Capillarity driven spreading of power-law fluids
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Abstract

We investigate the spreading of thin liquid films of power-law rheol-
ogy. We construct an explicit travelling wave solution and source-type
similarity solutions. We show that when the nonlinearity exponent A
for the rheology is larger than one, the governing dimensionless equation
he + (F* 2| heaa|* " hsze)e = 0 admits solutions with compact support
and moving fronts. We also show that the solutions have bounded energy
dissipation rate.

1 Introduction

This work deals with capillary spreadings of thin films of liquids of power-law
rheology, also known as Ostwald-de Waele fluids [1]. The power-law rheology is
one of the simplest generalizations of the Newtonian one, in which the effective
viscosity on a point is assumed to be a function of the local rate of deformation
Yasn= m|7'/|1/ A=1. The values of m and A depend on the physical properties
of the liquid. When X\ > 1 the viscosity tends to zero at high strain rates [1]
and is larger at low strain rates (these fluids are called shear-thinning). This
fact has been used, for instance, in the design of paints which have to present
low viscosity under high stresses so they can be extended over a surface, and
high viscosity under low stresses so that they do not drip under the action of
gravity once extended.

Spreadings with this rheology were studied for gravity-driven currents ([2, 3])
where the height profile of the spreading h(z, t) satisfies an equation of the form
hy — (WA2|hg |2 thy), = 0.



For a one-dimensional capillarity driven spreading, the dimensionless equa-
tion of motion is given by

bt + (W2 hgzs|* hozs )z = 0. (1)

We derive this equation in the Appendix using the lubrication approximation.
This approximation is valid when the film is much thinner than its horizontal
length scale of the spreading.

The problem of drop spreading has been studied intensively in the last
decades (see [4, 5, 6, 7, 8] and references therein). The motivation is that
this class of flows plays a very important role in coating processes, painting and
biology. They also represent a very interesting mathematical problem due to the
high differential order and the degeneracy involved on the governing equations.

Remarkably, there are no compactly supported source-type solutions with
moving interfaces for Eq. 1 and A =1 [6], corresponding to a newtonian fluid.
This difficulty has been overcome by either assuming that the drop advances
over a pre-existing thin film, by modifying the equation of motion to include
slipping effects, or by adding terms corresponding to the influence of molecular
forces.

Our goal is to show that for power-law fluids with A > 1, there are solutions
with compact support and moving interfaces, and that their energy dissipation
rate is bounded. The qualitative reason lies in the fact that the flow creates a
layer adjacent to the substrate where the strain rate diverges, and thus, for A > 1
the effective viscosity 7 tends to zero. In other words, the drop self-lubricates.

2 Travelling-wave solutions

The main property that concerns us now is the existence and propagation of
interfaces that separate regions where h = 0 from regions where h > 0. Next
we introduce the simplest solution that exhibits this behaviour. We start with
the ansatz

h(z,t) = S(z + ct)g, (2)

that for ¢ > 0 represents a wave moving to the left with velocity c. By substi-
tuting in Eq. 1 we obtain
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For A > 1 there is an interface that moves with finite velocity. The constant
S > 0 governs the height scale. For a given value of S, the velocity ¢ tends
to zero as A — 1, which is consistent with the fact that there are no moving
interfaces in the newtonian case (unless molecular forces or slipping effects are
taken into account). The contact angle is zero, which is consistent with a fluid



that wets the surface. The flux of mass F at the interface z = —ct is zero
because F' = h*2|hyyy|* Lhyye = 0 there.

3 Source-type similarity solutions

Now we solve the problem in which a finite volume of fluid is initially concen-
trated on a point on a surface. As there are no external length-scales in this
problem, we shall look for similarity solutions [9] of the form

h(z,t) = t%H (%) (3)

where A is a constant and [ is the similarity exponent. If the function H(n) has
a zero at 1y then the interface of the spreading will be given by

Ty = nftﬂ.
Eq. 3 guarantees that the mass is conserved, i.e. that fozf h(z,t)dz = const.
By substituting Eq. 3 in Eq. 1 we find that the similarity exponent is given by

1

P=5ra

Moreover, by choosing A2**1 = 1/(5) + 2) and integrating once, we obtain the
following simple ODE for H(n)

H}\-‘,-ZHIII)\ — nH’ (4)

where we have also assumed that H'' > 0.

We solve Eq. 4 numerically with a fourth order Runge-Kutta scheme, with
a variable stepsize equal to H/10000. We start the integration at the center of
the drop n = 0, where the initial conditions are

H(0) =1, H'(0) =0, H"(0) = &. (5)

The first condition represents the scaled height of the drop at the center, the
second is the bilateral symmetry condition, and the third is the initial value for
the second derivative, which is a variable parameter k.

In Fig. 1 we show several height profiles for different values of x and A = 5/2.
For k > —1.67998 the solution is always positive: first decreases and finally
increases. Thus, for this choice of x there are no interfaces.

For k < —1.67998, the drop profile tends to zero linearly for n = ny. This
case represents a spreading of extension z7(t) = n;tP that has a variable contact
slope that scales as t—25.

For a limiting value of kK ~ —1.67998 the profile tends to zero with zero
contact angle. This case represents a drop of a liquid that wets the surface.

It can be shown that the limiting solution that has the zero contact angle
has two interesting properties: (a) maximizes the dissipation of energy for a



given mass of spreading fluid and (b) it maximizes the rate at which the fluid
covers the surface.

Point (a) can be seen as follows: using the fact that all the functions
CH (n/C?) are solutions of Eq. 4 for § = (1+2))/(1 + 3)) and any positive C,
we can compute their rate of dissipation of energy

/zf h)‘+2|h"'|)‘+ldx — A2MH3=58(M+1) (x(14+4X)/(143)) /"f n1+1/)‘H_1/)‘(77)d77-
0 0

On the other hand, the volume of the spreading is AC**? [/ H(n)dn. Thus,
the dissipation for a fixed volume can be obtained by eliminating C, and it is
proportional to t~*#A+1Y with

w

Y= 7(1+4X)/(245X) ’ (6)
where s
W:/ nl-l—l/)\Hfl//\(n)dn
0
and
Ny
Z= (m)dn.

0

We observe numerically that the quotient of integrals is maximum for the zero
contact angle solution. A similar argument yields point (b). For example, in
Table 1 we show the numerical values of s, W, Z and Y for A = 5/2 and several
values of k.

K Nf w Z Y
-2.0 1.08145 0.952197 0.695057 1.25480
-19 1.12093 1.052875 0.716376 1.35603
-1.8 1.16698 1.186311 0.740071 1.49063
—1.7 1.22363 1.396952 0.766721 1.70883

—1.679984 1.23740 1.483208 0.772482 1.80407

Table 1

For the cases where the height profile tends to zero at 7y, we can compute
the asymptotic behaviour of H. In the linear case, we write H(n) = a(ns —n) +
F(ns —n), where F' is a small correction. By substituting in Eq. 4 we obtain
that for A > 3/2,

H(n) = a(nf—n)+a1+1/>\(2 — 1/1)\)(1 — 1/)\)/)\n;/)‘(nf—n)2_1/>\+o((nf_n)u—e),

where p = min(3 — 2/),2) and € is any small positive number. The slope is
finite and the curvature diverges at the contact line.



For the zero contact angle case, the front will locally behave as a travelling
wave (see Eq. 2), thus we write H(n) = B(ny—n)*+G(n), where a = 3\/(2A+1)
and G is a small correction. By substituting on Eq. 4 we obtain

/(2A+l)
(X +1)3 A
H(n) = <3/\(/\ 0T 7y B (g — )M CHD 4 o((ng —m)?).

In both cases the local rate of dissipation of energy Eq. 6 is bounded near the
interface.

4 Conclusions

In this work we studied two properties of the spreading of thin films of fluids
with power-law rheology: a) the existence of interfaces separating regions where
h > 0 from regions where h = 0 and b) existence of compact-supported source-
type similarity solutions.

The first property has a straightforward physical interpretation: if a drop
of fluid is deposited on a plane surface, then there will be a sharp interface
separating the drop from the dry surface. This interface is naturally given by the
equation of motion. In contrast, for a newtonian fluid, a moving interface cannot
be explained without the description of the molecular interactions between the
liquid and the substrate.

Eq. 1 poses several interesting open mathematical problems: existence and
uniqueness of the solutions, finite speed of propagation and convergence to the
self-similar solutions of the type described in this paper. In particular, the
multiplicity of selfsimilar solutions poses the question of whether a particular
one is selected by the dynamics or not. The zero angle solution that maximizes
the dissipation rate is a good candidate, but this remains an open problem.

5 Appendix: Derivation of Eq. 1

In the power-law fluids, the deviatoric stress tensor is related to the strain tensor
according to the following constitutive relation [1, 3]:

i = m|7 M, (7)
where || = /5 32, ; Yij¥i; and 4y is the strain tensor, given by
8’1),' 8’()]'

Vi = &’Ej 0:31 )

Here v; is the fluid velocity field. When A = 1, one has a Newtonian fluid. If
A > 1, the fluid is said to be shear-thinning, which is the most common case
that includes many polymer solutions. The values of A are typically between
1.7 and 6.7. Just to give a concrete example, a solution of 0.5 percent Hydrox-
yethylcellulose at 293°K has m = 0.84Ns*/*/m? and \ = 1.96 [1].



In order to derive the equation of motion of a thin film, we shall assume
that the film is much thinner than its horizontal dimension L, that the motion
is nearly horizontal and that the inertial effects are negligible so that the flow
is governed by a balance between capillary and viscous forces. We shall neglect
systematically all y components of the velocities when they are compared with
the z components. We also suppose that the stresses are mainly due to high
gradients of the horizontal velocity u in the y direction. Consistently, we shall
assume that the components ¥, and 7,, are much larger than all its other
respective components. This approximation is called the lubrication approxi-
mation, and has been widely used in the case of Newtonian flows (for which
A =1) (see for instance [8, 4] and its references). Then, the x-component of the
momentum equation can be written as

Op  OTgy
%4_ Jy

=0 (8)

where p is the pressure. Let y = h(z,t) be the fluid free surface. The conserva-
tion of mass can be written within the lubrication approximation as

where U is the horizontal velocity averaged in the y coordinate and h(z,t) is
the fluid thickness. The pressure under the free surface will be given by

p(x,t) = _’thz (10)

where 7y is the surface tension and we have approximated the curvature of the
free surface by the second partial derivative of h. If the thickness of the film
is small and the volume forces are neglected, the pressure does not depend
substantially on y.

One can integrate Eq. 8 with respect to y to obtain the shear stress

Try :pz(y_h)a (11)

that satisfies the zero-tangential stress condition at the free surface y = h. By
using the constitutive relation given by Eq. 7,

Tey = m|“y|l/)‘71“yv

and by substituting 7, from Eq. 11 we can compute the y derivative of the
horizontal velocity,

uy = —mpa |} pa(h — y)*.

After integration and using the no-slip condition u(y = 0) = 0 one gets

u=m *p,|*'p <(h ) R ) .

A+1 A+1



n

Figure 1: Selfsimilar drop profiles, for different values of the second derivative
at the center of the drop, for A = 5/2. From left profile to right: x = —2,
k= —18, Kk = —1.679984, k = —1.6 and k = —1.4. The darker line is the
solution with zero contact angle.

Now, in order to apply the equation for the conservation of the mass Eq. 9, we
need the averaged velocity U,

1 rh pAH
U= / udy = —m~pa g T (12)
Finally, using Eq. 10 and Eq. 9, one obtains
he + %H (%)A (P2 hggs ™ hoss)o = 0. (13)

By rescaling we finally get Eq. 1.
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