with its local RF and CF that is not being transmitted by the other units within the
multiple-output processor. Hence one would expect these within-processor units to
transmit slightly di�erent aspects of the available information; but note that the out-
puts of these within-processor units can be correlated and hence this is not enforcing
a winner-take-all scenario. There are other possible ways of de�ning local objective
functions, but they will be discussed elsewhere.

The same conditioning idea may be applied to the other components of information
within the objective function F and this leads to the speci�cation of a local objective
function for the ith output unit de�ned as follows

Fi = I(Xi;R@i;C@ijX@i) + �1I(Xi;R@ijC@i;X@i)

+�2I(Xi;C@ijR@i;X@i) + �3H(XijR@i;C@i;X@i); (39)

and, given our conditional approach to the modelling, we express fFig in the more
useful form

Fi = H(XijX@i)�  1H(XijR@i;X@i)

� 2H(XijC@i;X@i)�  3H(XijR@i;C@i;X@i): (40)

This means that we envisage each output unit within a local processor working to
maximise Fi and, because of the the fact that mutually distinct sets of weights connect
into each of the outputs, this is equivalent to maximising the sum of the Fis. We view
this sum as a locally-based approximation to the global objective function F de�ned
in equation (7). In the extreme case where the outputs are conditionally independent
this sum is equivalent to F. Obviously, the approximation will be better the smaller
are the sizes of the output neighbourhood sets relative to the number of outputs.

In our experiments we shall consider two particular forms for the fFig. If we take
�1 = �2 = �3 = 0, then equation (40) gives the conditional three-way mutual infor-
mation shared amongst the output of the ith unit and its RF and CF inputs given the
outputs of the neighbours of the ith output unit. Maximization of this objective func-
tion means that each unit in each processor is being adapted to maximize the coherent
information it shares with its RF and CF inputs conditional on the information 
owing
from its neighbouring outputs within the processor to which it belongs. This objective
function generalizes the coherent infomax goal proposed by Kay & Phillips (1994,1996)
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and we term it the local conditional coherent infomax criterion. Another possi-
bility considered in our experiments is the choice �1 = 1; and �2 = �3 = 0. In this
case equation (40) gives the conditional mutual information shared between the output
of the ith unit and its RF inputs given the information 
owing from its neighbouring
outputs within the processor. This generalizes the infomax objective function proposed
by Linsker (1988) and we term it the local conditional infomax criterion.

We now provide formulae for the local entropic terms and the components of local
information for the ith output unit. The conditional distribution of Xi given its RF, CF
and WP inputs is a Bernoulli distribution with success probability given by equation
(5). It is easy to show that the corresponding entropy term is

H(XijR@i;C@i;X@i) = h�i log �i + (1� �i) log(1� �i)ir@i;c@i;x@i : (41)

It is also easy to show that the conditional distribution of Xi given its RF and WP
inputs is also Bernoulli with success probability given by

E(i)
r@i;x@i

= h�iic@ijr@i;x@i (42)

Hence a similar argument gives the following entropy term.

H(XijR@i;X@i) =
D
E(i)
r@i;x@i

logE(i)
r@i;x@i

+ (1�E(i)
r@i;x@i

) log(1�E(i)
r@i;x@i

)
E
r@i;x@i

(43)

Similarly the conditional distribution of Xi given its CF and WP inputs is Bernoulli
with probability de�ned by

E(i)
c@i;x@i

= h�iir@ijc@i;x@i ; (44)

and the corresponding entropy is

H(XijC@i;X@i) =
D
E(i)
c@i;x@i

logE(i)
c@i;x@i

+ (1�E(i)
c@i;x@i

) log(1�E(i)
c@i;x@i

)
E
c@i;x@i

: (45)

Also the conditional distribution of Xi given its WP inputs is Bernoulli with probability

E(i)
x@i

= h�iir@i;c@ijx@i ; (46)

and entropy term

H(XijX@i) =
D
E(i)
x@i

logE(i)
x@i

+ (1�E(i)
x@i

) log(1�E(i)
x@i

)
E
x@i

: (47)

It follows that the components of local information at the ith output unit, given in
terms of equations (41), (43), (45) and (47), are as follows.

I(Xi;R@i;C@ijX@i) = (47) � (45) � (43) + (41) (48)

I(Xi;R@ijC@i;X@i) = (45) � (41) (49)

I(Xi;C@ijR@i;X@i) = (43) � (41) (50)

H(XijR@i;C@i;X@i) = (41) (51)
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We now present the learning rules. For all the weights they have the same general
structure as those introduced by Kay and Phillips(1994). We now give the gradient
ascent learning rules in relation to the ith output unit.

� Receptive Field Connection Weights

@Fi
wis

=

�
( 3Ai � �Oi)�i(1� �i)

@Ai

@si(r)
Rs

�
r@i;c@i;x@i

; (52)

for each RF input s which connects into the ith output unit. For RF inputs s
that do not connect into the ith output, @Fi

@wis
= 0.

� Contextual Field Connection Weights

@Fi
vis

=

�
( 3Ai � �Oi)�i(1� �i)

@Ai

@si(c)
Cs

�
r@i;c@i;x@i

; (53)

for each CF input s which connects into the ith output. For CF inputs s which
do not connect to the ith output, @Fi

@vis
= 0.

� Within Processor Connection Weights

@Fi
@uis

=

�
( 3Ai � �Oi)�i(1� �i)

@Ai

@si(x)
Xs

�
r@i;c@i;x@i

; (54)

for each output unit s which connects into the ith output. For output units s
which do not connect to the ith output, @Fi

@uis
= 0.

The partial derivatives of Ai are de�ned above in equations (33) { (35). Note that
these learning rules are local and this results from the decision to separately maximise
the local objective functions fFig (or equivalently to maximise the sum of the fFig).
They involve another level of averaging taken over the neighbouring output units. The
dynamic average for the ith output unit is

�Oi = log
E
(i)
x@i

(1�E
(i)
x@i

)
�  1 log

E
(i)
r@i;x@i

(1�E
(i)
r@i;x@i)

�  2 log
E
(i)
c@i;x@i

(1�E
(i)
c@i;x@i)

: (55)

The dynamic averages are more complicated than in the single-unit output case and
their calculation involves storing the average probability at the ith output unit for each
pattern of the other outputs that connect into the ith output unit, for the combination of
each of the neighbouring output and RF input patterns and for the combination of each
of the neighbouring output and CF input patterns. The computational implications
resulting from the need to store these conditional averages means that it is feasible to
apply these learning rules only to processors of limited size. However, as noted above,
connecting together many such local processors would enable a complex architecture to
be constructed in which the computation required in each local processor is manageable.
This issue is discussed further in section 6 and solutions are proposed.
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5 Computational Experiments

To test the learning rules derived above for multi-unit processors with contextual in-
put we have simulated many networks with multiple streams of processing linked by
contextual connections. Here we �rst report three groups of experiments that use just
two streams of processing, and which test speci�c aspects of the proposed approach.
We then report simulations of networks with 25 streams of processing and up to 5,228
connections.

The experiments described in section Section 5.1 were designed to see whether the
algorithm does indeed ensure that di�erent units within multi-unit processors learn to
respond to di�erent aspects of the input. The experiments in section Section 5.2 study
the way in which the information transmitted by these multi-unit processors is coded at
the level of the individual units within processors. Section 5.3 demonstrates that these
learning rules do indeed enable multi-unit processors to develop RF selectivities that
are sensitive to just those input variables that are coherently related to the context in
which they occur. Finally, in section 5.4, we study the e�ects of context on learning and
processing in networks with many streams of processing and a pattern of connectivity
within and between layers that is broadly analogous to that in cerebral cortex.

All of these experiments used the learning rules derived in Section 4. In all of the
experiments the following procedures were adopted. The initial weight values were
randomly chosen from the uniform distribution in the range [-0.0001, 0.0001]. The
learning rate was set to 0.01 and the momentum parameter set to 0.99. The RF, CF
and WP weights were repeatedly updated according to equations (52){(54) after the
presentation of all the patterns in the training set (an epoch). The WP weights were
made symmetric by averaging their values after every weight{update.

Two modes of learning were employed in the experiments, namely, the Coherent
Infomax mode and the Infomax mode. In Coherent Infomax mode the parameters in
the objective function de�ned by equation (40) were set so that the local conditional
coherent infomax criterion was maximised for each unit within each processor. On the
other hand, in Infomax mode, the parameters were set so that the local conditional
infomax criterion was maximized for each unit within each processor. These parameter
values are de�ned for both modes in Section 4.

5.1 Two streams, each with two features and two units

The primary requirement of the extension of the approach from single-unit to multi-
unit processors is to ensure that di�erent units within each processor learn to respond
to di�erent aspects of the input. This experiment was designed to see whether the
methodology developed in Section 4 meets this requirement. We simulated a network
with two streams, each composed of a set of four receptors and a two-unit processor
(Figure 1). Each unit received connections from all the receptors in its own stream (Re-
ceptive Field connections), from all the units in the other processor (Contextual Field
connections), and from the other unit within the same processor (Within-Processor con-
nection). The WP connection weights were constrained to be symmetrical. The output
of each unit in the network was synchronously updated by passing the integrated inputs
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through the activation function three times, previous explorations having shown that
this is su�cient stabilize the output values.

The input patterns were composed of \horizontal and vertical edges" whose sign
and orientation were correlated across streams. The structure of the input can be easily
understood if we visualize the input pattern to each stream arranged on a 2�2 square
matrix whose entries rij can take the bipolar values -1 or +1. A horizontal edge EH

is de�ned by the di�erence between the sums of the two row components, whereas
a vertical edge EV is de�ned by the di�erence between the sums of the two column
components; the signs of the edges are given by the signs of the di�erences

EH =

0
@X

j

r1j �
X
j

r2j

1
A ; EV =

 X
i

ri1 �
X
i

ri2

!
(56)

The four input patterns in which there is neither a vertical nor a horizontal edge
were never presented. Each of the remaining twelve patterns were presented to each
stream with equal probability, but with the orientation and sign of the edges being
perfectly correlated across streams. The probability of each individual receptor taking
the value unity during training was therefore 0.5. The learning was performed in
Coherent Infomax mode.

5.1.1 Results

Each processor learned to detect the sign of vertical and horizontal edges by allocating
one unit to each edge type, as shown by the �nal structure of the RF weights after
training (Figure 2). The CF connections between units responding to the same type of
edge were strengthened, and the CF connections between units responding to di�erent
types of edge remained around 0.0 (hence, they are not plotted in Figure 2). The
WP weights displayed temporary activity during the strengthening of the appropriate
contextual weights; the change in sign coincided with the sudden halt and reversal of a
very short increment in the contextual weights connecting units that started to signal
di�erent edge types (not shown here). Once the pattern of contextual strength was
established, the WP weights stopped their activity. These results were very stable and
were replicated in several simulations starting from di�erent initial random weights,
the main variations from run to run being in which speci�c unit signalled each edge
type and in the allocation of positive and negative outputs to the sign of each edge.
Faster convergence could be achieved by increasing the learning rate which was not a
crucial parameter in these simulations.

5.1.2 Discussion

The above results show that di�erent units within these multi-unit processors learn
to respond to di�erent features of the information that is correlated across streams.
WP weights are strengthened in order to decorrelate the activity of the units within
the same processor. The shift of sign here is due to the attempt to decorrelate the
\residual" activity of a unit with -say- a vertical receptive �eld when a horizontal edge
is presented. In this case the unit will initially display a low activity whose sign might
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be correlated with the activity in the other unit. When the RF integrated input is
small, the WP integrated input can actually change the sign of the unit output and so
the WP weights are e�ective in decorrelating the two units. As a result of this change
in sign, the RF weights will be modi�ed in such a way that the output is still correlated,
but this time in the other direction. Hence, the WP weights are strengthened in the
opposite direction (here we have a zero-crossing), and these dynamics continue until
the units are perfectly decorrelated.

The information transmitted by the WP connections plays a major role in the
development of di�erent selectivities for di�erent units because, in experiments where
the WP connections were removed, all the units within a processor learned to detect
the edge of a single edge type (which type depending upon the initial weight settings),
and in addition all the CF connections were strengthened. This was the same result
obtained, as expected, when each processor had a single unit because a single bipolar
unit is not su�cient to transmit the sign of two edge types. The WP connections
in this experiment, in which the number of features to be transmitted is equal to
the number of units in a processor, therefore provide a form of competitive learning
that results directly from the goal of maximizing the transmission of local conditional
mutual information as described in Section 4. Prior to these simulations we had no
reason to suppose that the WP connections would converge to such low values that
they play little role in the short-term dynamics after learning is complete. The broader
signi�cance of this �nding, if any, therefore arises as an issue for further research.

The choice of the architecture employed for this experiment deserves some comment.
In principle, there are no constraints on the connectivity pattern that one might choose
to implement. However, it should be noted that if the processors of two di�erent streams
shared a consistent portion of the input receptors, they might simply learn to signal
the information in the shared area. Since one of the reasons for employing contextual
connections is discovery of information which is not locally available, we usually keep
the RF inputs to di�erent processors separate, but had successful results when several
single-unit processors had partially overlapped RF inputs distributed along a continous
surface. In this case each processor shared some of the receptors of other processors
which, in turn, did not share those same receptors. Similarly, CF connections could
be set in any arbitrary fashion. As a matter of fact, contextual connections could have
been omittted in this experiment because input stimuli were perfectly correlated across
streams. However, one might want to start by connecting each unit to all the units in
all the other processors and let the algorithm choose which connections to strengthen
during training. The automatic con�guration of the CF connections is an interesting
property because one does not require prior knowledge on the structure of the input
patterns in order to choose a suitable architecture and thus does not run into the danger
of constraining the system in unforeseen ways. As a general rule, WP connections serve
the purpose of forcing apart the response of individual units; hence, they serve quite a
di�erent purpose from CF connections.



Local Multivariate Binary Processors 17

5.2 Two streams, each with several units and several fea-

tures all fully correlated across streams

This experiment studied the way in which information is distributed across the di�erent
output units when each procesor is composed of several units and there are several
input features perfectly correlated across streams. The architecture employed here was
similar to that described for the previous experiment, but here each stream had nine
receptors and each processor had from three to six units all fully inter-connected by
symmetric WP weights. The CF connectivity was all-to-all between all output units of
the two streams. (Figure 3).

The input patterns for each stream were lines presented at four di�erent orienta-
tions: horizontal, vertical, and two opposite diagonals. The lines were presented at
the centre of a 3�3 square matrix. Each of the four lines could take a negative or a
positive value: a negative line was composed of -1's against a background of +1's, and
a positive one was just the opposite (Figure 3, bottom). Each of the eight patterns
was presented with equal probability to each stream, and the orientation and sign of
each line were perfectly correlated across streams. Several simulations with networks
of three, four, �ve, and six units per processor were run on this training set.

When the processors have three output units, one would expect that the input fea-
tures would be found by simply maximising information transmission within streams
by using the multivariate Infomax approach (derived in Section 3 and 4 and here imple-
mented using local conditional infomax objective functions); but would the appropriate
CF connections be learned in such a case, or would they remain at zero bacause they
are not necessary to discover the relevant features? Furthermore, what use, if any,
would be made of the additional output units when more than the required three are
employed?

5.2.1 Results

We �rst report the results of the experiments with the three-unit processors and then
the experiments involving processors with more than three units. The local conditional
coherent infomax criterion was quickly maximized by all three units in both streams of
the network (Figure 3, top). Learning took place at approximately the same time for
all six units and the results were not sensitive to the value of the learning-rate parame-
ter. As a result of this learning, each processor developed a distributed representation
providing a unique code for each of the input patterns (Figure 4, centre). The sign
of the line was signalled by reversing the sign of all the output units. The di�erence
between the speci�c codes developed by the processors in the two streams depended
on the initial random weight settings. The strengthening of the connections followed
a similar time course (not plotted here) to that described for the previous experiment.
In contrast to the previous experiment, however, the �nal structure of the RF weights
of each unit did not mirror the appearances of the original input lines (Figure 4, bot-
tom). With eight equi-probable input patterns and only three binary output units each
unit was bound to take part in all the codes, so instead of allocating a particular unit
to a particular whole input pattern that could occur in either of two signs, each unit
was used as part of a distributed code by signalling a speci�c `micro-structure' that
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occurred in each of the input patterns, these micro-structures being indicated by the
RF weight structures.

The CFs learned the appropriate cross-stream predictions, even though they were
not necessary to discover the relevant within-stream features. Since each unit took part
in the representation of all the input patterns all the CF connections were strengthened.
In order to make sure that the CF weights were properly developed so as to predict
the information transmitted by the RF weights, we checked that the integrated CF
input to each unit matched in sign the integrated RF input for each pattern. This was
always true, except for a few cases where a weak RF integrated input of opposite sign
was compensated by a relatively strong WP integrated input to that unit The �nal WP
weights tended to approach zero, except for the few situations where they compensated
the slight mismatch between RF and CF integrated inputs.

Similar results were obtained in experiments with more than three units per proces-
sor. However, since three units were su�cient for transmitting the entire information
contained in eight patterns, one might wonder what use the algorithm made of the
additional units. One way of assessing whether redundant units are used e�ectively
consists in measuring the loss of information transmitted after systematic pruning of
the trained units. After training a four-unit processor network to convergence, we sys-
tematically pruned out single units, tested the network on all the input patterns, and
measured the loss of information. It turned out that pruning out any one unit reduced
the information transmitted. This meant that all units were used in the distributed
code developed for discriminating the eight patterns. We repeated the same procedure
with a �ve-unit processor network. This time we found two units that, if pruned out
(not together), did not a�ect the amount of information transmitted. Although these
units were \redundant", they were in fact taking part in the distributed representation
and appropriately reversed their sign when the whole code for a particular orientation
was reversed to signal a change in sign of the input line. Finally, the same procedure
was applied to a six-unit processor network. Here we found that we could prune out
any one unit at a time without losing information. There was no information loss also
when some combinations of two units were eliminated. However, the distributed code
developed by the network was not a trivial duplication of the code developed in the
three-unit case described above. When the number of units per processor was larger
than the minimum number necessary to transmit the coherent input information, not
all units could be fully decorrelated and, therefore, the WP weights remained strong.

All these results were replicated in simulations starting from di�erent initial random
weights. As before, the main variations were in the nature of the particular `micro-
features' that were used to transmit the relevant information. These varied from stream
to stream and from run to run. Despite these variations at the level of the detailed
selectivities of individual units, however, the system always converged to a solution in
which the relevant information was transmitted.

5.2.2 Discussion

When several units and several input features were allowed a distributed representation
was obtained. Each unit specialized in detecting speci�c micro-features of the input
patterns. Exactly what micro-features were detected in order to generate a unique
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code for each pattern depended not only on the properties of the input patterns, but
also on the number of units per processor and on the initial random weight settings.
Most of the time it was di�cult to �nd a \label" that would describe these micro-
features in common language. Other times it was easier. For example, the RF weights
developed by units in the second stream of the three-unit experiment described above
were easy to describe (Figure 4, bottom, last row). Unit u2 detected the sign of the line
without regard to the orientation. Unit u3 signalled whether the line had a diagonal
or a straight orientation. Finally, unit u1 discriminated between types of diagonals
and types of straight lines. On the other hand, it is less obvious how to give a simple
description of the micro-features detected by units of the �rst stream (Figure 4, bottom,
�rst row) in terms of our intuitive descriptions of these patterns.

The system made good use of the units exceeding the minimum number required
to transmit the information in the input. The distributed code was spread across the
entire population of units and, eventually, resulted in a very robust solution. In the
experiments with six-unit processors, the network developed a non-trivial distributed
code whose individual components all participated in the representation of the patterns,
but at the same time could be eliminated without a�ecting the information transmitted
by the processor as a whole. This property is of value because it means that good use
will be made of whatever transmission capacity is available, and so it is not necessary to
know prior to learning how many units will be needed. When four or more units were
used per processor it would have been possible to transmit the relevant information
by allocating one unit to each line orientation, as in the very simple conditions of
the preceding experiment. We have never found the algorithm to develop this form
of local coding in the slightly more complex conditions of either this or the following
experiments.

5.3 Two streams, each with several units and several fea-

tures only some of which are correlated across streams

A central goal of processors trained in Coherent Infomax mode is to discover just the
information that is coherently related to activity in the streams from which they re-
ceive contextual input. This experiment was therefore designed to con�rm that the
algorithm derived for multi-unit processors in Section 4 does indeed provide this ca-
pability. Performance of a network trained in Coherent Infomax mode was compared
with an identical network trained in Infomax mode. The same training parameters
were used in both modes as described above and de�ned in Section 4.

The input patterns described in the previous section were presented with equal
probability to each stream, but with the sign and orientation of only the horizontal and
vertical lines being correlated across streams (Figure 5, top). Half of the information
within streams was therefore correlated across streams, and half was not. The network
architecture was the same as that described for the previous experiment with three
units per processor, which is su�cient to transmit all the information within each
stream.
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5.3.1 Results

When the network was trained in Coherent Infomax mode, it developed a unique code
for each of the correlated patterns (horizontal and vertical bars), but did not discrim-
inate between the remaining patterns (i.e. the diagonal bars). The �nal value of the
objective function measuring the amount of the local conditional three-way mutual
information transmitted by each unit was approximately half the maximum because
only half of the patterns were correlated across streams. This value was reached within
about 300 epochs of training (Figure 5, centre). When the network was trained in
Infomax mode, it developed a unique code for each of the four orientations within 200
epochs (Figure 5, bottom), and this code was appropriately reversed with the sign of
the line. This distributed code thus had the same properties of that described in the
previous experiment.

The �nal structure of the RF weights re
ected the two di�erent representations
developed by the network when trained in the two modes. When the network was
trained in Coherent Infomax mode all the RF weights corresponding to the corners of
the imaginary square matrix took the same value (Figure 5, centre right). Hence, these
units could discriminate only between horizontal and vertical lines. Instead, when the
network was trained in Infomax mode, the RF weights displayed a structure similar to
that already described for the experiments in the previous section (Figure 5, bottom
right), and discriminated between all four line orientations.

5.3.2 Discussion

These results show that when trained in Coherent Infomax mode multi-unit proces-
sors discover just those variables that are correlated across streams. When trained in
Infomax mode, however, they discover whatever features are most informative within
streams, up to the limit of their transmission capacity. The operations performed by
the latter are therefore wholly determined by the information in the input, whereas
the former can use contextual knowledge to select just that information that is related
to the context within they operate. Recognition based upon the features discovered
by the Coherent Infomax approach can therefore generalize across the irrelevant input
variables, because it will then be based upon descriptors that are not sensitive to those
variables (Phillips & Singer, 1996).

As in all previous experiments, the �ne structure of the RF weights after training
depended on the number of units and on the initial random settings. However, since
the input patterns employed here were simple and low-dimensional, the number of
possible variations was not large. Hence, it was possible to select a processor of a
network trained in Infomax mode whose RF weight structure (Figure 5, bottom right)
was similar to that developed by a network trained in Coherent Infomax mode on a
fully correlated data set (Figure 4, bottom, last row)
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5.4 Many streams, each with several units and several

features

This experiment studies the e�ects of contextual integration on the dynamics of learn-
ing and processing in a network with many streams of processing and an architecture
that is broadly analogous to that of cerebral cortex. The networks used were composed
of 25 streams arranged as a 5�5 matrix (Figure 6, top). Each stream had a single
processor composed of a number of units fully interlinked by symmetric WP connec-
tions. Each unit in the network received RF input from all the receptors in its own
stream. Each stream had nine receptors which could be visualized as a 3�3 matrix.
Nearest-neighbour processors were fully interlinked via CF connections.

The input patterns were long lines with four di�erent orientations (horizontal, ver-
tical, and 45� diagonals) and two opposite signs shifted across the whole input surface
(the 5�5 stream surface was considered as a patch of a larger input surface) Some
input patterns are shown in the bottom half of Figure 6. Each line was composed of an
alignment of identical small lines (as in the experiments described in the previous two
sections) and these were shown at all possible positions of the input array. Altogether,
there were 56 input lines presented across the 15�15 receptor array, half positive and
half negative: �ve horizontal, �ve vertical, nine diagonal in one direction and nine di-
agonal in the other direction. Hence, the RF input patterns to each processor were
identical to those employed in the experiments presented in Section 5.2: eight lines
with di�erent orientation and sign each presented with equal probability.

We ran di�erent versions of the experiment, varying the number of units per proces-
sor (three and four ), the strength of the training patterns (four strengths were used:
f+1, -1g, f+.75, -.75g, f+.5, -.5g, and f+.25, -.25g), and the values applied to the
\background", i.e. to the receptors in the streams where no line was presented (all 0's,
all +1's, all -1's, or equally probable +1's and -1's). After learning, the networks were
tested on a variety of input data characterized by a weak signal and di�erent types
of noise to test the e�ects of learned contextual input on generalization to patterns
corrupted by noise.

5.4.1 Results

All the processors in the network developed a distributed representation of the local
eight patterns with the same properties already described in Section 5.2.

The learning dynamics were little a�ected by the number of units per processor, the
strength of the input, or the values applied to the background streams, so we describe
in detail just the results obtained with the three-unit processors. The local conditional
mutual information terms reached their maximum value of about 0.1 after 500 epochs
(Figure 8); this maximum value was given by the fact that for each processor (a) only
8 out of 56 patterns featured a line, and (b) when a line was presented, only a subset
of the other processors linked by CF connections signalled the same input feature
(those aligned within the input line orientation), because the others belonged to the
background. After learning, the e�ect of the CF connections was assessed by testing
the network with four di�erent forms of a horizontal line presented ot the central row
of the 5�5 matrix of streams (Figure 7), and for each of them we measured the output
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probability of the processor in the middle of that line, that is, the processor at the
centre of the whole array. The input to the remaining twenty streams was set to zero.
The horizontal lines presented to the �ve streams in the central row were designed to
test the e�ect of no context, supportive context, or opposing context on the response
to a non-saturating RF input. When the RF input signal was strong (magnitude 1.0)
the output of all the units in the central processor was strong, both with and without
input from the CF connections. When the RF signal was weak (magnitude 0.125) and
there was no input from the CF connections (Figure 7a), the output of the units in the
central processor was weakened too (Figure 7c); however, when the signals from the
CF connections were allowed, a single iteration was su�cient to restore the maximum
output strength (Figure 7b). On the contrary, when the neighbouring processors were
presented with RF evidence for a line with equally weak strength but opposite sign,
the output of all the units in the central processor was further dampened in a single
iteration (Figure 7d).

The network was then tested with noisy inputs. Two types of noise were used.
One consisted in adding a random number from a uniform distribution in the range
[-0.25, +0.25] to already weak RF inputs (signal strength 0.25); the other consisted
in randomly 
ipping the sign of 20% of the RF weak inputs (signal strength 0.25). A
horizontal line was presented on the central row of streams and corrupted according to
either noise condition. When the CF connections were cut the RF weights alone were
su�cient to provide the correct pattern of output (the sign of the units was correct for
all the processors when compared to the output or normal strong RF input plotted in
the top of Figure 7), but the output strength was weak in most cases (Figure 7, left
column). When the CF connections were intact, the contextual input boosted the unit
outputs in the correct direction in a single iteration (Figure 7, right column).

5.4.2 Discussion

Although these were much larger nets than in the previous experiments the number of
epochs required for learning was not greatly increased, being approximately 700 epochs
(Figure 8), as compared with the 200 epochs required for the two-stream network with
only 8 patterns fully correlated across streams.

The CF connections learned to correctly predict the RF features signalled by the
units to which they projected. The post-training tests with weak RF inputs showed
that contextual signals from neighbouring processors which were presented with the
same RF inputs boosted the unit outputs in the right direction, whereas contextual
signals from the same processors presented with opposite RF inputs further dampened
the unit outputs (Figure 7). The role of the learned CF connection weights was also
shown by tests with noisy weak inputs (Figure 9). In this case the network displayed
double generalization. The RF weights generalized to the noisy input by getting the
unit signs correct and the CF weights generalized to the varying output strengths by
boosting all the unit activations in the right direction. Although the relevant RF vari-
ables in the patterns used during training could have been discovered using the Infomax
approach, the CF connections learned using the Coherent Infomax approach provides
the network with the additional ability of exploiting contextual information when the
primary RF evidence is uncertain. There is a great deal of evidence from cognitive
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psychology and psychophysics that local context plays a major role in disambiguating
ambiguous inputs in human information processing (Phillips & Singer, 1996), and this
is a computational strategy that is obviously likely to be of value in technological appli-
cations. Learned CFs therefore merit further study as a mechanism for implementing
this strategy. The choice of nearest-neighbour CF connectivity in the above architec-
tures re
ected our prior knowledge of the input patterns to be presented to the net.
Since the input lines were always presented on collinear streams (horizontal, vertical,
and diagonals), there ought to be no correlation between the outputs of non-collinear
processors; consequently, as shown in subsection 5.1, the corresponding hypothetical
CF connection weights ought not to be strengthened. In order to test this hypothe-
sis, we added a set of \spurious" CF connections to three random processors (Figure
10, top); we then trained the network presenting each input line on a background of
equally probable +1's and -1's and recorded the sum of the (absolute value of) weight
magnitudes for a set of CF connections from a nearest-neighbour processor and for the
spurious CF connections. The comparisons con�rmed our hypothesis: CF connections
from nearest-neighbour processors were strengthened (Figure 10, left column), whereas
the spurious CF connections remained close to zero (Figure 10, right column). When
the same experiment was repeated with a background of all 1's (or all -1's), the spu-
rious CF connections were initially slightly strengthened, but this did not a�ect the
network dynamics because the spurious CF signal was the same for all patterns and for
all units. Detailed prior knowledge of the CF connectivity appropriate for the inputs
to be received is therefore not necessary to this approach.

6 Conclusions and Further Work

We have shown how the use of associations between streams to guide feature discovery
within streams, and to enhance short-term processing through the use of contextual
predictions, can be extended to deal with the case in which the processors have multi-
variate binary outputs. The general approach was presented in Section 3 including the
de�nition of global objective functions and the derivation of the concomitant learning
rules. This provides algorithms for a general class of information-theoretic objective
functions, including Infomax and Coherent Infomax. The learning rules are quite com-
plicated, but applicable as long as the number of outputs in the processor is not too
large. The usefulness of these algorithms remains to be tested, however. The learning
rules obtained in this global approach are not local at the level of the individual units
within a processor and so, in Section 4, we turned our attention to local approximations
to the global objective function. We have de�ned local objective functions at the level
of the individual units and derived the corresponding learning rules. These rules have
been obtained for a general class of objective functions and, in particular, provide as a
by-product a local version of Infomax for multi-unit binary processors. The approach
outlined in section 4 in really quite general and it is readily seen that the multivariate
binary processors can be combined in many ways in multi-stream, multi-layer networks,
even though only two-layer nets have been used in our experiments. These experiments
demonstrate the feasibility of the methodology.

Some useful conclusions about the sensitivities of individual units emerged during
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the course of the experiments and may be summarised as follows:

� Di�erent units within processors become sensitive to di�erent aspects of the
input, and this seems to be due, at least in part, to the in
uence of the within-
processor connections;

� Di�erent units within a processor do not normally discover factorial codes, that
is, sensitivity to features that are uncorrelated. They can do so in the special
case where the number of units available is only just su�cient to transmit the
relevant information. Otherwise, all available units are used in a form of coarse-
coding with di�erent units detecting units that are correlated. Their outputs
will therefore usually be correlated and thus contain some redundancy. The
removal of redundancy is therefore not an emergent property of this algorithm,
but robustness to damage is!;

� In very simple cases the features look like the patterns presented, but usually
they do not, and are instead micro-features that are sometimes easily interpreted
in relation to the input but usually not. This suggests that when trying to
interpret the sensitivities of individual units in either biological or technological
networks we should not assume that those sensitivities will be well matched to
our intuitions concerning the featural composition of the stimuli presented;

� There is considerable variability in single-unit sensitivities across streams and
across runs of the algorithm from di�erent start states and di�erent exact se-
quences of input { even given the same overall population. Local processors
learn to transmit the relevant information, however, so performance is more con-
stant at the population encoding level than at the local encoding level. This
means that what matters for the algorithm is the total information to be trans-
mitted { not the particular way in which this is divided up for encoding at the
local unit level. Applied to neurobiology, this predicts greater variability of cod-
ing at the level of single units than at the level of the population codes. These
results therefore encourage the growing movement within neurobiology towards
the study of population codes.

An central aspect of our approach is the use of context to guide both learning and
processing. The main conclusions concerning the role of the CFs can be summarized
as follows:

� The information that is provided by the CFs enables local multi-unit processors to
discover that region in the information space of their RF input that is correlated
across streams;

� They are learned appropriately even when they are not necessary to discover the
relevant features within streams;

� They enhance the short-term processing by providing contextual predictions that
improve feature detection when the RF inputs are weak or noisy. They could
therefore play a useful role in improving generalization;
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� The correct patterns of CF connection strengths are learned even though the
associative relations are between complex self-organising population codes. This
shows that it is computationally feasible to learn the statistical associations be-
tween distributed self-organizing population codes, so we cannot assume that
the discovery of associations between input variables implies that those variables
must have been given either a single-unit code or an arbitrary explicit name.

The above results provide encouragement for the study of multi-unit processors
which use context to guide learning and processing, and they raise various issues that
merit further research:

� Simple input data were used to elucidate some of the essential properties of
the algorithm and the to test the feasibility of the generalization to multi-unit
processors. Further work is now needed to study the application of the approach
derived in section three and four to real-world technological problems;

� The implementation described here assumes binary variables, but the general
approaches outlined in sections 3 and 4 have been developed also for a very
general class of Gibbs distributions (Kay, 1996a) and it is intended to implement
them using di�erent probability models;

� In the experiments described in this paper the learning rules were applied in
batch mode. It is possible to implement them using on-line learning and this
will be used in future work. On-line learning has been applied in experiments
with single-unit processors (Kay, 1995; Kay and Phillips, 1996) and given the
similarity of the learning rules derived in Section 4 to those in the single-unit
case, it is straightforward to develop on-line versions;

� The computational complexity of the approach deserves some comment and fur-
ther study. It is required to store conditional averages, given in equations (42),
(44) and (46), in order to compute the dynamic averages in the learning rules.
This is more complicated in the multivariate case because time averages require
to be kept at each unit for each distinct RF, CF and WP pattern. Clearly this
limits the scalability of the capacity of each multivariate processor. Of course,
within a multi-stream, multi-stage network one can envisage that even a limited
representation capacity for each processor would still enable the network as a
whole to perform useful tasks. Hence the scalability issue could be circumvented
to some extent by the adoption of a di�erent, more segmented, architecture. In
real world applications, however, it has been shown (Kay, 1994; Kay and Phillips,
1996) that the dependence of these averages on the RF inputs can vanish and
then it is only the dependence on the CF and WP patterns that remains. In
addition, possible solutions to the problem have been devised (Kay, 1994), and
generalized to the multivariate case (Kay, 1996b), but not yet tested. The con-
ditional averages depend only on the integrated RF, CF and WP �elds. When
the dimensions of these �elds are large it is expected, due to a version of the
central limit theorem, that they may be viewed as continous random variables
following a Gaussian distribution. Using this approach, approximations to these
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conditional expectations have been calculated; these involve storing only nine
parameters, irrespective of the dimensionality of the RF and CF input-spaces;
hence the storage cost per processor is nine times the number of output units.
Furthermore, these nine parameters may be updated on-line using recursive for-
mulae. An alternative approach, based on simple non-parametric estimation of
the conditional averages as functions the integrated �elds, may also be computed
on-line and involves a storage cost that depends only on the resolution employed
in the nonparametric estimators and the number of units in the processor, but
not on the dimensionality of the RF and CF input-spaces; hence, the storage
cost is linear in the number of output units in the processor;

� The form of the general class of learning rules derived formally from the information-
theoretic objectives in Section 4 (see also Kay & Phillips, 1994, 1996) closely
resembles the structure of the BCM learning rule which has already been shown
to be both computationally powerful and to possess functionality similar to that
found in biological forms of learning. See Intrator & Cooper (1995) for a review
of the BCM rule, and Kirkwood et al. (1996) for further detailed evidence on its
relevance to synaptic plasticity in mammalian visual cortex. Both rules have a
threshold that depends on a dynamically-computed average of prior activity, the
main di�erence between them being that the Coherent Infomax approach takes
contextual inputs into account when computing this average whereas the BCM
rule does not. In both rules the synaptic strengths from active units are adapted
depending on whether or not the post-synaptic activity exceeds this threshold.
Given the computational power of these learning rules, and their close approx-
imation to biological forms of learning, the similarities and di�erences between
them merit much further study.
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Nomenclature

Xi random variable representing the output at the ith unit

Rj random variable representing the jth RF input

Cj random variable representing the jth CF input

X random vector representing the ouputs of a processor

R random vector representing the RF inputs

C random vector representing the CF inputs

x a vector of realised values of the random vector X

r a vector of realised values of the random vector R

c a vector of realised values of the random vector C

X@i random vector representing the outputs that are connected to the ith output unit

R@i random vector representing the RF inputs that are connected to the ith output
unit

C@i random vector representing the CF inputs that are connected to the ith output
unit

x@i a vector of realised values of the random vector X@i

r@i a vector of realised values of the random vector R@i

c@i a vector of realised values of the random vector C@i

X�i all the components of the random vector X excluding the ith one

@i(x) the set of indices of the output units that are connected to the ith output unit

@i(r) the set of indices of the RF inputs that are connected to the ith output unit

@i(c) the set of indices of the CF inputs that are connected to the ith output unit

wij the weight on the connection between the jth RF input and the ith output unit

wi0 the RF bias for the RF inputs connected to the ith output unit

vij the weight on the connection between the jth CF input and the ith output unit

vi0 the CF bias for the CF units connected to the ith output unit

uij the weight on the connection between the ith and jth output units

Si(x) random variable representing the integrated WP �eld input to the ith output
unit
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Si(r) random variable representing the integrated RF �eld input to the ith output unit

Si(c) random variable representing the integrated CF �eld input to the ith output unit

si(x) a realised value of Si(x)

si(r) a realised value of Si(r)

si(c) a realised value of Si(c)

Pr(X = xjR = r;C = c) the probability mass function of the Ising model

Z(a;u) the normalisation factor in the Ising model

ai a parameter in the Ising model associated with the ith output; it is a di�erentiable
function of the RF and CF inputs and the weights on their connections into the
ith output unit

�i the output probability at the ith output unit; it is a function of all inputs and
weights connecting into the ith output

Ai the activation function at the ith output unit

A(si(r); si(c)) the part of the activation function at the ith output that speci�es how
the integrated RF and CF �elds are to be combined

H(X) the Shannon entropy associated with the distribution of the output units

H(XjR) the Shannon entropy associated with the conditional distribution of the out-
put units given the RF inputs

H(XjC) the Shannon entropy associated with the conditional distribution of the out-
puts given the CF inputs

H(XjR;C) the Shannon entropy associated with the conditional distribution of the
outputs given both the RF and the CF inputs

p(xjr; c) the probability that the outputs are x given that the RF inputs are r and the
CF inputs are c

p(xjr) the probibility that the outputs are x given that the RF inputs are r

p(xjc) the probability that the outputs are x given that the CF inputs are c

p(x) the marginal probability that the outputs are x

I(X;R;C) the three-way mutual information shared amongst the random vectorsX;R
and C (Coherent Infomax Objective Function)

I(X;RjC) the conditional mutual information shared between the random vectors X
and R given C
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I(X;CjR) the conditional mutual information shared between the random vectors X
and C given R

I(X;R) the mutual information shared between the random vectorsX andR (Infomax
Objective Function)

h: : :ix the operation of taking the theoretical mean of : : : with respect to the distribu-
tion of X

E(: : : jr; c) the theoretical mean of : : : taken with respect to the conditional distribution
of X given R and C

E
(i)
x@i

the theoretical mean of the output probability at the ith output unit, taken with
respect to the conditional distribution of neighbouring RF and CF inputs given
the neighbouring WP outputs

E
(i)
c@i;x@i the theoretical mean of the output probability at the ith output unit, taken

with respect to the conditional distribution of neighbouring RF inputs given both
the neighbouring CF inputs and WP outputs

E
(i)
r@i;x@i the theoretical mean of the output probability at the ith output unit, taken

with respect to the conditional distribution of neighbouring CF inputs given both
the neighbouring RF inputs and WP outputs



Local Multivariate Binary Processors 33

Figure Legends

Figure 1

Architecture of the two-stream network of multi-unit processors used for edge
detection. A stream is de�ned as a vertical structure composed of an input
�eld and one (or more) layers of processors. Each processor is composed of two
(or more) units which receive input from the same receptors. Each unit has
Receptive Field (RF) connections fwijg from all the receptors within its own
stream, Contextual Field (CF) connections fwijg from all units of processors in
other streams, and Within-Processor connections fuijg from the units within the
same processor.

Figure 2

Development of weight strengths for a network discovering the sign of hori-
zontal and vertical edges correlated across streams. The �nal RF weights for each
unit are arranged as a square matrix of intensity values to facilitate readability:
white is strongly excitatory and black is strongly inhibitory. The asymmetric lay-
out of excitation and inhibition indicates to which orientation each unit responds.
RF weights for units belonging to the same processor are grouped vertically. The
plots between units of the same processor display the strength of WP weights
during training (one plot for each processor because the weights are symmetric).
The plots between units of di�erent processors display the strength of CF con-
nections which are increased during learning (the arrows indicate the direction
of signal 
ow). The CF connections between units of di�erent processors that
respond to di�erent edge types remain around zero and are not displayed.

Figure 3

Top: Network architecture; the number of units per processor was varied in
di�erent experiments (3, 4, 5, and 6).

Bottom: Pairs of input patterns presented to the network during training.
Each input pattern to a stream is arranged as a square matrix to visualize it as
an oriented line with a negative or positive sign; negative lines are formed by
-1's (gray squares) on a +1's (white squares) background, and positive lines are
formed of +1's on a -1's background. The sign and orientation of each line is
correlated across streams.
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Figure 4

Discovery of lines whose sign and orientation are correlated across streams;
the data refer to a network of three-unit processors.

Top: Average local conditional coherent infomax of all six units in the network
(error bars indicate standard deviations).

Centre: Distributed representation of each pattern after learning; the out-
put of each unit is indicated by its sign. The orientation of the input lines are
graphically displayed on the right (only in the negative version) and their sign is
spelled beside the unit outputs.

Bottom: Weights of the RF connections for each unit in the network (white
is strongly positive and black is strongly negative) arranged as a square matrix.

Figure 5

Comparison between the behaviours of the model when trained in Coherent
Infomax mode and in Infomax mode on partially correlated data. The networks
have three units per processor; only the data of one processor for each training
mode is plotted.

Top: Input patterns (only line orientation displayed) are presented with equal
probability to each stream, but only horizontal and vertical lines are correlated
in orientation and sign across streams.

Centre: Network trained in Coherent Infomax mode develops speci�c dis-
tributed codes for correlated input patterns and a single code for all remain-
ing patterns. During training, the local conditional coherent infomax criterion
reaches only half the maximum because only half of the input patterns are corre-
lated across streams. The RF weights after training have equal value on the four
corners showing that the units do not discriminate between diagonal lines.

Bottom: Network trained in Infomax mode develops di�erent distributed
representations for all the input patterns, as indicated by the full maximization of
the local conditional two-way mutual information. The micro-features discovered
by the RF weights are su�cient to discriminate all the eight patterns; those
plotted here are qualitatively similar to those plotted in Figure 4.

Figure 6

Several streams arranged as a lattice.
Top: Architecture and magni�cation of a single stream with 4 units per

processor. The thick lines between processors show the CF connectivity between
nearest-neighbour processors. Each unit receives RF input from all the receptors
in its own stream, CF connections from all the units in the nearest-neighbour
processors, and WP connections from all the units within its own processor.

Bottom: Some examples of the 56 input lines used during learning; each line
is composed of an alignment of small lines with identical sign and orientation.



Local Multivariate Binary Processors 35

This makes the RF input to each individual processor identical to that used in
the previous experiments.

Figure 7

Assessing the role of the CF connections to the central processor after learning.
Each graph plots the bipolar transformation of the output probability of the three
units when a long horizontal line is presented.

a: Input signal strength is 1.0 (the same output values can be obtained with
and without CF connections).

b: Input signal strength is 0.125 for the receptors of all the streams in the
central row carrying evidence for a positive horizontal line; output value is stable
after a single iteration.

c: Weak horizontal line presented only to the central stream; input to other
streams is set to zero (the same e�ect can be obtained by allowing input to the
streams and cutting the CF connections).

d: Central processor is presented with weak horizontal line and other streams
are presented with weak horizontal line of opposite sign.

Figure 8

Learning in a network of three-unit processors.
Left: Maximization of the local conditional three-way mutual information for

each unit in the network.
Right: The same measures separately plotted for the units of three types of

processors: a processor on the corner of the lattice (linked by CF connections to
3 processors), a processor on the side (linked by CF connections to 5 processors),
and a processor in the centre (linked by CF connections to 8 processors).

Figure 9

Testing the network with noisy inputs.
Top: A horizontal line is presented to all the processors in the central row

(Top right). The pattern of response of all the units when the RF input is strong
(magnitude 1.0) and clear is plotted on the top left of the �gure.

Centre: The RF input is weak (magnitude 0.25) and is corrupted by adding
uniform noise in the range [-0.25, +0.25]. The output of all the units are plotted
without the contribution from the CF connections (left) and with the contribution
of the CF connections after a single iteration (right).

Bottom: The RF input is weak (magnitude 0.25) and is corrupted by 
ipping
the sign of 20% random RF inputs. As above, the output of all the units are
plotted without the contribution from the CF connections (left) and with the
contribution of the CF connections after a single iteration (right).
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Figure 10

Addition of \spurious" CF connections between non-collinear processors in a
network of three-unit processors.

Top: Sets of spurious CF connections are indicated by thick arrows.
Left column: Each graph plots the cumulative strength of CF connections

from a nearest-neighbour processor for one of the three processors during learning.
Right column: Plots of cumulative strength of spurious connections for

the same processor during learning. The cumulative strength is the sum of the
absolute values of all nine incoming CF connections for each processor.
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