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Dual-orthogonal Radial Basis Function Networks
For Nonlinear Time Series Prediction

S. A. Billings and X.Hong
Department of Automatic Control and Systems Engineering,
University of Sheffield, Mappin Street, Sheffield S1 3JD

Abstract — A new structure of Radial Basis Function (RBF) neural network called the
Dual-orthogonal RBF Network (DRBF) is introduced for nonlinear time series prediction.
The hidden nodes of a conventional RBF network compare the Euclidean distance between
the network input vector and the centers, and the node responses are radially symmetrical.
But in time series prediction where the system input vectors are lagged system outputs,
which are usually highly correlated, the Fuclidean distance measure may not be appropri-
ate. The DRBF network modifies the distance metric by introducing a classification function
which is based on the estimation data set. Training the DRBF networks consists of two
stages. Learning the classification related basis functions and the important input nodes,
followed by selecting the regressors and learning the weights of the hidden nodes. In both
cases, a forward Orthogonal Least Squares (OLS) selection procedure is applied, initially
to select the important input nodes and then to select the important centers. Simulation
results of single step and multi-step ahead predictions over a test data set are included to
demonstrate the effectiveness of the new approach.
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1 Introduction

The Radial Basis Function (RBF') model was traditionally used for strict interpolation in multi-
dimensional space (Powell, 1985). More recently, RBF neural networks have been employed in
non-linear systems identification and time series prediction (S. Chen et al, 1991, M. Casdagli,
1989, E. S. Chng et al, 1996). These networks approximate an unknown function by locally
constructing receptive fields around a set of centers. The centers are assumed to sample the
data set and to reflect the distribution of the data, but the set of candidate centers can be very
large. In practice, a network with a finite basis selected from the data set is usually adopted.
With a predetermined number of centers, the centers are either randomly selected from the data
(Broomhead and Lowe, 1988), or determined using a k-means clustering or a related technique
(Moody and Darken, 1989). Usually the network weights are learnt at a later stage using
a least squares based method. Alternatively, the learning problem can be reformulated as a
subset model selection problem and a forward orthogonal least squares procedure can be used to
identify appropriate radial basis function centers from the network training data and to adjust
the network weights (S. Chen et al, 1989).

The present study focuses on the problem of time series prediction using RBF neural networks.
Throughout, the measure of model quality will be interpreted as the expected fit and predic-
tion over future data. A model with good approximation properties and fewer parameters will
also be prefered. It is important to realize that the properties of the basis function plays an
important role in achieving these aims. If the form of the basis functions is preselected, then
the trained RBF will be closely related to the clustering quality of the training data towards
the centers. Classical clustering is a process of partitioning and constructing homogeneous data
sets without prior knowledge of the data distribution. The data are therefore partitioned into
groups according to the similarity between them. The criterion used to compare the similarity
is a distance concept, and if the distances are small enough the data are classified as the same
kind. An analogy between RBF basis functions and classical clustering is obvious, because the
strength of a node response is determined by the distance between the network input vector and
the corresponding center. Usually, the measure of distance used in RBF neural networks is the
Euclidean distance, but this is only strictly appropriate when the components of the data are
uncorrelated (Kleinbaum, Kupper and Muller, 1987, W. R. Klecka, 1980). In the application of
time series prediction this observation is important because the lagged system outputs, which
are usually highly correlated, form the system input vector. However, if the real similarity be-
tween the input and the center cannot be sensed, the clustering quality will be affected, and the
resulting basis function will not be effective. The problem can also be viewed as how to abstract

the information contained in the input data set most efficiently. If each regressor can not be




formed efficiently, then more regressors may be needed than necessary and this can produce a

deterioration in the expected fit to future data.

In this paper, a new RBF neural network calle,}d a Dual-orthogonal Radial Basis Functiop
(DRBF) time series predictor is proposedt The main contribution is that a new distance metric
is adopted which is based on a classification function of the set of input vectors. It is shown that
the importance of each input node can be different based on the new distance metric and the
training of the network can be configured as a two stage procedure or a dual orthogonal least
squares (OLS) procedure (Billings and Chen, 1989, Billings, et al, 1988, 1889). The first stage
involves learning the new classification related basis functions and selecting the important input
nodes, followed by a second stage selecting the important centers or regressors and learning
the weights of the hidden nodes, with both stages being based on the forward orthogonal least
squares procedure. By discarding redundant input nodes, an appropriate model structure can
be determined (Billings, et al, 1992). The effectiveness of the new approach is illustrated by

simulation results.

2 Dual-orthogonal RBF Neural Network

2.1 Problem formulation

Conventional RBF networks approximate an unknown function by locally constructing receptive
fields around a set of centers. The centers are assumed to sample the data set and reflect
the distribution of the data. Each center is compared with the network input vector and the
corresponding node is activated if the distance between the network input vector and the center
is small enough. A distance is a measure for comparing the similarity of data groups. Each node

produces a radially symmetrical response if a Euclidean distance measure is used.

A RBF neural network can be formulated as
M
y(t) =Y pilt)6; + £(2) (1)
1=1

wheret =1,2,3,---, N, and N is the sample size of the estimation set, and £(t) are the residuals.

The regressors take the form

pi(t) = @(vi(1), B:) (2)
vi(t) = ||x(t) — | (3)




x(t)=[ylt = 1),--,y(t — ny))T (4)

|| o || denotes the Euclidean norm, f3; are some positive scalars called widths, P(vi(t),5;) is a
function from ®* — R, and ¢; € B, 1 < ; < M are the RBF centers. The distance between
the input vector x(¢) and the centers ¢; is denoted by v;(¢). The thin-plate-spline function

®(v) = v?logw (v>0) (5)

will be used in the present study, but other choices of RBF can easily be adopted. One dis-
advantage of the above formulation for time series applications is that the Euclidean distance
measure is not always appropriate for measuring the closeness between the input vector *x(1)
and the center. One reason is that the input vector x(t) is itself highly autocorrelated. Another
reason arises due to the node response which is radially symmetrical whereas the data may be
distributed differently in each dimension. Chakravarthy and Ghosh proposed that an elliptic
basis function can be used which has a different width in each dimension (1996), and they
suggested a gradient descent method for learning the parameters. Unfortunately this procedure
destroys the linear-in-the-parameters structure and negates the quick learning advantage of RBF

neural networks.

Another disadvantage of the conventional RBF neural network time series predictor lies in the
selection of input nodes when the minimum lag ny is alarge number. If all the lagged outputs up
to ny are selected as input nodes, the network will be unnecessarily complex and the performance
might deteriorate due to irrelevant inputs and an oversized structure (Billings, et al, 1992). An
oversized network tends to fit to the noise in the training data set and does not generalise well.
Thus, in the case when ny can be large, it is necessary to include some preprocessing procedure
for input node selection. One solution to this problem is to use a mutual information criterion
(Zheng and Billings, 1996).

The Dual-orthogonal Radial Basis Function (DRBF) neural network is proposed in the present
study to overcome-most of the above limitations. A new distance measure is used in order
to achieve improved clustering, and a dual orthogonal least squares estimator is used first to
determine the significant lags and then to select the most appropriate regressors which make up
the RBF network. Simulation results are included to demonstrate the application of the new
algorithm.




2.2 New distance metric

In the DRBF neural network time series predictor a new distance metric is adopted, which is
based on a classification function of the set of input vectors. The basic idea arises from discrim-
inant analysis. In discriminant analysis a classification function which is a linear combination of
variables in the group is usually derived. A classification function value is then used to determine
if any new vector falls within the group (Kleinbaum, Kupper and Muller, 1987, W. R. Klecka,
1980). The classification function realises a mapping from a multidimensional vector to a scalar,
and carrys information about the distribution of the data set and the dimensionality of the
discriminant space. The classification function value of a vector indicates the similarity between
the vector and the distribution of the data set. This suggests that a similar approach could be
applied as a new distance metric in RBF networks. Based on this idea, a classification function is
constructed according to the set of input vectors in the estimation set. The effect of constructing
the classification function is to find a classification hyperplane in the multi-dimensional input
data space, where the mean squared distance from the data to the hyperplane is minimised.
The classification function of the input vector x(¢) takes the form

dx(t)] = x(t)%a (6)

where a = [al,ag,---,any}T € R™ is the weight vector of the classification function. The
classification hyperplane is given by the classification function

d=xTa (7)

where d is a constant, and x € R™ represents any vector on the hyperplane. This means that
all data falling on the hyperplane have the same classification function value d. The geometrical
interpretation of the classification function is illustrated in Fig.1, where x(#5) and x are two

vectors on the hyperplane, and n is the unit normal vector.
The hyperplane giv'en by Eq.(7) can also be expressed as
[x — x(t6)]Tn =0 (8)

and it is clear that

a
DZH (9)
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Figure 1: The geometry of the classification function of the input data set

Substituting Eq.(9) into Eq.(7) and comparing with Eq.(8), yields

x(to)Tn = Ili;ﬂ (10)

The distance from the origin to the hyperplane, from Fig.1, is given by
Do = x(t5)"n (11)

Consider the input data vector x(¢) and denote the distance from the hyperplane as Dy yy. From
Fig.1, it is seen that
x(t)Tn =Dg+ Dyt (12)

Substituting Eq’s.(9), (10) and (11) into Eq.(12), yields

(1) Fa —d
Dy = =

d[x(1)] - d
llall

Suppose that two autocorrelated vectors x(#;) and x(t3) are formed from the same data set which

(13)

is used to compute the classification function. The classification function carrys information
about the distribution of the data set. How an input vector conforms to the data distribution
is reflected in the deviation of the corresponding classification function value from the constant

d, that is. the distance of the vector to the classification hyperplane. Therefore. the distance




between the two vectors x(t1) and x({3) can be defined as the difference of their respective
distances to the classification hyperplane ||Dx(tj) —Dx(tz)”_ Obviously the classification function
can be defined to enable the norm of the weight vector to be a unit vector, that is, la]l = 1. In

that case, using Eq.(13), yields

1Dxes) = Dxgenyll = lldlx(ta)] - dlx(t)lll (14)

The distance between the two vectors equals the absolute difference of their corresponding

classification function values.

2.3 Dual-orthogonal RBF (DRBF) neural network time series predictor

The Dual-orthorgonal RBF network consists of a two stage sequential learning process based
on the forward orthogonal least squares algorithm, learning the new classification related basis
functions and selecting the important input nodes, followed by selecting the important centers
or regressors and learning the weights of the hidden nodes. The topology of the algorithm is
illustrated in Fig.2.

The first stage

The learning of the classification function can be realised using least squares, where the mean
squared distance from all the input vectors in the estimation data set to the classification hy-

perplane
1 N

> Di(t)

N - TLy t=ny+1

1s minimised. In the present study the forward orthogonal least squares algorithm will be applied
to learn the new classification related basis functions and to select the appropriate lags. It will
be shown that the importance of each input node can be determined based on a metric called
the error reduction ratio(err) (S. Chen, et al, 1989) , which provides a measure of the energy
distribution due to each input node towards the classification function d.

Using Eq.(13), yields

N N T. 2
N - Z D:zc(t) =N : Z i a? d] (15)
= Ty g 41 N = Ty t=ng+1 [|a]]

The weight vector a and classification function value d can be determined from Eq.(15) as




follows. Consider fitting a linear model

d=Xa+e (16)

which can be written in matrix form as

d y(ny) y(ny =1} e y(1) ay E(ﬂy +1)

di jylng+1) y(ny) - y(2) a e(ny +2)

C = : : e : S :

d y(N-2) y(N-3) ... y(N —ny — 1) Uny—1 e(N -1)

d y(N-1) y(N-2) .. y(N - Ty ) &, e(N) (17)
where dT = [d,--+,d] € RV~ denotes the classification function value vector, and the value of

d is at first arbitrarily assigned as a nonnegative constant. The matrix X € RIV-mv)xny Jonotes

the regression matrix, and 7 = [e(n, + 1), -- -,€(N)] is the corresponding residual vector.

The regression matrix X can also be written both in terms of the (N — ny) row vectors, i.e. the
input vectors as
X = [x(ny +1) x(ny +2)---x(N)]T (18)

and in terms of the n, column vectors
X =[x Xg =+ K, ] (19)

where

% = [y +1-9)4(ny +2-5), o y(N = I
= [zj(ny +1),25(ny +2),- -, i (N)T, j=1,--,n,

Perform an orthogonal decomposition of X
X =ZR (20)

where R is an ny X n, unit upper triangular matrix and Z € RIV-")%"y is an orthogonal matrix.

This can also be written both in terms of the (VN — n,) row vectors or input vectors as
Z= [Z(ny+ 1) Z(”y+2)"'z(l\r)]T (21)

where

2(t) = [21(2) 22(8). - o 20, (8)), t=my+1,--. N




and in terms of the n, column vectors

Z=[z z3---2,] (22)
where z; = [z;(ny + 1), 2;(ny + 2),---, (N)]T, j=1,.- -, Ny. Which satisfies
277 = H = diag{hy, hy, - ‘s hny} (23)

with
hi =< 2;,2; >, vjom L Byesemy (24)

< e, > denotes the inner product, and z;, j=1,.- “,My. 18 a set of orthogonal bases which

span the same space as that of x;, j=1,-- oy Ty
Substituting Eq.(18) and Eq.(21) into Eq.(20), yields

x(t) = z(t)R, t=ny+1,---,N (253)

Rearranging Eq.(16) using Eq.(20) yields

d:Xa—I—e:(XR“l)(Ra)-l—e:Zq—{—e (26)

where
Ra=gq (27)
q=[g1,02,,¢n, |7 (28)

Pre-multiplying both sides of Eq.(26) by ZT, and taking the expected value, yields
E(Z"d) = E(Z72Zq) + E(27e) (29)

Assuming that e(z) is uncorrelated with the past output x(¢) and, from Eq.(25), is in turn
uncorrelated with the past z(t), then E(ZTe) = 0 holds. It may be further shown from Eq.’s(23),

(24) and (29) that
<zj,d>
9 =

R & - 1 =1,2,---, 30
<Zj.Zj>’ 2 T 1y ( )

The weight vector a can then be obtained from Eq.(27) through backsubstitution. Set

a

a = —-
llall
q

4 &
al|




d

Iy e —

llall

to enable the norm of the weight vector of the classification function to be a unit vector, i.e.

lla]| = 1 (see section 2.2)

From Eq.(6), Eq.(25) and Eq.(27), the classification function value of the input vector x(t) is
dlx(1)] = x(t)"a = 2(t)Tq (31)

By defining
bl = IR = [Bir, + -+, bin, ] (32)

and applying Eq.(6), Eq.(27) and Eq.(32), the classification function value of the center vector
c; is

dig) = c?a = b?q (33)

From Eq.(14), the distance v;(t) between the x(¢) and ¢; is

Ty
vi(t) = [[d[x(2)] - d(es)|| = \J D a3 (z(t) - biy)? (34)

=1

By virtue of coefficients ¢; # 1 and viewing b;’s as the new centers of the hyper-ellipsoid, an
inspection of Eq.(2) together with Eq.(34) shows that the basis function is in fact a hyper-elliptic
basis function with the orthogonal basis z;’s as axes. This is illustrated in Fig. 2.

From Eq.(26), and taking into account the orthogonality ofz;, j=1,---, ny, the sum of squares
of the classification value is
ny
<d,d>=) "¢ <25,2;>+<ee> (35)
7=1
Define the fraction of the increment towards the classification function value d by the basis z;
as the error reduction ratio (err) (Billings and Chen, 1989, Billings, et al, 1988, 1889)

qu- <zZ;,z; >

err,; =
7 <d,d>

(36)
The value err; is representative of the energy distribution of the j'th orthogonal basis towards
the classification function value, or the projection along the orthogonal basis by the classification
function value. The distribution of the overall energy of the classification function value can

be viewed as hyper-elliptical due to the different projection along each basis. A reduction in




dimension may be possible by reducing some of the unimportant bases. In practice, an upper
limit n, for the input lag is made but the number of significant input nodes may be much
smaller than ny, n, < n,. By adopting an efficient forward selection procedure (Billings and
Chen, 1989, Billings, et al, 1988, 1889) for the construction of the classification function, that is,
by stepwise selecting a significant input node with the largest err subject to its orthogonality
with the previous selected nodes, a procedure for input node selection is achieved. Input node
selection for RBF neural networks was also studied by Zheng and Billings (1996), where a mutual
information criterion was proposed. The advantage of a mutual information measure is that both
linear and nonlinear correlations are taken into account. However, the classification function
based approach has an advantage of being less computationally intensive. Both approaches
attempt to use the prior information learnt from the data so as to avoid building an oversized

network.

If n,, prominent input nodes are selected, then

d=[g1,82, 1 qny |T

and R is reduced to an n, X ny, unit upper triangular matrix. The dimension of the new centers

b;’s is reduced to n,,. The distance between x(t) and c;

w(t) = [ldx(t)] - d(es)] = J 5 2(35(1) - biy)? (37)

will be used together with Eq.(2) in the formulation of the DRBF network.

The second stage

The second stage in the DRBF network involves selecting A important regressors p;(t), 1 =
1,---,M in Eq.(l)‘from the data set and learning the weights of the hidden nodes. This will
also be based on the forward regression OLS procedure (Billings and Chen, 1989, Billings, et al.
1988, 1889). In a previous study (S. Chen et al, 1989), RBF centers were selected either from all
the estimation data set or from a subset of the set. Similarly, the new centers b;, i = 1,--.. M in
DRBF network can be selected from the estimation data or a subset of data after performing the
transformation defined by Eq.(32). The forward OLS estimator can learn the weights 8;. i =
1,-+-, M and select the most relevant regressors. The regressors can be selected using the error
reduction ratio [ERR];, which is defined as the increment towards the overall output variance
E[y*(t)] due to each regressor p«(t) divided by the overall output variance (see Appendix A).

Note that to avoid confusion with the first stage selection procedure we have denoted the error

10
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Figure 2: The topology of the DRBF neural network time series predictor

reduction ratio in the second stage as ([ERR].

The second stage procedure can be terminated using either a prediction risk (Barron, A. R.,
1984, Liu, 1995), Akaike’s information criterion (AIC) (S. Chen et al, 1989), or when a de-
sired error tolerance is achieved. All these criteria are designed to produce a small one-step
ahead generalization error and a model with good approximation ability and fewer parameters
is preferable. The prediction risk is the expected prediction error over a test data set, and is
given by

ofalﬁagx(l.0+ 2—’}‘-#) (38)
where the 0? is the variance of the prediction errors in the estimation data set, the n.ss denotes
the effective number of parameters in the model, and N is the number of data points in the

estimation set. If a desired error tolerance p is used to select the model. the regressors will be

selected until
Teff

1- > [ERR};>p (39)

=1

fails to hold, providing a simple and effective model selection procedure. In the present study.

11




Akaike’s information criterion

AIC = J’Vlogefa'g)-l-élngff (40)

will be used. Minimizing this function with respect to the TNesys gives rise to the optimal number

of centers M.

A model with the least one-step ahead pfediction errors may not result in the least multi-step
ahead prediction errors. The criterion for a good multi-step time series predictor should take the
multi-step ahead prediction performance into account. Because the multi-step ahead prediction
error arises from many sources, and the complexity accumulates as the number of iteration steps
increases, the generalization errors of multi-step ahead predictions are difficult to analyse. Often

the only sensible approach is to use cross-validation on a test data set.

Remarks:

i). It has been shown that the training of the DRBF network can be achieved using a dual-
orthogonal least squares procedure. The learning of the classification function related distance
metrics and input node selection is configured as the first stage, while the learning of the hidden
nodes and corresponding weights is configured as the second stage. The DRBF neural network
auguments the first stage of the conventional RBF training, and in this stage a classification
function based new distance metric is used in order to achieve an improved basis function
approximation property. The idea was motivated from the consideration that the approximation
property of the basis function is important to the model quality. That is to say, the resulting
model could have a good approximation yet fewer parameters due to the fact that the basis
functions have been more appropriately chosen.

ii). Although the DRBF involves a more complex training procedure, the resulting network will
generally have a more concise structure because the redundant input nodes will automatically
be discarded at the first stage. This is an advantage especially when n, is high (Billings, et al,
1992).

iii). The DRBF neural network can be viewed as an elliptical basis function network involving
extra parameters in the basis functions. In DRBF the complexity to learn the parameters
in each basis function through nonlinear optimisation is avoided because the learning process
is composed of two sequential stages thus preserving the advantage of the RBF linear-in-the-

parameters structure and learning characteristics.




3 Simulation results

Simulation results of time series prediction using both conventional RBF and Dual-orthogonal
RBF (DRBF) predictors are presented in this section. Initially full models were created by using
all the data points in the estimation data set as centers c; for the RBF model, and transforming
these to form the new centers b; for the DRBF model. Subset models were then selected from
the full models using the OLS scheme. The performance of single-step and multi-step ahead

preditions over a new data set were then evaluated.
Consider the Mackey-Glass equation (M. Casdagli, 1989):

WD by 4 =)

dt +ye(t—7) (41)

where a = 0.2, b = 0.1, ¢ = 10. This system was simulated with the sampling rate T, = 1.
Two examples are presented here with 7 = 30 and 7 = 17 respectively. In each case, a sequence
of 1000 points was generated with the initial values set as y(t) = 0.5,t = 1,---,7, and then
a sequence of Gaussian noise £(t) ~ N(0,0.05%) was added to the data. The initial data from
t =1tot=r was discarded, and the estimation data set consisted of 500 points from ¢t = 7+ 1
tot =1+ 500. The test data of 500 — 7 points ranges from ¢ = 7 + 501 to ¢ = 1000. The time
series are ploted in Fig.3.

To make a comparison of the predictive performances between RBF and DRBF networks initially,
for the RBF and for the second stage in the DRBF networks, the model selection procedures
were terminated to fixed model sizes of 20, 40, 60 and 80 centers. Afterwards the AIC values

were used as the selection criterion.

For T = 30, two types of models were estimated. One was a RBF neural network with 30 input
nodes [ys—1,¥t—2,"**,Yt-30). The other was a DRBF neural network, where the maximum lag
was set to be 30, but the maximum number of input nodes was set to be 5. The 5 input nodes
were selected as the best subset from the 30 input nodes [yg_l,yt_g,"',yt_go]. At the first
stage, the classification function was constructed using the least squares method and a forward
regression procedure was used to sequentially choose 5 input nodes, and the coefficents q. The

input nodes selected were [yt-go,yt_l,yt_zs,yt_s,yz_m], and

q = [0.9365,0.4886, —0.1428, —0.1039, 0.1305]

13
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Figure 3: The Mackey-Glass time series Eq.(32). (a) 7 =30 and (b) 7 = 17

1 0.8712 0.9897 0.8853 0.9259
1 0.0908 0.9065 0.5515

g 1 0.2979 1.1065
1 1.0260
1

The candidates for new centers b; were then formed from the whole data in the estimation
data set through the transformation defined by Eq.(32). From Eq.(2) and Eq.(37) each new
candidate center forms a new candidate regressor. After all the candidate regressors were formed,
the forward OLS procedure was used to select the important regressors and the procedure was
terminated according to a desired model size. The model sizes of 20, 40, 60 and 80 centers were
used, and one step ahead and multi-step ahead predictions were computed over the test data
set from ¢ = 531 to ¢ = 1000. The results are shown in Fig.4’s(a),(b),(c) and (d) respectively.
The RBF performs better in the one step ahead prediction task. but deteriorates quickly for
multi-step ahead predictions. Compared with RBF networks with the same model size, the
DRBF has a much better multi-step ahead prediction performance except in the case when the

prediction step is 2 and a model size of 80 centers. This suggests that the DRBF performs well




as a time series predictor.

All the DRBF network results show that the simplest model size of 20 centers produces the hest
results for all prediction steps. The forward QLS procedure can be terminated using Akaike’s
information criterion (AIC) which penalizes large size models. Minimising the AIC to select the
best model for the DRBF networks achieved M = 19, number of centers, which is very close
to 20. This suggests that the optimal number of hidden nodes for DRBF network with 5 input
nodes is around 20, and also suggests that DRBF networks with a small structure can have
excellent predictive properties.

For 7 = 17, two types of models were used. A RBF neural network with 17 input nodes
[¥¢-1,Y¢-2, ", Yt-17], and a DRBF neural network where the maximum lag was set to be 17
but the maximum number of input nodes was set to be 5. Only the 5 most significant input nodes

7

were selected from the 17 nodes [y4—1, ¥s—2, - -, Yi-17). The classification function was learnt and
a forward regression was used to sequentially choose 5 input nodes, and the coefficents q. The

resulting input nodes were [y;_3, Y17, Yt—1, Yt—13, Y-s], and

q = [0.8568,0.4408,0.7423, —0.2924, —-0.2267]

1 0.9245 0.9946 0.9521  0.9951
1 —0.0512 0.7484  0.1266
R = 1 —0.2356 —0.0501
1 0.3535
1

The whole data in the estimation data set formed the candidates for new centers b; through the
transformation Eq.(32). Each new candidate centre, through Eq.(2) and Eq.(37), forms a new
tandidate regressor. The forward OLS procedure was used to select the important regressors
and the procedure was terminated according to a desired model size. Model sizes of 20, 40, 60
and 80 centers were used, and one step ahead and multi-step ahead predictions were computed
over the test data set from ¢ = 518 to ¢t = 1000. The results are shown in Fig.5’s(a),(b),(c) and
(d) respectively. The RBF performs better in the one step ahead prediction task for model sizes
of 40, 60 and 80 centers, but deteriorates quickly when performing multi-step ahead predictions.
For all sizes of network structure, the DRBF has a much better multi-step ahead prediction
performance except for 2 step ahead predictions for models sizes of 40, 60, 80 centers, and for 5

step ahead predictions for model size of 80 centers.

All the DRBF network results show that the simplest model size of 20 centers produces the best
results for all prediction steps. To select the best model for the DRBF networks. the forward
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OLS procedure was then terminated using Akaike’s information criterion (AIC).

A minimum
of AIC was achieved when the number of centers was M = 23, which is also close to 20. This

suggests that the optimal number of hidden nodes for the DRBF network with 5 input nodes
could be around 20, and again comfirms that DRBF networks with a small structure can have

excellent predictive properties.

Two effects may contribute to the improvement of the DRBF predictive performance, an im-
proved quality of the classification related basis functions or a more concise structure with
less input nodes. To investigate these possibilities for both 7 = 30 and 7 = 17 three models
with 20 centers were compared. For 7 = 30, a conventional RBF network with input nodes
the same as the DRBF network, that is, [yt_g,o,yt_l,y,,_ze,yf_s,yf_n] was trained. Similarly
for 7 = 17, a conventional RBF network with input nodes the same as the DRBF network,
[¥t-3, Yt-17, Yt—1, Yt—13, Ye—s] was trained. The performance is illustrated in Fig.6’s(a)(b). It is
seen that the RBF neural network with less input nodes alone performs worse than the DRBF
network with the same input nodes for both 7 = 30 and for 7 = 17. Forr = 17, the conventional
RBF network with input nodes [y;_1, y;—a, - - *,Ys—17] diverges. This means that the DRBF net-
works performs better than conventionl RBF networks with both the same input nodes and the
same number of centers. The results suggest the new classification based basis function plays

an indispensible role in model input node reduction and input node selection.

4 Conclusions

Conventional RBF networks approximate an unknown function by locally constructing receptive
fields around a set of centers. The corresponding node is activated according to the distance
between the network input vector and the center, and a radially symmetrical response is pro-
duced. However, the Euclidean distance measure of distance is strictly precise only when the
components of the data are uncorrelated. But in the application of time series prediction the
system input vector consists of lagged system outputs which are usually highly correlated. The
present study introduced a new structure of RBF neural network called the Dual-orthogonal
RBF Network (DRBF) for nonlinear time series prediction. The DRBF modifies the distance
metrics by introducing a classification function constructed from the set of input vectors in the
estimation data set. It was shown that the training of the network can be implemented as a
dual-orthogonal least squares procedure. In two stages, a forward regression selection procedure
is applied, initially learning the classification related basis functions and the important in.put
nodes and then selecting the regressors and learning the weights of the hidden nodes. The

simulation results of single step and multi-step ahead predictions over a test data set were pre-
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sented and these clearly show the effectiveness of the new approach. Although the new DRBF
is proposed in the context of time series predictor, it can be applied in a wide range of signal

processing applications.
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Figure 5: Multi-step ahead prediction performance when 7 = 17 (Solid line: DRBF
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[Yt—1,Ye—2,- -, ye-17]). a) a model size of 20 centers, b) a model size of 40 centers. ¢) a model
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Appendix A

Eq.(1) may be written in a vector form as

y=PO+Z (42)
where y = [y(1),---,y(N)]T is the output vector, = = [€(1),--+,&(N)]T is the residual vector,
© = [61,---,0m]7, and P is the regression matrix

pi(1) p2(1) - pm(1)
p1(2) p2(2) - pm(2)
Pi(N =1) pa(N=1) -+ pu(N-1)
(V) p2(l) -+ pm(N) (43)

An orthogonal decomposition of P is given as
P=WA (44)

where A is an M X M unit upper triangular matrix and W is an N x M matrix with orthogonal

columns that satisfy
WIW = diag{xy, ra, - kar) (45)
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with
Ke=wlwi, izl M (46)
Rearranging Eq.(42) yields
y=(PAT')(AO)+==WTI += (47)
where I' = [71, -+, ya]7 is an auxiliary vector. Because €(t) is uncorrelated with the past output

signals, it may be shown (Chen, Billings and Luo, 1989) that

%= y t=1,, M (48)

The number of original candidate regressors can be much larger than M, but M significant
regressors can be identified using the forward QLS procedure. The principle of the method is
shown below. As the orthogonality property w?wi # 0 for 7 # j holds, Eq.(47) multiplied by
itself and then the time average taken, the following equation can be derived

[ e 12 1
st :_E: 2T 1~ =T=
¥ ¥ Nﬁ%mwﬁN*“ (49)

The output variance E[y*(t)] = %y Ty consists of 7 M, v2wTw;, the part of output variance
expained by the regressors and %ETE, the part of unexplained variance. The error reduction
ratio [ERR];, which is defined as the increment towards the overall output variance E[y?(t)] due
to each regressor p;(t) divided by the overall output variance computed through

Zier il

VIWT Wy
ERR)=LT: T
[ERE] 75

g B by M (50)
The most relevant regressor can be selected forwardly according to the error reduction ratio
[ERR];. The original model coefficient @ = [61,---,6um]T can be calculated from A©® = T
through backsubstitution. '
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