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Abstract

The self-organization model with a conformal-mapping adaptation is studied in this work. This model is designed to provide conformal
transformation to meet the conformality requirement in biological morphology and geometrical surface mapping. This model spans the
network field in the input space where topological conformality is preserved. The converged network provides not only the organized
clustering features of the input but also a specific mapping representation. This facilitates the Kohonen’s self-organization model in exploring
the input in a continuous conformality sense. Simulations for morphing applications are described.q 1999 Elsevier Science Ltd. All rights
reserved.
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1. Introduction

The self-organization model (SOM, Kohonen, 1982) is
used to organize topologically sensory inputs into clusters
on a feature map. An ordered map can provide a coordinated
lattice representation for the input space, i.e. the discrete
mapping function from the inputs to the network field.
This mapping approximates the input space using finite
synaptic weight vectors as the clustering centers. This
discretized representation may not characterize completely
inputs which have continuous structured features. This
limits its application in vector quantization tasks.

Continuous mapping has been studied recently with vary-
ing success. A continuous model was proposed by Li,
Gasteigner, and Zupan (1993) based on concepts of topol-
ogy theory. This model provides a method to measure the
topology distortion on a feature map. A parameterized self-
organizing map algorithm has been proposed by Ritter
(1993) for learning tasks in robotics and vision. This algo-
rithm constructs an interpolated smooth manifold to approx-
imate the input space continuously. There is no specific
mapping function in their work.

We attempt to construct a continuous mapping which is in
accordance with the intrinsic property of the SOM. During
the training process, an approximately conformal transfor-
mation can be observed (Tanaka, 1994) in the development

of the network field. The trained network can be regarded as
a conformal transformation of the input space (Tanaka,
1994). This property has not been further pursued before
and not included in current continuous versions of the
SOM model. This inspires us to construct a continuous
SOM with exact conformality.

In our proposed conformal SOM (CSM), an explicit
continuous space-dependent mapping function between
the input space and the network field is derived (see Fig.
1). The whole continuous representation is composed of a
collection of local conformal mappings.

Dimensionality reduction from the input space to the
network field is also accomplished by this model. The
distortion errors in this continuous representation, caused
by dimensionality reduction, will be also smaller than
those in the quantized representation.

In many practical tasks, for example, biological morphol-
ogy (Thompson, 1917) and geometrical surface mapping,
continuous conformal mappings are required. Current
continuous models (Li et al., 1993; Ritter, 1993) do not
satisfy this requirement. The proposed model meets this
requirement and helps the SOM accomplish these tasks.
These tasks necessitate the use of this network and distin-
guish it from other continuous versions of the SOM model.
To show the contribution of the model, we will describe
applications in morphing and in geometrical surface design.

We will briefly review the discrete SOM with notations in
Section 2. The simplicial representation is employed to
configure the network field (Lemmon, 1994). Section 3
contains the proposed CSM. In Section 4, we describe
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techniques for deriving the mapping functions in two- and
one-dimensional space. The algorithm is also summarized.
Applications in biological morphology and geometrical
surface design are presented in Section 5. Finally, the results
are given in Section 6.

2. Review of the self-organization model

The SOM can be described as a process with a best-
matching function,I, and a synapse adaptation function,
U. The best-matching functionI defines the mapping from
input setX # Rp to a finite discrete setI in the network field.
Each neuron is indexed by aq-dimensional labeli [ I,
whereq is smaller thanp usually. Letwi [ Rp denote the
synaptic weight vector of the neuron with index vectori. For
a sampled input vectorx, the functionI decides the best-
matching neuron,

I�x� � arg min
j[I

ix 2 wj i: �1�

Then, the functionU adjusts the synaptic weights of
neurons with varying updating,

U�wi
old� � wi

new� wi
old 1 a·h�iI�x�2 ii�·�x 2 wi

old�;
i [ I ;

�2�

wherea is a learning rate andh(·) is a neighborhood func-
tion. After the training, an ordered representation can be
obtained on the map.

Although different discrete metric systems can be used in
the network field, the regular grid coordinate system inRq

with the Euclidian distance is commonly used for the metric
of I. Using this regular system, the topology and the statis-
tics of the inputs can be appropriately preserved on the map.
Quantized dimensionality reduction can be obtained in the
mapping fromRp to Rq using the SOM.

To formulate the dimensionality reduction of the input
space, a simplicial representation (Lemmon, 1994) of the
network is employed. In a network field, each neuron is
associated with a collection of neighboring simplices. For
a simplex in the network, the corresponding synaptic
weights in the input space also form a simplex, as shown

in Fig. 2. Each simplex inRp is q-dimensional. Letw1,
w2,…, andwq be the synaptic weights of allq neighboring
neurons associated with the neuron having synaptic weight
vectorwi. Each simplex is defined as the set of all pointsw
of Rp such that

w � wi 1
Xq
j�1

aj�wj 2 wi�; �3�

where 0# aj for all j and
Pq

j�1 aj # 1 (Munkres, 1984). In
the CSM, the sampled inputs can be mapped to theseq-
dimensional simplices.

Consider aq-dimensional simplexs in the input space.
The simplexs is always a convex polyhedron withq 1 1
boundaries, which are (q 2 1)-dimensional simplices inRp.
Let <j�1…q112sj ; 2sj # s; denote the boundary set of this
simplexs. Each element2sj in the boundary set is a (q 2 1)-
dimensional simplex. The polyhedral boundaries,<j2sj will
be used to derive the conformal transformation of this
simplex by means of the boundary value method.

During the self-organization process, each simplex
configuration is reformed following synapse adaptation. A
conformal mapping can be formulated for each simplex. We
may apply multi-dimensional conformal analysis to
construct the mapping function. Let the mapping from
simplexs to a corresponding simplexs0 beCs, s0, whereC
is defined inRq, i.e.C: z 7! z0, andz, z0 [ Rq.

Usually, the explicit forms for arbitrary conformal mapping
functions are difficult to obtain. Numerical techniques must be
applied to obtain the mapping. In Section 4, the numerical
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Fig. 1. The mappingM(x).

Fig. 2. The simplicial representation forp � 3 andq � 2.



conformal mapping for the two- and one-dimensional
simplex will be explicitly constructed with such techniques.

3. The conformal self-organization model

Based on this simplicial representation, we can include
the conformal property in the self-organization process. The
best-matching functionM and the synapse adaptation func-
tion W in the process will be modified. The continuity on
the feature map and the distance measure forM will be
discussed.

3.1. Continuity on the feature map

In the CSM, the functionM transforms an input into its
continuous reference in the network field. The reference in
the network is not restricted to the element in a finite
discrete setI; i.e. the network field is continuous so as to
represent the input space without discretized quantization.

The topology formed by spanning the network field in the
input space can be regarded as a collection ofq-dimensional
simplices. A sampled inputx [ X will be mapped to a best-
matching projection vector in one of these simplices. Let the
mapped simplex and the best-matching projection in this
simplex bes andy, respectively, wherey [ s. The simplex
s can be chosen fromSI(x), the set of all neighboring
simplices of the winning neuronI(x) by Eq. (1).

The simplex on which the input is projected can be found
as follows:

s� arg min
t[SI�x�

D�x; t�: �4�

The functionD(x, t) which measures the distance between
the inputx and the simplext will be discussed later.

When the projectiony for the inputx is found, the relative
referencez [ Rq in the simplexs, where the pointwI(x) is
the origin of theRq plane, is also determined. To obtain the
representation ofx, this relative referencez will be mapped
to thez0 � Cs;s0 �z� in the transformed simplexs0, which has
the same configuration as the simplex in the network field.
The detailed mapping techniques for the conformal
mappingCs,s0 from the simplexs to the simplexs0 will be

presented in Section 4. The final referencer � I(x) 1 z0 in
the network field, a grid coordinate inRq is the representa-
tion of the inputx. This reference vectorr is continuous in
the spaceRq. Fig. 3 shows all the mappings from the inputx
to the referencer .

In the CSM, the best-matching function is composed of
the above discussed mappings. LetM denote the best-
matching function in the model, whereM : x 7! r ; x [
Rp andr [ Rq. This functionM will conformally transform
the input into its continuous representation in the network
field. The continuous field can be used to approximate the
input space without quantization errors.

3.2. The distance measure

The functionD(x, t) in Eq. (4) measures the distance
between the inputx and the simplext, t [ SI�x�. To eval-
uate the distanceD(x, t), we determine a pointy in the
simplex t which is nearest to the inputx; i.e. the distance
from x to this point is shortest among the sett. This
distance isix 2 yi.

If an inputx [ t, its projectiony will be the pointx and
D(x, t) � 0. In other cases, the location ofy can be deter-
mined using the following procedure. We first evaluate the
orthogonal projection ofx on the subspace where the
simplext is located. For an inputx, its orthogonal projection
on thisq-dimensional subspace can be determined by

�wk 2 wI�x��·�x 2
Xq
j�1

bj�wj 2 wI�x��� � 0; k � 1…q;

�5�
wherewj, j � 1…q, are the synaptic weights of allq neigh-
boring neurons associated with the simplext. After solving
the variablesbj, j � 1…q, in Eq. (5), we can test whether the
projection of x is inside the simplext or not. When the
condition in Eq. (3) i.e.bj $ 0 for all j and

Pq
j�1 bj # 1, is

satisfied, this projection is inside the simplext. The vectory
will be

y �
Xq
j�1

bj�wj 2 wI�x��: �6�
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Fig. 3. The successive mappings in the CSM.



If the orthogonal projection is not located inside the simplex
t, y can be recursively determined from the boundary set
<j2tj by means of successive projections. Note that each
boundary2tj ; j � 1…q1 1, is also a simplex of dimension
(q 2 1). This procedure (5) and (6) can be recursively used
to find a projectiony in one of2tj.

Fig. 4 shows different cases in which the projection points
can be determined using the procedure. Sinceq� 2 in most
applications, we will limit our discussion to two-dimen-
sional cases to clearly demonstrate the procedure.

The minimum projectiony in one of the neighboring
simplices associated with the neuronI(x) can be found
by Eqs. (4) and (6) as the best-matching projection of the
input x. In contrast with the SOM, this representation is not
limited to the synaptic weight vectorwI(x); i.e. there will be
no quantization errors. In Section 5, we will demonstrate
that the distortion errors of the CSM will usually be smaller
than those in the quantized feature map.

3.3. Adaptation with continuous neighborhood function

In the SOM, the processU adjusts the synaptic weights so
that they approach the input. Each adjustment is propor-
tional to the product of a learning rate and a value of the
neighborhood function. The typical neighborhood function
is usually a continuous function of the distance in the
network field (Kohonen, 1993). Because of discretized
indexing in the network field, the neighborhood function
always has several fixed output values as shown in Fig. 5.
For different inputs which are mapped to the same best-
matching neuron, the updates are the same for all corre-
sponding synaptic weights. This will have a smoothing
effect on the map.

With a continuous feature map, the adaptation process
will be more sophisticated in approximating the input
space. LetW denote the adaptation function in the CSM.
The neighborhood function, denoted byh(d), d [ R, can be
defined as a continuous function of the distance between the
references in the network field. The distance metric can be
simply defined as the Euclidean distance inRq. For an input
x, the functionW adjusts the synaptic weight vectorwi for
all i [ I based on the adaptation rule,

W�wi
old� � wi

new� wi
old 1 a·h�iM�x�2 ii�·�x 2 wi

old�;
i [ I : �7�

Compared with Eq. (2), the vectorM(x) is not a discretized
index vector in the network field. The distanceiM(x) 2 ii is
continuous inR. Hence, the output ofh is also continuous as
shown in Fig. 5.

The functionW has the same computational costs as the
functionU has. The feature maps trained by these two func-
tions may have different maps. Due to the smoothing effect,
U may not appropriately adapt the synaptic weights for
every kind of input. We will display this using simulations.

4. Numerical construction

We will now discuss techniques for the conformal
mappingCs,s0 in this model. We will apply numerical tech-
niques (Trefethen, 1980) in the complex domain to solve
this boundary value problem. These techniques can solve
two-dimensional mappings. We will show how these
mappings can be obtained in two- and one-dimensional
space.

The mapping functionCs,s0, which transforms the region
from the simplexs to the simplexs0 in the two-dimensional
network field, can be formulated as a conformal function
in the complex plane. Because each simplex in the two-
dimensional network is a triangle, the Schwarz–Christoffel
transformation (see for example, Henrici, 1974) can be used
to construct such a function. By using two Schwarz–
Christoffel transformations, a one-to-one mapping between
two simplices can be obtained.
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Fig. 4. Four different cases for the projectiony. (a) The inputx is inside the
simplext; (b) The projection inside the simplext; (c) y is on the boundary
2t1; (d) y is on the vertexwI(x).

Fig. 5. Continuous and discrete neighborhood functionh.



Consider the simplexs with vertices labeledzj ;1 # zj #
3; in the complex plane,z-plane, and the simplexs0 with
vertices labeledz0j ; j � 1;…;3; in the z0-plane. Using the
Schwarz–Christoffel transformation, we can transform the
boundary ofsalong with the vertices into the outer circle of
a unit disk in thev-plane and then transform the circle into
the boundary ofs0. The unit disk in thev-plane is utilized as
an intermediate set to assist the Schwarz–Christoffel trans-
formation. Fig. 6 shows the mappings between simplices in
the complex planes.

First, we will consider conformal mappings from the unit
disk in thev-plane to the simplices in thez-plane andz0-
plane. Letbjp;21 # bj , 1; be the exterior angle of the
simplex s at zj and let gjp;21 # gj , 1; be that of the
simplexs0 at z0 j. For triangles, we have simple relationships
betweenb jp andg jp, respectively,

X3
j�1

bj � 2 and
X3
j�1

gj � 2: �8�

The Schwarz–Christoffel formula defines the mapping from
v to z as

z� zc 1 C1

Zv

0

Y3

j�1

1 2
v0

vj

 !2bj

dv0 �9�

and the mapping fromv to z0 as

z0 � z0c 1 C2

Zv

0

Y3

j�1

1 2
v0

vj

 !2gj

dv0; �10�

wherevj, j � 1…3, are the points on the circle of the unit
disk in thev-plane which correspond to the vertices of the
two simplices andC1, C2, zc, andz0c are the complex para-
meters of the mappings. In our model,vj, j � 1…3, are
chosen so as to equally divide the unit circle for the sake
of accuracy in the numerical evaluation.

The parameters in Eqs. (9) and (10)) are determined as
follows. To transform the corresponding points on the
boundaries in different planes, the mappings satisfy the
complex conditions,

zk 2 zc � C1

Zvk

0

Y3

j�1

1 2
v0

vj

 !2bj

dv0; k � 1…3 �11�

from v1, v2, andv3 to z1, z2, andz3, respectively, and

z0k 2 z0c � C2

Zvk

0

Y3

j�1

1 2
v0

vj

 !2gj

dv0; k � 1…3 �12�

from v1, v2, and v3 to z01, z02, and z03, respectively. The
integration in each condition is evaluated by means of the
compound Gauss quadrature (see, for example, Davis &
Rabinowitz, 1984). The parameters can be estimated from
the numerical solutions of Eqs. (11) and (12).

Next, we will consider the inverse conformal mappings
from the simplices in thez-plane andz0-plane to the unit
disk in thev-plane. The inverse mappings can also be solved
by means of numerical methods. By inverting the Schwarz–
Christoffel formulas (9) and (10), we obtain

dv
dz
� 1

C1

Y3

j�1

1 2
v
vj

 !1bj

�13�

for the mapping fromz to v and

dv
dz0
� 1

C2

Y3

j�1

1 2
v
vj

 !1gj

�14�

for the mapping fromz0 to v. Numerical o.d.e. algorithms
can be applied to solve these boundary value problems.
Valid solutions can be obtained through iterative evaluation
(Trefethen, 1980).

Because the mapping functionCs,s0 is solved using numer-
ical techniques, this CSM requires more computational
effort than does the SOM. To reduce the amount of compu-
tation, we will consider an approximated solution for the
mapping functionC. Suppose that the changes of the exter-
ior angles from the simplexs to the simplexs0 are small. Let
the exterior angles of the simplicessands0 beb jp and (b j 1
d j)p, respectively, wherej � 1…3, ud ju p 1, andP3

j�1 dj � 0. Then the integrand in Eq. (12) will be

Y3

j�1

1 2
v0

vj

 !2�bj1dj �
�
Y3

j�1

1 2
v0

vj

 !2bj

·
Y3

j�1

1 2
v0

vj

 !2dj

<
Y3

j�1

1 2
v0

vj

 !2bj

·1

�15�
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Fig. 6. The mappings between simplices in thez, v, andz0 planes.



whenv0 is not the singularitiesvj, j � 1…3. With Eq. (15),
we have

z0 < z0c 1 C2·�z2 zc�=C1: �16�
From experience, we know that approximation in Eq. (16)

is applicable to cases where2 0.2p , d j , 0.2p, j � 1…3.
In addition, the closeruv0u is to zero, the center of the unit
disk, in thev-plane, the more accurate this approximation is.
We will use this approximation in all our simulations in the
final relaxation stage. The computations for the conformal
mappings are listed in Table 1.

For a one-dimensional network field, the region of each
simplex can be regarded as a line segment on the real axis in
the complex plane. As shown in Fig. 7, the conformal
mapping of the region from the simplexs in the z-plane to
the simplexs0 in the z0-plane can be defined by

z0 � C3z; �17�
whereC3 is the parameter of the mapping. The value ofC3

can be determined as the real constant which scales the
length of the segment.

Numerical evaluation of the mapping functionCs,s0

requires computation in the training process. From experi-
ence, we know that we can employ a modified process to
reduce the amount of computation. Before the distortion
errors converge, the training results obtained by this
model can be shown to be similar to those obtained by the
SOM. This will be shown through many simulations in a
later section. Therefore, the discrete indexed network can be
used until there are no noticeable changes in the distortion
errors. The CSM can be used to fine tune the network during
the final relaxation stage.

For clarity, we will summarize the algorithm of the CSM.
There are iterative training steps in the algorithm to adapt
the synaptic weights in order to approximate the input.

1. Give an input setX. Initialize the synaptic weight vectors
wi, i [ I, with random values. The training parameters,

including the total number of adaptation iterationstmax,
the neighborhood functionh(d), and the learning rate
a(t) at iterationt , are defined according to the needs
of the application.

2. Fort � 1,2,…,tmax

(a) Sample a random vectorx [ X.
(b) Find the best-matching functionM(x).

i. Find the best-matching neuronI(x) by Eq. (1).
ii. For each simplext in SI(x), the set of all neighboring
simplices of the winning neuronI(x), compute the
best-matching projectiony in each simplext. The
procedure is recursive fory by Eqs. (5) and (6).
iii. The best-matching simplexs is set to be the simplex
t [ SI(x) with a minimumy as Eq. (4).
iv. Determine the relative referencez in the simplex,s.
Computez0 � Cs,s0(z) in the simplexs0 which has the
same configuration as the simplex in the network field.
The conformal transformationCs,s0 is constructed using
numerical method.
v. Compute the referencer in the network field by
means ofr � I(x) 1 z0.
(c) The synapse adaptation functionW adjusts the
synaptic weight vectorwi for all i [ I by Eq. (7).
(d) Update the learning ratea and the neighborhood
functionh(d). Continue with the nextt .

5. Simulations and discussion

The distortion of the representation comes from two
sources: dimensionality reduction errors and quantization
errors. In the CSM, quantization errors can be reduced as
in other continuous models (Li et al., 1993; Ritter, 1993).
This continuous representation can also be used to approx-
imate the input space effectively. To demonstrate its perfor-
mance, we will give simulations with different input
distributions. We will also test the SOM with the same
inputs. We will use this CSM in form transformation for
biological development or growth, where conformality in
the morphology is required. Other applications such as
designing surface shapes in fluid dynamics and cartography
will also be included.

5.1. Comparison between the CSM and the SOM

For comparison, we employed both one-dimensional
networks with N neurons and two-dimensional networks
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Table 1
Variables, equations and techniques in the numerical construction of two-dimensional conformal mappings. The execution times of each numerical evaluation
during the synapse adaptation process withtmax iterations are included

Computation Symbol Equations Technique Times
Mapping parameters C1 andzc (11) and (8) Compound gauss quadrature tmax

Mapping parameters C2 and z0c (12) and (8) Compound gauss quadrature 1
Approximated mapping z0 16 Complex addition and multiplication tmax

Fig. 7. Conformal mapping between the 1D simplexs and 1D simplexs0.



with N × N neurons to approximate different input sets in
two- and three-dimensional space. The total number of
adaptation iterationstmax, the neighborhood functionh(d),
and the learning ratea (t) at iterationt is the same in both
models. In our simulations, we settmax � 5000,
a�t� � 0:001t=tmax, andh(d) � exp(2 d2/2aN2). The initial
network configurations were regularly arranged in the input
space for each case.

We tested the input set with 11× 11 input samples evenly
distributed on the grid points of a unit square. Each model
contained 10× 10 neurons. In Fig. 8(a) and (b), the maps
trained by these two models have different ordering results.
The SOM has crumples in the maps. The distortion errors
are shown in Fig. 8(c).

We tested the inputs which were sampled from a square
with uniform distribution. Fig. 9(a) shows the converged
representation of the input data obtained using a 2D SOM

network with 10× 10 neurons. Fig. 9(b) shows the results
obtained by CSM. The distortion errors which occurred
during the training iterations are plotted in Fig. 9(c).

When we used a linear neuron array with 30 neurons
aligned in 1D, the results were as shown in Fig. 10. Fig.
10(a) and (b) shows the Voronoi tessellation of the input
spaces partitioned by neurons. Fig. 10(b) shows a fine repre-
sentation of the input space.

Fig. 11 shows a case where the inputs were sampled from
a 3D half sphere. A network with 10× 10 neurons was
employed to approximate the surface of the 3D half sphere.
Fig. 11(a) and (b) shows the trained results produced by the
two models. As discussed by Li et al. (1993), the topology
distortion shown in Fig. 11(a) and (b) comes from the
discrepancy between the topology of the network and that
of the surface. The distortion errors produced by the two
models are plotted in Fig. 11(c).

C.Y. Liou, W.P. Tai / Neural Networks 12 (1999) 893–905 899

Fig. 8. The trained network with 10× 10 neurons where 11× 11 regular samples are used as inputs. (a) Using SOM; (b) using CSM; (c) the distortion errors
which occurred during the adaptation.



To compare the computational costs between SOM and
CSM, we record the execution time required for each simu-
lation. The results are listed in Table 2. In each iteration, the
computation cost of CSM is much more than that of SOM.
This is because CSM computes the best-matching projected
simplexs among all neighboring simplices of the winning
neuron and solves the parameters in the mapping function
Cs,s0.

The distortion errors produced by the two models indicate
the performance of the synaptic weights in approximating
the inputs. The results in all our simulations show that the
distortion errors converged to different values in the two
models. Before the convergence, the distortion errors in
the CSM were similar to those in the SOM. From this obser-
vation, we conclude that we can employ a hybrid model to
reduce the amount of computation. The SOM can be

employed until there are no noticeable changes in the distor-
tion errors. After this stage, the CSM can be employed.

From these results, we can see that the distortion errors
produced by the CSM are usually smaller than those by the
SOM at all iterations.

Let us examine the distortion errors in the continuous
two-dimensional representation. For a sampled inputx [ X,
the SOM decides the synaptic weight vectorwI(x) as the
representation ofx by Eq. (1). The distortion error,d1, can
be defined as the squared Euclidean distance inRp:

d1 � ix 2 wI�x�i
2
: �18�

In the CSM, this inputx is mapped to a best-matching
projection vectory on one neighboring simplexsassociated
with the winning neuronI(x). The distortion error,d2, can

C.Y. Liou, W.P. Tai / Neural Networks 12 (1999) 893–905900

Fig. 9. Trained network with 10× 10 neurons where inputs are sampled from a square with uniform distribution. (a) Using SOM; (b) using CSM; (c) the
distortion errors which occurred during the adaptation.



be defined as

d2 � ix 2 yi2
: �19�

Consider four different cases for the projectiony shown in
Fig. 4. First, pointx is in the simplexs. The value of the
distortion errord2 is equal to zero. The value ofd1 is greater
than zero except whenx is equal towI(x). In the second and
third cases, where the projection is inside the simplex or on
the boundary of the simplex, the vectorx 2 y is orthogonal
to the vectory 2 wi. The relationship

ix 2 wii
2 � i�x 2 y�1 �y 2 wi�i2 � ix 2 yi2

1 iy 2 wii
2

$ ix 2 yi2 �20�

is satisfied, i.e.d2 # d1. In the last case, the distortion error
d2 is equal to the value ofd1. The distortion errord2 will

never be greater than the errord1. Note that deriving an
exact expression for the nonconformality measure
(Reshetnyak, 1966) has been proven an illusive task. There-
fore, we did not include it in. Instead, we use popular
measured1 to show the learning behaviors.

5.2. Applications of the CSM

We will describe applications of the CSM to well-known
tasks in biological image processing proposed by Thompson
(1917), where the conformality requirement in biological
morphology is addressed, and to tasks in geometrical
surface mapping.

To solve the problem of biological form transformation
from one species to another related species, conformality is
required for similarity preservation in corresponding divi-
sions. Harmonic correspondence (Thompson, 1917) of
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Fig. 10. Trained network with 30 neurons aligned in 1D where the inputs are sampled from a square with uniform distribution. (a) Using SOM; (b) using CSM;
(c) the distortion errors which occurred during the adaptation.



related forms is a necessary part of the transformation. This
correspondence can be found by means of the conformal
mapping between the input space and the network field.
Single transformation for the whole form was used in
Thompson’s work for those species with simple relation-
ships. The CSM can be used to map complex species
harmonically.

This requirement necessitates the use of the CSM to
model the mechanism of biological form transformation
and distinguishes it from other continuous versions of the
SOM. With this mechanism, the development of organisms,
the evolution of biological forms, and form differences

between various species can be modeled. All these applica-
tions have been developed in our laboratory in creating
artificial creatures and in many other fields, such as cosme-
tology, film conforming, and facial mapping. We will omit
such detailed applications. Instead, we provide the follow-
ing examples where one can have an insight into the
proposed method.

In the study of biological morphology, Thompson (1917)
first proposed that close topological similarity between quite
different species can be related by coordinate transforma-
tion. In his work, rectangular grids are placed on the whole
form of one species. By means of coordinate transformation,
both the grid and the form of this species are deformed to
match the form of a related species. For continuity in the
transformation, the conformal representation has been
descriptively proposed to explore topological similarities
between different species, such as the forms of fishes, the
skulls of primates, and the carapaces of crabs. To carry out
coordinate transformation, several techniques (Bookstein,
1978; Siegel & Benson, 1982) have been devised. These
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Fig. 11. Trained network with 10× 10 neurons where the inputs are sampled from the surface of a 3D half sphere. (a) Using SOM; (b) using CSM; (c) the
distortion errors which occurred during the adaptation.

Table 2
Computational costs of each case in the simulations

Case SOM CSM

2D input, 2D network (Figs. 8 and 9) 10.1 min 121 min
2D input, 1D network (Fig. 10) 3.5 min 47 min
3D input, 2D network (Fig. 11) 13.2 min 195 min



techniques use specified landmarks over different forms,
and the transformation retains mapped relationships
between the corresponding landmarks.

There are problems involved in handling coordinates in
complex cases (Huxley, 1932). One of the major problems is
how to specify the topological similarity of the organisms
appropriately and analytical wieldy (Medawar, 1945).
Considering the interactions of neighboring cells in an
organism (Turing, 1952) and the conformality in the form
transformation, we devised this CSM to explore the topolo-
gical relationships in the vicinal divisions (locally) in a
form. Without marked points, the space-dependent confor-
mal mapping functions from the input to the network field
can be learned. Based on the learned results in the network
fields for different forms, topological similarities and differ-
ences between these forms can be compared.

To demonstrate the performance of the proposed model,
we used it to simulate form transformations among various
species of fishes. The images of adult fishes were sampled as
the input data for seven species, respectively. The geome-
trical forms of these fishes were quite different and complex.
One form of a species was selected as the origin and trans-
formed into those of the other six species. Fig. 12 shows the
form of the selected fish.

For each species of fishes, the sampled image data were
composed of 3-dimensional vectors, each of which
contained the location coordinate and the intensity of a
pixel in the image. We used a two-dimensional CSM (p �
3 andq � 2) with a general fish topology as shown in Fig.
13. There were 265 neurons regularly arranged in this
network, which served as cartesian coordinates.

In the self-organization process of mapping each form of
the seven species to this general network field, we settmax�
1000,a (t ) � 0.05,h(d) � exp( 2 d2/2gN2), N � 20, and
g�t� � 0:001t=tmax g (t ) � 0.001t /tmax. The initial network

configuration had the same topology as in Fig. 13, and the
intensities were set to remain constant. During the training
process, the inputs were sampled from the collected data set
of each fish image. After the mapping from the input data to
the network field was constructed by the CSM, all the input
data of each fish could be appropriately represented in the
network field. Because of the analytic one-to-one correspon-
dence between each fish and its network field, the transfor-
mations among the seven fishes could be found via the
network fields.

Fig. 14(a)–(f) shows the mapped results for the form
transformations of the selected fish to the other six fishes.
The transformed form which was mapped from that of the
selected fish via the network field is shown in the figure.
From these results, we observe the topological similarities
and differences between the forms of the various species.
All these form transformations are quite harmonic.

In addition to the biological morphology, there are many
other potential fields to apply this model. We studied the
shape transformations between different geometrical
surfaces. Fig. 15 shows the mappings among three different
shapes, a circle, a triangle with curved edges, and a penta-
gram. Using the CSM, we constructed conformal transfor-
mations among them. A two-dimensional square network
with regularly arranged 20× 20 neurons was used in these
simulations. The training parameters were set to the same
values as those used in the above simulations.

Similarly, we can apply CSM to simulate the biological
growth and development. In artificial life applications, the
sudden surface warps during an artificial object motion or
growth can be modeled and followed by the proposed
mapping. With such mapping one can map all local surface
properties, such as colors, to their corresponding areas. All
local growth properties can be identified and monitored
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Fig. 12. The image of the selected fish (Cyprinus carpio) which was
transformed into those of the other six species.

Fig. 13. The topology of the network with 265 neurons for the form
transformation.

Fig. 14. The image of the form transformed from that of the selected fish
via the CSM. (a)Oncorhynchus masou formosanum; (b) Epinephelus brun-
neusand; (c)Acanthopagrus schlegeli; (d) Pempheris oualensis; (e) Chae-
todon auripesand; (f)Cypselurus katoptron.



during growth. We now give an example. We sample two
facial images of one person at different ages. We employ a
two-dimensional CSM network with a circular topology.
There are 344 neurons regularly arranged in this network.
Using the CSM results of mapping these two images, we can
sample the intermediate images at different stages. Fig.
16(a)–(f) shows the results of the simulated growth and
development. The four images, 16(a), 16(c), 16(d), and
16(f), are sampled during the evolution of the mapping
process when we map the 16(b) image toward the 16(e)
image using CSM. To our knowledge, this kind interpola-
tion and extrapolation of whole images has not been studied
before.

One goal of the project is to develop an autonomous
facial mapping technique which can be used to map two
given or user defined 3D face meshes such that a facial
expression in one mesh can be transferred to another mesh
automatically. This kind development can facilitate many
facial systems to exchange facial data. The examples in
Figs. 14 and 15 can justify this development. Next, we
show a much more difficult task. A 2D facial image sampled
from video records can be mapped to a given 3D face mesh.
We use a two-dimensional CSM network with a circular
topology. There are 344 neurons regularly arranged in this
network. The input vectors of the image and the mesh
contain different information, the intensity value at 2D
plane and 3D spatial coordinates, respectively. Fig. 17
shows the mapping results. The mapping from a 2D facial
picture to a 3D head surface is shown in the figure. With
such technique, one can map arbitrary 2D facial image to
any 3D face mesh. This mesh then carries and follows the
user facial image in a Karaok performance. This kind appli-
cation is different from those finding 3D images based on
two video records at different angles.

6. Conclusions

The conformal transformation has been used in different
fields, for example, biological modeling, fluid dynamics,
and cartography. The intention to construct this specific
transformation inspires us to devise the CSM. As shown
in our simulations, the CSM network provides conformal
transformation for biological morphology and geometrical

mapping. The proposed network meets the conformality
requirement closely.

We equip the network with the simplicial representation
to partition the continuous space of the network field. Then
the analytic one-to-one correspondence by spanning the
field in the input space is developed. The conformality prop-
erty which characterizes the SOM is further preserved in the
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Fig. 15. The learned mappings between a circle (a) and a triangle with curved edges (b), and a pentagram (c).

Fig. 16. The simulated biological growth and development, (a) the simu-
lated image at 8 years old; (b) the real image at 13 years old; (c) the
simulated image at 18 years old; (d) the simulated image at 23 years old;
(e) the real image at 28 years old, and; (f) the simulated image at 33 years
old.



detailed representation. So far, this continuous conformal
mapping from the input space to the network field has not
been explored by existing SOMs. This conformality
requirement necessitates the use of the proposed network
and distinguishes it from the SOMs.

In simulations, we apply the CSM to solve the morpholo-
gical shapes between forms. Different from all other methods,
the CSM needs no marked points to establish the space-
dependent conformal functions to map the topological
similarities between two forms. Various form trans-
formations can be realized by the CSM. These results
verify the performance of the proposed model.

The computation cost of CSM includes the searching of
all neighboring simplices and the solving of ODEs for each
simplex. This cost is heavy in many real time applications.
Reducing the network density will linearly reduce the cost.
The conformality constraint is still satisfied for a reduced
sparse network. A sparse network with such constraint may
deviate the mapping. The proposed technique may not serve
as a powerful technique to reduce the network density. The
focus is on autonomous mapping, interpolating, and extra-
polating those surface which have conformal properties
such as surfaces in bio-morphology. This autonomous bio-
shape mapping has received intensive studies in modern
artificial life applications.
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