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Abstract

We present a neural model for a singular-continuous nowhere-differentiable (SCND)
attractors. This model shows various characteristics originated in attractor’s nowhere-
differentiability, in spite of a differentiable dynamical system. SCND attractors are still
unfamiliar in the neural network studies and have not yet been observed in both artificial
and biological neural systems. With numerical calculations of various kinds of statisti-
cal quantities in artificial neural network, dynamical characters of SCND attractors are
strongly suggested to be observed also in neural systems experiments. We also present

possible information processings with these attractors.

Key words: Singular-continuous nowhere-differentiable attractors; Chaos-driven

contraction dynamics; Information processings on Cantor set; Dimension gap.
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1 Introduction

Dynamical states in neural systems can be represented by various kinds of attractors in
dynamical systems: a stationary state by fixed point, a periodically oscillatory state by
limit cycle, a quasi-periodic state by torus, a low-dimensional chaotic state by strange
attractor, and a high-dimensional itienrant state by itinerant attractor. Among others,
recently an itinerant attractor has been highlighted in the research of complex systems like
neural systems, where the new notion of chaotic itinerancy was proposed. (Ikeda et al,
| 1989; Kaneko, 1990; Tsuda, 1991a; 1991b). These states have been widely investigated
and also observed in experiments (for epoch-making experimental works including chaotic
itinerancy in neural systems, see Freeman, 1987; 1994; 1995a; 1995b; Skarda and Freeman,
1987; Kay et al, 1995). There is still, however, another dynamical attractor which was
named ”strange nonchaotic attractor” by Grebogi, Otto, Kaplan and Yorke (Kaplan &
Yorke, 1979; Kaplan et al, 1984; Grebogi et al, 1984). Here, "strange” means the presence-
of Cantor sets, and "nonchaotic” the absence of positive Lyapunov exponents.

A possible mechanism of strange nonchaotic attractors was recently proposed by Réssler
et al (1992). Actually, the attractors can be represented by singular-continuous nowhere-
differentiable (SCND) functions. We will provide the definition of this class of functions
in §3, where we will develop a theory to explain ”"strange” dynamic characters of our
model neural network. It should, however, be noted that SCND attractors must be, in
general, different from strange nonchaotic attractors since the former appears in contraction
subspace of a whole space including chaotic components, whereas the latter does not include
chaotic components L

Any theories, models, and even experimental observations for this attractor in neural
systems have not reported so far, except that we showed the presence of such an attractor
in neural networks (Tsuda, 1996). Furthermore, the questions have not yet been elucidated
if this attractor could be observed in biological neural networks, and also if it could subserve

the information processings in brain. In this paper, we present a small scale neural networlk

1R3ssler, private communication
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model which exhibits SCND attractors. Our aim is to elucidate the former question and
for the latter to present hypotheses based on the numerical simulations of the model.

A neural network model exhibiting SCND attractors will be presented in §2. In §3, a
general scheme giving rise to SCND attractors will be addressed, whereby the mechanism
of SCND attractors obtained in §2 will be elucidated. In §4, various characteristics of
the obtained SCND attractors will be studied. Section 5 will be devoted to conclusion
and discussion, where hypotheses on information processings with SCND attractors and
- the possibility of thé observation of SCND attractors in biological neural networks will be
addressed.

2 A model

Our model neural network presented here is of a small scale. The model consists of only
three neurons, two of which are called here a "static” neuron and the other one a "dy-
namic” neuron. A static neuron’s activity eventually relaxes to stationary firings which is
represented by a fixed point in phase space, whereas a dynamic neuron fires chaotically,
thus it is represented by chaotic attractor. It would be convenient to use a chaotic neuron
model introduced by Aihara et al(1990) in order to model both static and dynamic neurons
in terms of a family of chaotic map.

We adopt here an mutually interacting static neurons: one is supposed to be excitatory
and the other inhibitory. Suppose a dynamic neuron which is supposed to be excitatory
drives both static neurons. This condition of the model is natural, because one can easily
conceive the biological situation that a chaotic neuron or a chaotic neuron assembly drives
a static neuron or a static neuron assembly. We control interacting static neurons to form
a contraction map. Hence the present system belongs to a class of chaos-driven contraction

maps. The model equations are as follows.

Tntl = Z blln—r + I (1)
Ynt1 = f'_)("' Z b;’_;yn—-r + Czyin + C:L'yxn)a (2)
r=0

#
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n
Zngel = f'Z(—' Z bgzn-—r + CyzYn + cxzxn)a (3)

r=0
where 0 < by,b2,b3 < 1, ¢, are a synaptic strength from neuron u to v and C:y <0,
Cyzs Czys Czz > 0. The functions f;(z) (i = 1,2) is a sigmoidal function described as follows.

fi(z) .

il prpe (i=1,2). (4)

In the simulation, 73 = 70 and v, = 1.5 were fixed in order to assure the chaos-driven
contraction map.

| This system looks dependent on a whole history of states, but actually it can be reduced

to the dynamical system of six-dimension if the terms of history-dependent internal states

are replaced by one variable each. Let us perform the replacement of variables such that

Xn=—=2obiZnr + 1, Yo = -0 o 0oy + CryZn + Coyn, and Z, = — 30 _ b5z, +

Cy:z¥Yn + C2:T,. Then, the reduced model equations are as follows.
Xop1 = bXn - A(Xa) + (5)
bt = boYa = fo(Va) + ¢y (f2Zn) — b3 fo(Z7)) + cay(f1(Xan) = 0fi(X7)),  (6)
Znt1 = b3Zn — fo(Zn) + cye(fo(Yn) — b2fo(Y7)) + o (i(Xn) — B1f1(X1)), (7
Xop1 = X, (8)
Yoo = Y (9)
Zhow = Zn, (10)
where a = I(1 — b;). The last three variables, X', ¥, and Z’ simply give a linear effect,
in particular, X} — X, plane defines just one-dimensional map Xp4; = F (X.), where

F(Xa) = 01X, — fi(X,) + . Figure 1 shows a map of a static neuron ((a)) and a dynamic

one ((b)) when each is isolated.
-Fig.1 (a) and (b)-

The parameters by, by, and b3 are a measure of volume contraction. Throughout the
present study, we assume that b = b, = b, = by. We will see, in §4, the effect of this

parameter values to the dimensionality.
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1

Let us see the dynamics on the cross section X = constant, for instance, X = 0.05 ( £0.0005)
which provides two values for variable X', whereby two branches of Cantor set appears
on the section (Fig.2(a)-(c)). If the cross-section is taken as X = X*, where F(X?*) €
[FA(X}), F3(X})], only one branch of Cantor set is seen. Here X; and X* denotes the left
and the right critical points of the map F, respectively, i.e. dF(X})/dX = dF(X})/dX =
0. As seen in Fig.2, an attractor becomes fat due to an increase of parameter b, namely an
decreasé of contarction rate. Figure 3 indicates a return map of Y variable only on the cross
- section, where Cantor structure is clearly seen. This is a reflection of attractor’s Cantor
structure. It turns out by the dimension study (see §4) that at this parameter value b =
0.93, the attractor dimension is less than unity on the cross-section, though in the return
map it looks higher than unity. This indicates that the Cantor structure constructed on at

least two-dimensional space.
~Fig.2(a), (b) and (c)-
-Fig.3-

The cross section was chosen not to see chaotic components, thereby what we see is a
contraction space. Thus, on this section one can see the details of Cantor structure of the
attractors, whereas the details of Cantor set in usual chaos in low dimensional flow are
difficult to be seen. With the theory provided in the next section, the reason why these
attractors belong to the class of singular-continuous nowhere-differentiable attractors will

be elucidated.

3 Singular-continuous nowhere-differentiable attrac-
tors

3.1 Continuous but nowhere-differentiable functions

Continuous but nowhere-differentiable functions have been widely investigated (Takagi,

1973; Titchmarsh, 1985; Hata, 1988a; 1988b; 1994). In particular, Yamaguti (1989), and
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Yamaguti and Hata (1984) elucidated a relation between fractals (Mandelbrot, 1982) and
chaos. Recently, perhaps the simplest example of this class of functions has been proposed
by Katsuura (1991). Katsuura’s function (named by Réssler) is obtained from the graph of
asymptotic form of unit square transformed by a specific contraction mapping. The follow-
~ ing Katsuura map defines a contraction of any subset of the unit square D = [0,1] x [0,1]
when an appropriafe metric is introduced.

Let us define contraction mappings K;:D — D (i = 1,2, 3).

. T 2 -

I\l($7y) = (57—3:2)7 (11)
. 2—-2 1+ .
I\‘Z(l‘ay) = ( 3 ’_3_:?_)’ (12)
. 242 142

Ks(z,y) = (5= —5) (13)

Each of these mappings has a fixed point, (0,0), (3,3), and (1,1), respectively. Here, let
H(D) be a collection of all nonempty closed subsets of D. For every A € H (D),

K(A) := K1(A) U K3(A) U K3(A). - (14)

For every A, B € H(D), the Hausdorff metric is defined.
dy(A, B) :=inf{e > 0|N.(A) D BA N.(B) D A}, (15)

and

where N,(e) is an e-neighborhood of e. Then, K is a contraction mapping on H(D) under
this metric.

Let Ly = (v,2) € D and L, = K(L,-), then L, is a graph of continuous function
fa i {0,1] — [0,1]. In particular, a continuous function f., : [0,1] — [0,1] exists. The
mapping K has a unique fixed point L* in H(D), since K is a contraction mapping on
H(D). Therefore, for any A € H(D), a series {I{"(A)} converges to L* with respect to
the metric dg. Then, L* is a graph of f.,, namely L, converges to L*. Katsuura (1991)
proved with a standard analysis that the function f,, is nowhere-differentiable on [0,1],

here differentiability includes convergence even to plus or minus infinity.

~1
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3.2 Singular-continuous nowhere-differentiable functions

Rossler et al (1992) constructed a singular-continuous but nowhere-differentiable function,
based on Katsuura's function. A singular continuity is a continuity on Cantor set. We here
present a definition of singular continuity, and differentiability on Cantor set. A possible
definition is as follows.

Definition: Singular Continuity

Define a finite set of continuous functions h{)(z) on each subinterval I%) at each finite

2.113'(".) hg)(l)y
where open subintervals (o), B)) are removed ones in the construction of Cantor set as a

~ step n as constructing Cantor set in such a way that limxTa(.-)hﬁf)(x) = lim

support. If this process continues to infinity, then a singular continuous function is defined
as {h{)(2)};, = € Cantor set, (i =1,2,---,00).
Definition: Differentiability on Cantor Set

Define a continuous function h{)(z) on each subinterval I(") at each finite step n as con-
()y_ (D), (0)

n ) hy (an )
bslx)_asli)

is defined. There exists a collection of functional series, one of which is denoted by {6},

: N . )
structing Cantor set. For each subinterval I = [a),b)], a quotient 6() = 2x"(®

that accords to a respective series of subintervals {J,} whose one end point is an element
of Cantor set and the other end point monotonously converges to that element. If every
functional series converges, including &+ oo, then a function {h{)(z)};, = ev Cantor set,
(t=1,2,---,00) is differentiable on Cantor set.

Since this is a definition by Dini’s derivatives D (for example, Titchmarsh, 1985), several
definitions are possible, each expressing a different degree of differentiability. Namely,

a)weak deferentiability: DY = D,, or D~ =D_.

b)strong deferentiability: D* =D, = D-=D_.

A typical example of singular-continuous nowhere-differentiable function has been intro-

duced by Rossler et al (1992), which is given by the following equations:

T 2t .

Rzy) = (5.3 (16)
3—a2 1441

R'Z(:v’y) - ( 5 a‘3—J), (17)
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442 142y
R3(‘Tay) = ( 5 3 3

)- (18)
For any A € H(D), define

R(A) := R1(A) U Ry(A) U R3(A). (19)
&)
This gives a contraction mapping under the Hausdorff metric (}2), hence S, recursively

defined by Sn = R(Sn-1) for given Sy = (z, ) is a graph of the function g, on [0,1]. In
particular, the graph S, of go consists of isolated points, and g, is singular-continuous

nowhere-differentiable.

3.3 Dimensionality

Let us estimate, according to Rossler et al (1992), the dimensions of S., derived from the
above Rossler’s model . For the first time, it is obvious that the topological dimension
dimy(Se) = 0. On the other hand, the Hausdorff dimension dimp(Se) is simply estimated

by using the self-similarity such that dim;(Ss) = I%ﬁg— = 1.317--.. Namely,

dimp(Seo) — dimy(Se) > 1.0. (20)

On the other hand, the dimensions of the graph of Katsuura’s function f., which is 'simply’

nowhere-differentiable are dim,(Ls) = 1 and dimp (L) = %g—; = 1.4649- - -, hence

dimp(Leo) — dimy(Lo) < 1.0. (21)

The above two models, (11) ~ (13) and (16) ~ (18), are not dynamical systems but
simply contraction mappings. Our interest here is an attractor of differentiable dynam-
ical systems, Which can be represented by nowhere-differentiable or singular-continuous
nowhere-differentiable functions. An attractor represented by the Weierstrass function was
discussed by Moser (1969) in the context of structural stability. Recently, Kaneko has found
a similar model exhibiting a fractal torus (Kaneko, 1986). A singular-continuous nowhere-
differentiable attractor was first found by Yorke et al (Greboji et al, 1984; Kaplan and

Yorke, 1979), which was named strange nonchaotic attractors. Actually, Rossler et al (1992)

9
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have proposed the singular-continuous nowhere-differentiable function disscussed above as
a mechanism of strange nonchaotic attractors, and proposed another models (Rdssler and
Hudson, 1984) of this class, where the n;dme "superfat attractors” was given. According to
Rossler, the eqn.(20) should generally hold for singular-continuous nowhere-differentiable
attractors. This means that the Rossler model, (16) ~ (18), provides a ground for the
Kaplan-Yorke conjecture (IKaplan and Yorke, 1979) that a dimension of chaotic attractors
can exceed its topological dimension by more than unity. This can happen by the presence
- of negative Lyapunov exponents whose absolute values are smaller than positive exponents,
as seen in neuro-chaotic itinerancy (Tsuda et al, 1987; Tsuda, 1991a; 1991b; 1992; 1994).
In order to establish this condition for the present neural model, the contraction parameter

b should be close to unity. As in §4, it can be realized in larger values than around b =
0.95.

3.4 An example of dynamical system exhibiting singular-continuous
nowhere-differentiable attractors

The following dynamical system, which is so called Axiom A system, shows SCND attractor,

typically in case of a=0J, b=0.3, and ¢=0.7 ( Rossler et al, 1995).

9.0
Tpy1 = az, (mod 27), - (22)
Ynt1 = by, — ccos(az,), (23)
Zny1 = bz, + csin(az,), (24)
Wpe1 = bw, —csin(2 x az,). (25)

This is one of the typical chaos-driven contraction mappings. One can see SCND attrac-
tor on the cross section r=constant. Lyapunov spectrum of this system is (2.197, -1.204,
-1.202, -1.204), thus the Lyapunov dimension, which is equivalent to the Hausdorff di-
mension in this case, is dimy = 2.825. On the other hand, the topological dimension is
dim,; = 1.0, since volume is contracted in all of three diections than z-coordinate, where
only a set of isolated points is eventually formed. Hence the same inequality as in (20)

holds. This relation of dimensions means that the attractor is sparsely distributed in phase

10
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space. This may provide a merit for information processings with Cantor coding (Siegel-
mann & Sontag, 1994). On the details of three dimensional Cantor set in this Axiom A
system, see Rossler et al (1995) and Tsuda (1996).

4 Dynamic features of neuro-SCND attractors

In order to characterize the attractor seen on the cross-section, we calculated the fol-
lowing statistical quantities: invariant measure, Lyapunov spectrum, mutual information,
~ entropies, distribution of recurrence time, and dimension. The quantities except for the
Lyapunov spectrum and dimension were calculated with some partition, thus giving coarse-
grained ones. We changed partition in several systematic ways, and concluded the presence
of invariant characters. We also investigated a noise effect for entropies and mutual infor-
mation. We report these issues in detail. |

1. Invariant measure

Invariant measure was computed in Y'-Z plane, using orbits found on the cross section, X
= constant. As seen in Fig. 4, where the plane was divided by 30 x 30, the density becomes
very high at each one boundary of coarse-grained Cantor set, and decays drastically as it
goes to the other end. This feature is self-similarly embedded in each subset (not shown in

the figure).
-Fig.4-

This singularity other than self-similarity stems from the singularity of the invariant
density of driving chaotic neuron. The invariant measure of the isolated chaotic neuron
is roughly estimated as follows. Let X and X} be the right and the left critical points
of the map, respectively, and let 7(X}, X) and 7(A7,X) be time steps of orbit arriving
at X, starting from the right and the left critical points, respectively. We take into ac-
count only the critical points for the singularity of invariant measure, since the map is
almost piecewise-linear.. Furthermore, the slope b is close to but less than unity. Hence,

(X7, X)™, or 7(X7,X)7! can give a rough estimation of this kind of singular invariant

11
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measure’. Which quantity 7(X*, X)~! or 7(X}, X)™! is more effective than the other de-
pends on the shift value f(0). Fig. 5 (a), (b), and (c) show an invariant measure of the
chaotic map, 7(X}, X)!, and (X}, X)L, respectively. It turns out that the invariant

measure is approximated by 7(X*, X)~! in this case.
-Fig.5 (a), (b),and (c)-

Moreorver, let us calculate a distribution of a reccurence time of orbits starting from
points in X + AX. The following exponent v does not depend on this precision. Since X is
a driving force, this distribution is equivalent to that of the neural net concerned, namely
the distribution of recurrence time on the cross section X(£AX). At each cross section

X, it was numerically observed that the distribution follows the relation,
Px(T) = A(X)exp(=v(X)T) (T < Tmax(D)), (26)

where T is recurrence time. It should be noted that recurrence time has upper bound,
Trae Which depends on the contraction parameter b. The larger the value of b is, the
longer is the upper bound up to infinity in the conservation limit b6 = 1. In Fig.6, we
plot the exponent v(X) as a function of the cross section X. This resembles the invariant
measure of isolated chaotic neuron map, especially the positions of singularity completely
coincide with each other.This relation between v(X) and invariant measure was first found
here. From dynamical systems viewpoint, it is valuable to study whether this is a universal
character in chaotic dynamical systems or specific only to almost piecewise-linear systems.

This is here left as an open question.
-Fig.6-

Recurrence time T may also approaximate the period of unstable periodic orbits which
lie in the neighborhood of the wandering orbits with such recurrence time. According to

Kai and Tomita (1980), the invariant measure of chaos is determeined by a sum of weights

2This was actually predicted by Yoichiro Takahashi (personal communication)

12
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of periodic orbits, here weight is inversely proportional to an absolute value of the product
of derivatives of map at those periodic points. The present relation (26) is thus qualitatively
explained by Kai and Tomita theory, though quantitative derivation is not straightforward.

Rewriting the relation (26), an explicit expression of v(X) is
U(X) = =T ' UnPx(T) + T U UnA(X). (27)

If one can view the recurrence time as the period of periodic orbit in the above sense, the
integral of Px(T') with respect to X could provide a total number of periodic points of period
T, here denoted by P(T). Then, topological entropy is given by limr_.., T~ nP(T). Thus,
the first term on the right hand side of (26) may represent a local " density” of topological
entropy, that is, a local topological complexity of the map of T times iteration, though
opposite sign. On the other‘hand, A(X) is proportional to v(X), hence the second term
could represent roughly a local entropy, that is, a local information created per iteration.
Thus, here an information is roughly a sum of invariant measure and local topological
complexity.

The singularity of this forcing measure directly influences the singularity of invariant
measure on the cross section in case of network. The self-similarity of measure on the section
directly stems from the singular-continuous nowhere-differentiability of the attractor.

2. Lyapunov spectrum and dimension

We computed Lyapunov spectrum from which Lyapunov dimension is derived. In the
present model, only one dimension formed by one-dimensional chaotic map in X' — X space
results in the presence of positive Lyapunov exponent, since other variables are responsible
for contraction, giving rise to negative Lyapunov exponents. Depending on b, the absolute
value of some négéutive exponents can be smaller than the positive one, which gives rise to
the dimension gap discussed in §3. In Fig.7, the Lyapunov dimension is shown for each
value of b. In Table 1, Lyapunov spectrum and dimension are shown for some typical values
of b. For some values of b, dimension is low, that indicates the occurrence of bifurcations.
Except for these values, the dimension increases as b increases. On the other hand, the -

contraction subsystem forced by the chaotic orbits with arbitrarily high period makes zero-

13
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dimension only (Hdrsch and Smale, 1974; Rossler and Hudson, 1984). Thus, topological
dimension is unity over a whole range of parameter b(< 1), inherited from one-dimensional
chaotic component. At around b = 0.95, the dimension gap is more than unity, and it is

more than two at around b = 0.99.
-Fig.7-
—Table 1-

This dimension gap may provide a merit for information processing on Cantor set. Since
one must usually process information in noisy environments, the question becomes impor-
tant how the noise can be effectively reduced. The dimension gap means that attractor
is distributed in the space dimension. If one encodes information on the distributed Can-
tor elements, one can discriminate the errored codes from real codes, since all the errored
codes could be in the Cantor gaps. On the other hand, the present system pulls back the
disturbed orbits into Cantor set, since the dynamics on the cross section is contractive.
Thus, it is also used for an automatic reduction of noise.

3. Entropies

We computed a conditional entropy on the cross section which may approximate the K-S

entropy. The conditional entropy is defined as follows:

HU/U) = =3 pipijlogpij, (28)

ij

= —Zp(l’.])logp(lv.])/pn (29)

i'j

where U’ and U denote the states on the cross section, p; a stationary probability distri-
bution, p;; a conditional probability distribution from state i € U to j € U’, and p(i,j) a
simultaneous probability distribution. A various size of bin (dy,dz) was adopted, and the
following characteristics was concluded as an invariant one.

Interesting noise effect was found, using a uniform noise. Increasing the noise amplitude,

the entropy decreased in some noise range, and increased after some critical point. This
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is shown in Fig.8. In order to check if the computed results are reliable, we estiinated
the number of bins including at least one data point, which is shown in Fig.9. As figure
shows, the number of bins increases drastically, that is, the number of data in each bin
decreases drastically at the range where entropy abruptly increases, which gives rise to a
poor statistical estimation. Hence, we concluded that the decrease of entropy by noise is
statistically reliable, but unreliable for the increase phase. Actually, for a reliable range of
noise the number of data in each bin is more than ten, which assures a plausible statistical

estimation.
-Fig.8-
-Fig.9-

In order to check whether or not this noise effect is an inherent character of SCND attrac-
tors, we computed the entropy by changing the size of bin. Consequently, the numerical
results did not change qualitatively, especially for the noise level for the minimum value of .
entropy. The decrease of entropy by noise indicates that noise does not necessarily blur the -
attractor’s Cantor-like structure, and on the contrary to usual diffusion process by noise a
more ordered state is created, or extracted by noise from the original attractor. In general,
noise plays two roles in such a way that it makes distinct orbits merge into a bin, and on
the other hand it makes indistinguishable orbits in bin distribute to some other bins. The
former is responsible for a decrease of entropy, but the latter is for an increase of entropy.

In the case of so called noise-induced order (Matsumoto and Tsuda, 1983) observed in
chaos, the former effect wins the latter due to the nonuniformity of Markov partitions that
provides a variety of inherent orbits. In the present case, it is hard to determine the Markov
partition, so that one cannot compare a true orbit with a noisy orbit.

It is, however, possible to conceive the mechanism of the "noise reduction” by noise.
In SCND at'tractor, many to many correspondence among orbits is i)el‘lnitted only on the
Cantor set, and almost one to one correspondence holds on empty space (Cantor gap). Here

the notion of correspondence among orbits is derived since we observe the orbits only on -
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the cross section X = constant. Even if the orbits are moved by noise to empty space, the
orbits easily come back to the vicinity of the original Cantor element due to the convergent
dynamics, as far as the noise is not so large. It may trigger the entropy reduction. Thus,
one may call the present noise effect a noise-induced order, though chaotic component is
deleted in the present case. This effect is much larger for the activities of inhibitory neuron
(Z variable) than the excitatory neuron (Y variable). Actually, the Cantor structure is
still visible in inhibitory neuron even when external noise is applied. These features may
- assure an observability of SCND attractors in biological neural systems. This point will be
discussed below in more details.

4. Mutual information

Mutual information is defined by the difference between entropy and conditional entropy.
The numerical fact that the invariant distribution and the transition probability distribu-
tion are almost equivalent derives the time-invariance of mutual information with a small
value depending on the cross section and its precision for the determination. There are
some probabilities that a few digits become different between the invariant distribution
and the tran’sition probability distribution. These digits contribute to a non-zero value of
the mutual information, which differs from the asymptotic case of mutual information in
chaos, where zero value is achieved. It turns out in the following way where this non-zero
value stems from.

The definition of time-dependent mutual information is as follows (Matsumoto and
Tsuda, 1985; 1987; 1988):

B I(t) = Zpi logp;t — ZZPiPij(t) log pi; ()71, (30)

where t is a discrete time with a measure only on the cross section, pi a stationary prob-
ability distribution of i-th state, and p;; a transition probability distribution from i to
J.

In the present case, p;;(t) = const. w.r.t. ¢, denoting here q;j- The following equations

are empirically obtained.
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% = | (31)
v = {8 o e
Then,
I(t) = > pilogp; I_Zpizj:QijlogQi;1> (33)
= X pilogp;’ =3 g;logp;?, (34)
¢ J
= > (pi — a:)logpi. (35)

The difference between both distributions p; and g; lies only in some sites. Let A; = p; —q;,

denoting missing information in each site . Then we obtain the following equation.
I(t) =) Ailog A7 = const. = I. | - (36)

Since A; represents a "missing bit”, mutual information here is an information shared be-
tween missing bits. This value of I depends on the position of cross section and observation
precesion. It should be noted that I does not, in general, equal to zero, whereas the zero
value is asymptotically achieved in case of chaos.

In Fig.10, the noise effect on mutual information is shown. Here, a similar behavior
is seen to the case of conditional entropy. Namely, the non-zero value I does not vary
as increasing the noise level up to some level which is around 1/ 1000 of the system size.
Further increase of the noise level by around one digit shows abrupt decrease of I. By the
reason from‘statistical inference, the increase phase of I is not reliable, similarly to the

case of conditional entropy.

-Fig.10-
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5 Conclusion and discussion

We proposed a neural network model exhibiting singular-continuous nowhere-differentiable
(SCND) attractors. This is the first finding of SCND attractors in neural systems. We
also elucidated a mechanism of SCND attractors with a help of Réssler’s construction
of singular-continuous nowhere-differentiable functions. In order to characterize SCND
attractors, we calculated invariant measure, Lyapunov dimension in terms of Lyapunov
- spectrum, entropies, and mutual information. Here, all calculations were performed on the
cross section X = const. Three main features were extracted. First, invariant measure
shows a singularity on each coarse-grained element of Cantor set, which stems from the
singularity due to a critical point of isolated chaotic neuron map. Second, SCND attractors
can possess a dimension gap, namely the Lydp_unov dimension can exceed the topological
dimension by more than unity. In the present model, we found that the dimension gap
increases as the volume contraction parameter b is increased up to unity, except for bifur-
cation points. Here the maximum dimension gap was 2.08. Third, the statistical quantities
like entropies and mutual information is robust for noise up to around 1 /1000 of system
size in amplitude, and for a bit larger noise they abruptly decrease. Even changing a mesh
size for finite computation, this tendency did not change. This indicates the existence of
structure inherent in SCND attractors to absorb the external noise. This characteristics
would be important in studying information processings of brain with SCND attractors.

Referring to the last formula of mutual information, one may conceive two kinds of
information processings on Cantor set. One is the localization of information on Cantor
set, and the other the concurrent process of write-in (”learning”) and read-out ("retrieval”).
The information can be distributed on subsets of Cantor set, but information can never
flow among any subsets. This is, however, different from zero-information flow seen in
stationary distribution of chaos. In the present case, only the shared information is the
information that "missing bits” possess, whose bits provide the difference between invariant
measure and transition probability distribution.

On the other hand, the concurrent process emerges as a microscopic mechanism of the sta-
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tionarity. In general, in dynamical systems, an expanding map assures a read-out process of
information, whereas a contraction map assures a write-in process. In usual chaotic dynam-
ics, an expanding and a contacting phase appears successively, associated with its dynamics.
In the present case, these phases progress concurrently, because of chaos-driven contrac-
tion mapping. A simpler alternative to conceive this process would be a dissipative baker’s
transformation. But, in such a case, attractor is constituted by one-dimensional Cantor
set, hence singular-continuous nowhere-differentiable functions cannot be constructed.

If the present model is adopted to memory storage, it would exhibit a high power, since
an infinite capacity of storage will be achieved in ideal case. In real circumstances, where
a system is contaminated by various kinds of noise, an infinite capacity is impossible, but
extremely high capacity is expected because of its robustness for noise. Actually, Cantor
set itself survives in the direction of inhibitory neuron even in the noisy environment. One
can assure this point in the figure of attractor and in the projected invariant measure to the
direction of inhibitory neuron. This is a kind of realization of sophisticated use of Cantor
code by Siegelmann and Sontag (1994).

It would be natural to ask the presence of SCND attractors in biological neural systems.
Chaotic behaviors have been observed in several parts of brain. Thus, chaotic neurons or
chaotic neural networks can act for higher functions of brain. On the other hand, non-
chaotic, that is, static neurons or their networks also exist, and act for some information
processings. Then, one can conceive the situation that a chaotic neuron or its network
drives a static neuron or its network. Such a system will appear in cortical tissues that
relate sensory information to feedback information from higher levels, that is, in "corti-
cal interface”. Among others, a significant candidate is a memory system which can be
implemented in hippocampus and more widely in temporal cortex.

How can one detect such an attractor in brain ? According to the present study, the
measurement of membrane potential of an inhibitory neuron, or local EEG of the network
where inhibition is dominant, which should lie in the vicinity of the network exhibiting

chaotic behaviors will provide an evidence of the existence of SCND attractors.
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Table captions

Table 1 Lyapunov spectrum and Lyapunov dimension for some typical values of b.

Figure captions

Fig. 1 Neuron models adopted in this paper: (a) for a static neuron, and (b) for a
dynamic one.

Fig. 2 Cantor set attractors seen on a cross section x = 0.05 (£ 0.0005): (a) b = 0.93,

(b) b= 0.95, and (c) b = 0.99.
| Fig. 3 Return map of Y taken on theé cross section for b = 0.93.

Fig. 4 Invariant measure computed in Y — Z plane. The orbits on the cross section are
used. A mesh size for coarse-graining is given by 30 x 30 partitions.

Fig. 5 Comparison of invariant measure ((a))with 7(X, X))~ (b)) and 7(X}, X)™! ((c))
in isolated chaotic map.

Fig. 6 Exponent v(X) as a function of X. This exponent gives a good approximation of
invariant measure.

Fig. 7 Lyapunov dimension v.s. contraction parameter b.

Fig. 8 Noise-induced order represented by conditional entropy. The case of b = 0.93
is shown, but this noise effect is observed also in other parameter values as far as SCND
attractors appear.

Fig. 9 The dependence of the number of bins including at least one data point on noise
amplitude.

Fig. 10 Noise-induced order represented by mutual information. This is a general char-

acter of SCND attractors in the same sense as mentioned for conditional entropy.
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Nomenclature |
Tn, Yn, and z,: neuron’s output, that is, pulse density per unit time at time n.
fi(z): sigmoidal function expressing input-output relation of neuron.

Xn, Ya, and Z,: neuron’s internal state expressing membrane potential of neuron at time

X, Y,, and Z: neuron’s internal state at time n - 1.
b;: decay rate of internal memory.
cij: synaptic strength from neuron i to j.
F(X,): transformation function of membrane potential.
D: unit squrare.
H{(D): collection of all nonempty closed subsets of D.
K(A), and R(A): contraction map for area A.
fa, and g,,: function on unit interval.
L,, and S,: graph of function.
'D: Dini’s derivative.
dimy: Hausdorff dimension.
dim,: topological dimension.
7(u,v): time from u to v.
Px(T): distribution of recurrence time T on the cross section X.
v(X): exponent of the recurrence time distribution on X.
H(U'/U): conditional entropy of U’ under the condition U.
p;: stationary probability distribution.
pi;: transition probability distribution from ¢ to j.
A: difference between two distributions.
I(t): time-dependent mutual information.

I: stationary mutual information.
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A1 A2 A3 A4 As As Lyapunov dimension
b=10.93]0.22|-0.27 | -0.27 | -2.44 | -2.54 | -33.54 1.82
b=10.94 | 0.23 | -0.24 | -0.24 | -2.56 | -2.66 | -33.50 1.97
b=0.95|0.37 | -0.20 | -0.20 | -2.72 | -2.75 | -33.08 2.76
b=0.96|0.42 | -0.17 | -0.17 | -2.90 | -2.91 | -32.79 3.03
b=10.98 | 0.42 | -0.10 | -0.10 | -3.46 | -3.46 | -32.52 3.06
b=0.99 | 0.44 | -0.05 | -0.05 | -4.02 | -4.02 | -31.98 3.08
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