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Abstract 

We have implemented two analog VLSI computational sensors for sensing and encoding high dynamic range images by exploiting 
temporal dimension of photoreception. The first sensor is a multi-integration time photoreceptor that automatically adapts to use different 
integration periods depending on light intensity. It exhibits a dynamic range 128 times larger than that of a single integration period 
photoreceptor, approximately 1: 128 OOO. The second sensor is an intensity-to-time processing paradigm that is based o n  the notion that 
stronger stimuli elicit responses before weaker ones. The paradigm sorts pixels of sensed images by their intensities, thus achieving 
information-theoretic optimal encoding of images. It handles dynamic range of approximately 1 : 1 OOO OOO. Both implementations can 
operate at standard video rate of 30 frames s - ' .  0 1998 Elsevier Science Ltd. All rights reserved. 
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1. Introduction 

When a photo detector (e.g. a photodiode or a CCD well) 
operates in a flux-integration mode (Weckler, 1967) it inte- 
grates photoelectrons. In the conventional image sensors, 
the integration process continues for a fixed integration per- 
iod, followed by the measurement of accumulated charge in 
each pixel. If  the photon flux at some pixels exceeds the 
limits of the sensor, the photo-charge saturates those pixels. 
Shortening the integration period is the usual remedy for 
this problem, but at the expense of not collecting sufficient 
photocharge at the dark pixels. This is a well-known 
limited dynamic range problem of conventional image 
sensors, a problem that right at the acquisition level limits 
the entire vision system. The computer vision community 
reluctantly accepts this limitation and copes with the corrupt 
sensory data at the algorithmic level, inevitably leading to 
unreliable performance. 

We exploit the temporal dimension of photo sensing to 
achieve imaging of high dynamic range scenes. Time plays 
a critical role in neural information processing. The neural 
responses are discrete in  amplitude but analog in time; 
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therefore, the time plays an essential role in the flow and 
transformation of information in biological systems (Anton 
et al., 1992). In addition to simply dealing with the amount of 
charge collected during a fixed integration interval, we deal 
with time intervals the detector takes to accumulate a pre- 
determined amount of photocharge. Using analog VLSI, we 
have implemented and demonstrated two vision compu- 
tational sensors (Mathur and Koch, 1991; Kanade and 
Bajcsy, 1993) capable of sensing and encoding large dynamic 
range scenes. These are good examples of how adaptive ana- 
log on-chip computation at the sensory level can extract 
unique, rich, and otherwise not obtainable sensory information. 

The first method, a multi-integration time photoreceptor, 
avoids saturation by automatically choosing the "best" 
integration period from a set of predetermined periods. 
When the charge level is close to saturation, the integration 
stops at one of these integration periods. The receptor 
encodes the intensity by two signals: ( I )  the accumulated 
charge, and (2) the identifier of the selected interval. In this 
way, the sensor represents a wide range o f  light intensities. 

The second method, a sorting image sensor, avoids 
saturation by sorting pixels by their intensities. The input 
image may have a large dynamic range, but the indices 
assigned to pixels always range from I to N, where N is 
number of pixels in the imager. The sorting in  the sensor is 
based on the biologically inspired notion that stronger 
stimuli elicit responses befor-e weaker ones. I (  is achieved 
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Fig. I .  Circuit of the multiple integration time photoreceptor. 

in analog by dealing solely with the time intervals each 
receptor takes to accumulate a predetermined amount of 
photo-charge. The chip detects an image focused on its 
sensitive area and computes an image of indices. During 
this process, the chip generates a waveform that represents 
a cumulative histogram of the detected scene. The sensor 
uses this waveform to map detected light intensities into 
indices. This waveform can be used for mapping indices 
back to the received intensities. Therefore, the sorting 
sensor encodes large dynamic range images with (1) the 
image of indices, and (2) the cumulative histogram wave- 
form. The image of indices has a uniform histogram, indi- 
cating that the indices are equiprobable. Therefore, when 
storing and transmitting the image of indices the sensor 
uses the available signal-to-noise ratio most efficiently; 
the image of indices is an information-theoretic optimal 
representation (Shannon and Weaver, 1949). 

The multi-integration time photoreceptor works well as a 
single point detector. It can be replicated in a cell-parallel 
image sensor. This approach would deliver a plurality of 
independent pixel measurements, each independently adapt- 
ing to accommodate large dynamic range. In contrast, the 
sorting sensor performs a global operation over an entire 
imaging array (Brajovic, 1996). Since each pixel value is 
optimally influenced by other pixels in  the array, the sorting 
image sensor adapts in each frame to deliver the “best” 
image as a whole. 

The dynamic range problem has been recognized as a 
problem in the imaging community and there have been 
various approaches to remedy i t .  Examples include on- 
chip logarithmic compression of the photocurrent, on-chip 
encoding of the spatial differences (Boahen and Andreou, 
I992), and on-chip encoding of the temporal differences 
(Delbruck and Mead, 1994). These methods use single 
point processing or a small neighborhood processing. Their 
encoding is hard to interpret, making the reconstruction of the 
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Fig. 2. Driving scheme for an MIT photoreceptor. 

linear image difficult. Since these methods use instantaneous 
photon sensing, they tend to be noisy. Other examples use dual 
or multiple integration times. One example uses two optically 
aligned CCD cameras operated at different shutter speeds 
(Yamada et al., 1997). The post-processor combines the two 
images to achieve a kind of log-compressed output. Similar 
results can be achieved with a single camera capturing the . 
two images sequentially. These approaches are bulky, SIC& 
and lack encoding and suffer from optical misalignment. 

Our two methods efficiently encode sensory information. 
In addition, our methods are practical; the encoding is easy 
to interpret and the noise introduced by processing is mini- 
mal. The remainder of the paper describes in detail both the 
multi-integration-time (MIT) photoreceptor and the sorting 
image sensor. We also present experimental results for both. 

2. MIT photoreceptor 

The MIT photoreceptor avoids saturation by auto- 
matically choosing one integration interval from a set of 
predetermined intervals. When the charge level becomes 
close to saturation, the integration is stopped at one of 
these integration periods. The receptor encodes the intensity 
by two signals: (1) the accumulated charge, and (2) the 
identifier of the selected interval. The sensor can represent 
a wide range of light intensities using these two signals. 

Fig. 1 shows the circuit for the MIT photoreceptor, and 
Fig. 2 shows the representative signal waveforms. The MIT 
photoreceptor includes two photodiodes operated in  the 
photon flux integration mode. An inverter thresholds the 
voltage of the photodiode A (Pd-a) and is responsible for 
detecting saturation. A transparent latch, controlled by the 
train of timing pulses (New-IT), acquires the output of the 
inverter during each pulse. The periods bctween consecutive 
pulses define the set of available integration periods. Each 
subsequent period is twice as long as the previous one. I n  
our experiments, we used eight integration times per frame, 
the Nth integration period is 1 / (2X-N)  of one frame time. 
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The photodiode B (Pd-b) integrates signal charge. The 
output of the latch samples and holds this charge on storage 
capacitor Capl. The latch output thus controls the duration 
of photon integration. The latch output also samples and 
holds a ramp voltage in the capacitor Cap2 to memorize 
the identity of the period at which the Pd-b stopped inte- 
grating. The ramp voltage is incremented by a predeter- 
mined step at each pulse in New-IT; therefore, it indicates 
the number of the interval being used. 

Fig. 2 shows an early part of a frame. In this example, the 
illumination was such that the second integration period is 
chosen. Following the reset to a high voltage, the two photo- 
diodes integrate the signal charge. Pd-a decays, passes the 
first integration timing (ITI). and then reaches the threshold 
for the inverter at to. The inverter trips from low to high. 
However, the integration gate (IC) does not change because 
the new state of the inverter output is still not visible at the 
latch output. Only after the integration timing pulse IT2 
makes the latch transparent for a short time (e.g. 1 ps) 
does the new state of the inverter affect the samplehold 
gate IC. Then, the integration in Capl stops and the identity 
of the 1T2 is recorded. The blanking gate Blk forces the 
integration gate (IG) to open at the end of the frame if the 
light intensity is too low to do so earlier. 

2. I. Experirnerital evaluation 

The photoreceptor circuit was fabricated by MOSIS with 
the Orbit 2m Analog process. The size of a photoreceptor is 
109 X I I O  pin'. We tested the photoreceptor to investigate 
its behavior over a wide range of light intensities. I n  order to 
set the light intensity precisely, we varied the frequency of 
the LED light pulses by 50 ns each. The light intensity out- 
put L-out and the identity of the integration time output 
It-out are plotted against light intensity i n  Fig. 3 and 
Fig. 4. Li-out increases linearly with light intensity in the 
largest integration period (11 = 8) .  It  reaches a threshold 
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Fig. 4. Integration period identifier versus light intensity. 
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(n = 7). With this transition, the Li-out decreases by half, 
but again increases linearly until the threshold is reached 
within the shorter period. Then, the receptor switches to'the 
next integration period ( n  = 6) and so on. With each transi- 
tion to the smaller integration period, It-out increases by oue 
level; we observe in Fig. 4 that It-out has the eight distiic- 
tive output levels corresponding to the eight integration 
periods. 

From the two signals, Li-out and It-out, we can recon- 
struct the actual light intensity by multiplying Li-out by 
2's-N), where N is the value of It-out. The reproduced out- 
puts are plotted against light intensity in Fig. 5.  There are 
eight segments of this graph, corresponding to the different 
integration periods. The transition from one integration per- 
iod to the next is smooth and the output as a whole shows 
very good linearity over a wide range. The smallest integra- 
tion period is 1/128th of the largest integration time; there- 
fore, the dynamic range is 128 times larger than that of a 
single integration period photoreceptor, for approximately 
1: 128 OOO. 

Light Intensity(KHz) 

and then switches to the second largest integration period Fig. 5. Reproduced signal vcrui< light iiitcnsity 
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3. Sorting image sensor 

Wn 

The sorting image sensor is inspired by biological vision; 
the paradigm is based on the notion that stronger input 
signals elicit responses more quickly than weaker ones 
(Ripps and Weale, 1976). In our  implementation, each 
pixel integrates charge until a predetermined amount is 

Wout 

accumulated. Then, an event is fired. The temporal integra- 
tion insures that the brighter pixels fire their events before 
the dark ones. Therefore, the pixel events are ordered in 
time according to their intensities. A global counter counts 
the events. When the first response is received, the global 
count is one. This count represents the order, or index, of the 
cell that generated the event. The sorting of input signals is 
thus achieved by assigning the global count to the cell that 
generated the most recent event. For example, when the 
second cell responds the global count is two, which is 
then assigned as an index for the second cell, and so on. 
The more time that is allowed, the more responses are 
received; thus, the global counter incrementally accounts 
for all pixels in the array. At the end, each pixel contains 
its own index-an image of indices. This method of sorting 
is closely related to a counting sort for integers (Connen 
et al., 1992). 

The circuit of the sorting image sensor is shown in Fig. 6. 
An inverter generates an event-a positive-going edge-by 
thresholding the photodiode's voltage. The generated event 
connects a quantum of current Io to a global summing wire 
Wout. The cumulative current in this wire represent; the 
global count of events. A resistor R converts the cumulative 
current to a cumulative voltage via resistor R. Wire Win 
distributes the cumulative voltage to all pixels. The e;ent 
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Fig. 7. Sorting computational sensor: a lour cell simulated operation 
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Fig. 8. Micrograph of the sorting chip 

in each cell memorizes this voltage in a capacitor C ,  since it 
represents the index of the cell that is just firing its event. 
Once all the cells have responded, the stored indices are read 
out from the capacitors (a readout switch is not shown). 

Fig. 7 shows the simulation of the current operation for 
the sorting sensor with four cells. A photodiode PD is 
charged to a high potential and left to float. Since the photo- 
current discharges the diode capacitance, the voltage 
decreases approximately linearly to a rate proportional to 
the amount of light impinging on the diode (Fig. 7, top 

Once the diode voltage falls to the threshold of the 
inverter, the inverter’s output changes state from low to 
high (Fig. 7, second graph). A switch S3 is included to 
provide a positive feedback, force rapid latching action 
and produce sharp edge at the output. The edge in the inver- 
ter’s output closes the switch S6 and opens the switch S7. 

The voltage on the wire Win (Fig. 7, third graph) repre- 
sents the index of a cell that is changing state. The capaci- 
tors within cells follow this voltage until they are 
disconnected. At each point, each capacitor C retains the 
index of the pixel (Fig. 7, bottom graph). The bottom 
graph shows that the cell with the highest intensity input 
receives the highest “index”, the next cell one “index” 
lower, and so on. 

The sorting sensor computes several important properties 
of the sensed image. First, the time when a cell k triggers is 
approximately inversely proportional to the  input radiation 
it receives: 

graph). 

( 1 )  

where C is the diode capacitance, VDD the power supply 
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Fig. 9. An office scene imaged by the sorting sensor: (a) cumulative histo- 
gram computed by the chip (sampling period is 0.5 p s ;  (b) image of indices; 
(c) histogram of indices. 

voltage, Vlh the threshold voltage of the inverter, and IL 
photocurrent approximately proportional to the radiation, 
and Id is the dark current. 

Second, by counting pixels, the global processor knows at 
each given time how many cells have responded with an 
event. Since events are generated according to Eq. ( I ) ,  the 
cumulative current in the wire Wout, or its inverse, the 
voltage on the wire Win, are temporal representations of 
the cumulative histogram of the input data, with the hori- 
zontal axis being proportional to llr. The time derivative of 
the cumulative histogram signal is related to a histogram of 
the input image (Ballard and Brown, 1982). The cumulative 
histogram is a one scene global property that is reported by 
the chip with very low latency, and can be used for preli- 
minary decision making as soon as the first responses are 
received (Brajovic and Kanade, 1996). 

The sorting image sensor encodes high dynamic range 
images by producing the cumulative histogram waveform 
and the image of indices. During sorting, the cumulative 
histogram waveform maps input intensities into indices. 
Once collected, the  cumulative histogram is used to decode 
the image of indices to the original high dynainic range 
images. 
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Fig. 10. Reconstructing linear images: (a) indices from the sorting sensor 
and inferred linear image; @) CCD camera image. 

3.1. Experimental evaluation 

A 21 X 26 cell sorting image sensor has been built in 
2 pm CMOS technology. The size of each cell is 76 pm X 
90 pm, with 13% fill factor. The micrograph of the chip is 
shown in Fig. 8. The chip receives an optical image directly 
on its surface. The cumulative histogram waveform and the 
indices from the sorting sensor were digitized with 12 bit 
resolution. 

In one experiment, the sorting sensor detected a low con- 
trast scene from an office environment. Fig. 9(a) and Fig. 
9(b) show the cumulative histogram of the scene and the 
image of indices both computed by the chip. Fig. 9(c) shows 
the histogram of the indices. Most pixels appeared to have 

Fig. I I. A scene with back-illuminated objects as captured by a conven 
tional CCD camera. 

b) c) d)  

Fig. 12. Sonine, sensor signal processing: (a) data from the sensors; (b) 
segmentation (viewing the shadowed region); ( c )  segmentation (viewing 
illuminated region); (d) segmentation and shadow removal. 

different input intensities and, therefore, received different 
indices. Occasionally, as many as three pixels were assigned 
the same index. Overall, the histogram of indices is uniform, 
indicating that the sorting chip has performed correctly. 

There are 546 pixels in the prototype described in this 
paper. The uniform histogram of indices (Fig. 9(c)) indi- 
cates that most of the pixels received different indices. 
Therefore, without special considerations as to the illumina- 
tion conditions, low noise circuit design, temperatute, and 
dark current control, our lab prototype readily provides 
indices with more than 9 bits of resolution. Furthermore, 
the range of indices remains unchanged (from 0 to 545) 
and the indices maintain maximum contrast and uniform 
histogram regardless of the range and distribution of input 
light intensity. 

Fig. IO(a) shows the linear image reconstruction from the 
image of indices and the cumulative histograni. To illustrate 
the “natural” conditions i n  the scene, Fig. IO(b) includes an 
image taken by a commercial CCD camera. The inferred 
input intensities closely resemble the natural conditions i n  
the environment. Note that since we were limited by thc 
8 bit dynamic range imposed by the postscript images, dur- 
ing the mapping. we have thrown away much of the contrasl 
information available in  (lie image of the indices. 

I n  another experiment, the sorting sensor dctcctcd a high 
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turns and fills the field-of-view with dark objects (e.g. hair) 
the wall appears brighter since it is now taking higher Segmentation’Mapping 

Fig. 13. Conventional CCD signal processing: ($ histogram equalization of 
the window; (b) segmentation and shadow removal. 

dynamic range scene, a back illuminated object. Fig. 11 
shows a global view of this scene as captured by a conven- 
tional CCD camera. Owing to the limited dynamic range, 
the CCD camera images the foreground poorly; it is mostly 
black. (The white box roughly marks the field-of-view for 
the sorting sensor.) 

The sorting sensor, on the other hand, resolves detail in 
both dark and bright regions (Fig. 12(a)). Since all 546 
indices are competing for display within the 256 levels 
allowed for the postscript images in this paper, one enhance- 
ment for the purpose of human viewing is to segment the 
image and amplify only dark pixels. Fig. 12(b) shows the 
result. Conversely, as shown in Fig. 12(c), the bright pixels 
can be spanned to the full (8 bit) output range. Finally, if 
these two mappings are performed simultaneously, the 
shadows are removed (Fig. 12(d)). 

The same method can be applied to the image obtained 
from a standard CCD camera. If the CCD image of Fig. 13 is 
cropped to the white box, and such an image is histogram- 
equalized, we arrive at the result shown in Fig. 13(a). This 
image is analogous to the image of indices obtained by the 
sorting sensor (Fig. 12(a)). Owing to the limited dynamic 
range, noise and quantization, the CCD image only resolves 
the face with 2-3 bits. The histogram-equalized image from 
the CCD is mapped using the same steps as for Fig. 12(d). 
For obvious reasons, the result is poor in the dark region. In 
contrast, the sorting computational sensor optimally allo- 
cates as many levels (i.e. indices) to the dark region as 
there are pixels. By comparing Fig. 12(d) and Fig. 13(b), 
the superior utilization of the sensory signal with the sorting 
sensor is obvious. 

Fig. 14 illustrates a rapid adaptation of the sorting sensor 
to accommodate changing dynamic range scenes. It shows a 
sequence of 93 images of indices computed by the sorting 
sensor. The sensor was stationary, and the only changes in 
the scene are due to subject movement. By observing the 
wall in the background, we can see the effects of adaptive 
dynamic range. Although the physical wall does not change 
the brightness, it appears dimmer in  those frames in which 
bright levels are taken by pixels which are physically 
brighter (e.g. the subject’s face and arm). When the subject 

- -  
indices. Also, note that the maximum contrast is maintained 
in all the images since all images of indices have a uniform 
histogram. 

3.2. Error analysis of temporal sorting and image encoding 

Theoretically, the dynamic range of the scene detectable 
by the sorting sensors is unlimited. Of course, in practice the 
actual dynamic range of the sensor is determined by the 
capabilities of the photodetector, as well as by the switch- 
ing speed and dark current levels. 

First, we investigate the mismatch of the cells. Even when 
receiving equal light levels, the cells do not respond at the 
same time. This determines the fundamental accuracy of the 
imaging. Given Eq. (1). the input photocurrent can be found 
as 

cv 
- - Id  

t 
where V = V,, - V,,, and I d  is the dark current. The relathe 
error can be found as 

where I = I ,  + I d ,  uld represents the fluctuation of the dark 
current over the sensor area, uc represent the fluctuations of 
the photo-detector capacitance (e.g. mismatch of the photo- 
detectors), uv represents the mismatch of the threshold vol- 
tages and the diode’s reset noise, and u, represents the 
fluctuation in the switching speed of the control element. 
After substituting Eq. (2) in the last term in Eq. (3), the 
relative error becomes 

( ?)2 = ( y2 + (F)’ + (5 cv  /)’ (4) 

where A, B and C substitute constant terms in Q. (4). This 
error model follows the intuition. For high levels of illumi- 
nation, when the cells respond quickly, the dominant cause 
of error is the fluctuation in the switching speed. For low 
illumination levels, the dominant factor is the fluctuation i n  
the dark current. 

The constants A,  B and C were experimentally deter- 
mined from the prototype chip. Without the lens in front 
of the sensor. the sensor UYIS illuminated by a halogen light 
source rellectcd from a ic4iitc cardboard. As the cardboard 
was positioned several meters from the sensor, the illumina- 
tion field was considered uniforni over the surface of the 
sensor. Changing thc angle hecween the light source and the 
cardboard controlled the aniount of liglit falling on the sur- 
face of the sensor. The cumulative histogram waveform was 
gathered for 43 different light levels. r:ro[11 the cumulative 
histogram waveforms and Eq. (2). the mean value I, and 
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Fig. 14. Sequence of images of indices delivered by the sorting sensors. 

standard deviation a,, were computed in arbitrary current 
units (ACU). (1 ACU = Us, i.e. 1 ACU triggers an event 
according to JZq. ( I )  at 1 s after the beginning of the frame 
integration.) The error model in EQ. (5) was fitted to the data. 
The results are tabulated in Table 1, and plotted in Fig. 15. 

Table 1 
Error performance of the sorting image sensor prototype 

A 2.2860 X IO-* ACU 
B 5.0636 X I0-j 
C 4.2862 X IO- 'ACU- '  

a i l =  1 I, , ,  0.0229 ACU 
I , , .  23 330 ACU 
Dyn. range l:l020565 

3aJI=  I [It?," 0.0686 ACU 
I,,,,, 7776 ACU 
Dyn rance 1:113373 

For the signal-to-noise ratio of one, the dynamic range of 
the sensor based on the model is over 1 : 1 OOO 000. If the 30 
rule is used for the noise limits, the dynamic range is over 
1:100OOO. However, the level of the dark current deter- 
mines the detectable lower limit on the input photocurrent. 
In the experiment, we determined that the average dark 
current is about 0.2 ACU; therefore, the S N R  = I and we 
require the lowest input photocurrent to be 0.2 ACU. 
Then, the dynamic range is 1: 1 I6 650 for the I u rule and 
1 :38 880 for the 3a rule. Given the dark current, the dynamic 
range is limited by the error the sensor makes when detect- 
ing the high illumination levels. The dominant source for 
this error is the fluctuation in the turn-on time of the inver- 
ters. In our experiment, this fluctuation is about 43 111s ( i t .  
constant C). This is a very high switching fluctuation and is 
probably due to the following facts: ( I )  the input voltage is 
slowly approaching threshold level of the inverter, thus 
causing the long transition times at the inverter's output; 
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Fig. 15. Relative error aNI: experimental data points and fitted error model 

(2) the positive feedback transistor is active only after the 
“decision” to trip is made; (3) in a static CMOS inverter the 
p- and n-channel transistors “fight” each other for slowly 
changing inputs; (4) there could be some systematic limita- 
tion in  our instrumentation set-up andor the conditions 
under which we assume equal illumination for all pixels. 
In all, the switching fluctuation is approximately 10% of 
inverter output transition time (i.e. rise time) in the cell 
receiving the highest intensity in our experiment, which is 
reasonable. A higher gain thresholding element would prob- 
ably perform better. This hypothesis will be verified with a 
new prototype currently being fabricated. Other sources of 
error, fluctuations in the dark current (Le. constant A) and 
mismatch of C and V (i.e. constant B )  are within reasonable 
limits. Relative error for the dark current is approximately 
IO%, whereas the lumped relative error for C and V is 
approximately 0.5%. 

The second issue we would like to consider is the error 
the sorting sensor makes when computing the cumulative 
histogram. This error is due to the mismatch of the current 
sources Io. Since there are typically thousands of cells in the 
sorting image sensors, the level of current Io is very low, 
pushing the corresponding transistors into the subthreshold 
regime. In this regime, the current sources could mismatch 
by 100%. i.e. one current source can be twice as large as 
another (Mead, 1989). Nonetheless, the monotonousness in 
the cumulative histogram is maintained. When the cumula- 
tive histogram is used for inverse mapping, the mapping 
from indices to the input intensities, the error in the cumu- 
lative histogram is not significant as i t  will be directly 
undone. 

The error that could be significant when mapping from 

indices to input intensities, however, is the readout error for 
each index. If the scene produced long horizontal segments 
in the cumulative histogram, such as the example in Fig. 
12(a), then a small error in index can result in a large error in 
inferred response time for a particular cell. This problem 
can be handled by prohibiting the mapping process to return 
times within the interval of the long horizontal segments in 
the cumulative histogram. A few pixels may be grossly mis- 
classified, but overall recovery of input intensities is good. 

4. Conclusion 

We have shown two analog VLSI computational sensors 
for the efficient extraction of the high dynamic range 
sensory data. The methods take advantage of the temporal 
properties of photoreception. The multiple integration time 
photoreceptor automatically adapts to use different integra- 
tion periods depending on light intensity. It exhibits a 
dynamic range of about 1:128OOO. The sorting sensor 
detects the image and sorts pixels by their intensities, 
thereby producing an “image of indices”. The image of 
indices is an information-theoretic optimal representation. 
Since the sorting image sensor carries out a global operation 
over sensed images, i t  adapts in each frame to deliver the 
“best” image as a whole. 
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