Multi-Agent Influence Diagrams for Representing and Solving Games

Daphne Koller
Computer Science Dept.
Stanford University
Stanford, CA 94305-9010
koller @cs.stanford.edu

Abstract

The traditional representations of games using the extensive
form or the strategic (normal) form obscure much of the
structure that is present in real-world games. In this paper,
we propose a new representation language for general multi-
player games — multi-agent influence diagrams (MAIDs).
This representation extends graphical models for probabil-
ity distributions to a multi-agent decision-making context.
MAIDs explicitly encode structure involving the dependence
relationships among variables. As a consequence, we can de-
fine a notion of strategic relevance of one decision variable to
another: D' is strategically relevant to D if, to optimize the
decision rule at D, the decision maker needs to take into con-
sideration the decision rule at D'. We provide a sound and
complete graphical criterion for determining strategic rele-
vance. We then show how strategic relevance can be used to
detect structure in games, allowing a large game to be bro-
ken up into a set of interacting smaller games, which can be
solved in sequence. We show that this decomposition can
lead to substantial savings in the computational cost of find-
ing Nash equilibria in these games.

1 Introduction

Game theory [Fudenberg and Tirole, 1991] provides a mathe-
matical framework for determining what behavior is rational
for agents interacting with each other in a partially observ-
able environment. However, the traditional representations
of games are primarily designed to be amenable to abstract
mathematical formulation and analysis. As a consequence,
the standard game representations, both the normal (matrix)
form and the extensive (game tree) form, obscure certain im-
portant structure that is often present in real-world scenarios
— the decomposition of the situation into chance and de-
cision variables, and the dependence relationships between
these variables. In this paper, we provide a representation that
captures this type of structure. We also show that capturing
this structure explicitly has several advantages, both in our
ability to analyze the game in novel ways, and in our ability
to compute Nash equilibria efficiently.

Our framework of multi-agent influence diagrams (MAIDs)
extends the formalisms of Bayesian networks (BNs) [Pearl,
1988] and influence diagrams [Howard and Matheson, 1984]
to represent decision problems involving multiple agents.

Brian Milch
Computer Science Dept.
Stanford University
Stanford, CA 94305-9010
milch@cs.stanford.edu

MAIDs have clearly defined semantics as noncooperative
games: a MAID can be reduced to an equivalent game tree,
albeit at the cost of obscuring the variable-level interaction
structure that the MAID makes explicit. MAIDs allow us
to describe complex games using a natural representation,
whose size is no larger than that of the extensive form, but
which can be exponentially more compact.

Just as Bayesian networks make explicit the dependencies
between probabilistic variables, MAIDs make explicit the de-
pendencies between decision variables. They allow us to de-
fine a qualitative notion of strategic relevance: a decision
variable D strategically relies on another decision variable
D' when, to optimize the decision rule at D, the decision-
making agent needs to take into consideration the decision
rule at D’. This notion provides new insight about the rela-
tionships between the agents’ decisions in a strategic interac-
tion. We provide a graph-based criterion, which we call s-
reachability, for determining strategic relevance based purely
on the graph structure, and show that it is sound and complete
in the same sense that d-separation is sound and complete for
probabilistic dependence. We also provide a polynomial time
algorithm for computing s-reachability.

The notion of strategic relevance allows us to define a data
structure that we call the relevance graph — a directed graph
that indicates when one decision variable in the MAID re-
lies on another. We show that this data structure can be used
to provide a natural decomposition of a complex game into
interacting fragments, and provide an algorithm that finds
equilibria for these smaller games in a way that is guaran-
teed to produce a global equilibrium for the entire game.
We show that our algorithm can be exponentially more effi-
cient than an application of standard game-theoretic solution
algorithms, including the more efficient solution algorithms
of [Romanovskii, 1962; Koller et al., 1994] that work directly
on the game tree.

2 Multi-Agent Influence Diagrams (MAIDs)

We will introduce MAIDs using a simple two-agent scenario:

Example 1 Alice is considering building a patio behind her
house, and the patio would be more valuable to her if she
could get a clear view of the ocean. Unfortunately, there is
a tree in her neighbor Bob’s yard that blocks her view. Be-
ing somewhat unscrupulous, Alice considers poisoning Bob’s
tree, which might cause it to become sick. Bob cannot tell

whether Alice has poisoned his tree, but he can tell if the tree
is getting sick, and he has the option of calling in a tree doc-
tor (at some cost). The attention of a tree doctor reduces the
chance that the tree will die during the coming winter. Mean-
while, Alice must make a decision about building her patio
before the weather gets too cold. When she makes this de-
cision, she knows whether a tree doctor has come, but she
cannot observe the health of the tree directly. A MAID for
this scenario is shown in Fig. 1.

A
Poison Tree | .. »| Build
Tree A Doctor Patio

Figure 1: A MAID for the Tree Killer example; Alice’s deci-
sion and utility variables are in dark gray and Bob’s in light

gray.

To define a MAID, we begin with a set 4 of agents. The
world in which the agents act is represented by the set X' of
chance variables, and a set D, of decision variables for each
agent a € 4. Chance variables correspond to decisions of
nature, as in Bayesian networks [Pearl, 1988]. They are rep-
resented in the diagram as ovals. The decision variables for
agent a are variables whose values a gets to choose, and are
represented as rectangles in the diagram. We use D to denote
U.ca Da- The agents’ utility functions are specified using
utility variables: For each agent a € A, we have a set U,
of utility variables, represented as diamonds in the diagram.
Each variable X has a finite set dom(X) of possible values,
called its domain. The domain of a utility variable is always
a finite set of real numbers (a chance or decision variable can
have any finite domain). We use U to denotelJ,. 4 Us. and
Vtodenote Y UDUU.

Like a BN, a MAID defines a directed acyclic graph with
its variables as the nodes, where each variable X is associ-
ated with a set of parents Pa(X) C X UD. Note that util-
ity variables cannot be parents of other variables. For each
chance variable X € X, the MAID specifies a conditional
probability distribution (CPD): a distribution Pr(X | pa)
for each instantiation pa of Pa(X). For a decision variable
D € D,, Pa(D) is the set of variables whose values agent
a knows when he chooses a value for D. Thus, the choice
agent a makes for D can be contingent only on these vari-
ables. (See Definition 1 below.) For a utility variable U, the
MAID also specifies a CPD Pr(U | pa) for each instantia-
tion pa of Pa(X). However, we require that the value of a
utility variable be a deterministic function of the values of its
parents: for each pa € dom(Pa(U)), there is one value of

U that has probability 1, and all other values of U have prob-
ability 0. We use U(pa) to denote the value of node U that
has probability 1 when Pa(U) = pa. The total utility that
an agent a derives from an instantiation of V is the sum of
the values of U, in this instantiation; thus, we are defining an
additive decomposition of the agent’s utility function.

The agents get to select their behavior at each of their de-
cision nodes. An agent’s decision at a variable D can depend
on the variables that the agent observes prior to making D —
Drs parents. The agent’s choice of strategy is specified via a
set of decision rules.

Definition 1 A decision rule for a decision variable D is a
function that maps each instantiation pa of Pa(D) to a prob-
ability distribution over dom(D). An assignment of decision
rules to every decision D € D, for a particular agenta € A4
is called a strategy.

An assignment ¢ of decision rules to every decision D € D
is called a strategy profile. A partial strategy profile o¢ is an
assignment of decision rules to a subset £ of D. We will also
use o¢ to denote the restriction of o to £, and o_¢ to denote
the restriction of o to variables not in &.

Note that a decision rule has exactly the same form as a
CPD. Thus, if we have a MAID M, then a partial strategy
profile g that assigns decision rules to a set £ of decision
variables induces a new MAID M [o¢] where the elements
of £ have become chance variables. That is, each D € &
corresponds to a chance variable in M [o¢] with og(D) as
its CPD. When ¢ assigns a decision rule to every decision
variable in M, the induced MAID is simply a BN: it has no
more decision variables. This BN defines a joint probability
distribution Py4(,) over all the variables in M.

Definition 2 If M is a MAID and ¢ is a strategy profile for
M, then the joint distribution for M induced by ¢, denoted
P47, is the joint distribution over V' defined by the Bayes
net where:

o the set of variables is V;

o for X,Y € V,thereisanedge X — Y iff X € Pa(Y);
e forall X € X Ul, the CPD for X is Pr(X);

e forall D € D, the CPD for D is o(D).

We can now write an equation for the utility that agent a
expects to receive in a MAID M if the agents play a given
strategy profile o. Suppose i = {U1,... ,Ux}. Then:

EU, (o) = Z Prpoy(ur, ..) Zui
(U1 yeen yum)EdOM(U,) i=1

M

where dom(4,) is the joint domain of i,,.

Because the expectation of a sum of random variables is the
same as the sum of the expectations of the individual random
variables, we can also write this equation as:

EU.(0)= Y. > PymU=u)-u (2

Uely uedom(U)

Having defined the notion of an expected utility, we can
now define what it means for an agent to optimize his decision
at one or more of his decision rules, relative to a given set of
decision rules for the other variables.

Definition 3 Let £ be a subset of D,, and let o be a strategy
profile. We say that o7 is optimal for the strategy profile o
if, in the induced MAID M [o_¢], where the only remaining
decisions are those in £, the strategy o is optimal, i.e., for
all strategies o

EU, ((0-¢,0¢)) > EUq ((0—¢,0%))
Note that, in this definition, it does not matter what decision
rules o assigns to the variables in .

In the game-theoretic framework, we typically consider a
strategy profile to represent rational behavior if it is a Nash
equilibrium [Nash, 1950]. Intuitively, a strategy profile is a
Nash equilibrium if no agent has an incentive to deviate from
the strategy specified for him by the profile, as long as the
other agents do not deviate from their specified strategies.

Definition 4 A strategy profile o is a Nash equilibrium for
a MAID M if for all agents a € A, op, is optimal for the
strategy profile .

3 MAIDs and Games

A MAID provides a compact representation of a scenario that
can also be represented as a game in strategic or extensive
form. In this section, we discuss how to convert a MAID
into an extensive-form game. We also show how, once we
have found an equilibrium strategy profile for a MAID, we
can convert it into a behavior strategy profile for the extensive
form game. The word “node” in this section refers solely to a
node in the tree, as distinguished from the nodes in the MAID.

We use a straightforward extension of a construction
of [Pearl, 1988] for converting an influence diagram into a
decision tree. The basic idea is to construct a tree with splits
for decision and chance nodes in the MAID. However, to re-
duce the exponential blowup, we observe that we do not need
to split on every chance variable in the MAID. A chance vari-
able that is never observed by any decision can be eliminated
by summing it out in the probability and utility computa-
tions. We present the construction below, referring the reader
to [Pearl, 1988] for a complete discussion.

The set of variables included in our game tree is G =
D UUpep Pa(D). We define a total ordering < over G that
is consistent with the topological order of the MAID: if there
is a directed path from X to Y, then X < Y. Our tree T
is a symmetric tree, with each path containing splits over all
the variables in G in the order defined by <. Each node is la-
beled with a partial instantiation inst (V) of G, in the obvious
way. For each agent a, the nodes corresponding to variables
D € D, are decision nodes for a; the other nodes are all
chance nodes. To define the information sets, consider two
decision nodes M and M’ that correspond to a variable D.
We place M and M into the same information set if and only
if inst (M) and inst (M") assign the same values to Pa(D).

Our next task is to determine the split probabilities at the
chance nodes. Consider a chance node N corresponding to
a chance variable C. For each value ¢ € dom(C), let N,
be the child of N corresponding to the choice C = ¢. We
want to compute the probability of going from N to N,.. The
problem, of course, is that a MAID does not define a full joint
probability distribution until decision rules for the agents are
selected. It turns out that we can choose an arbitrary fully

mixed strategy profile o for our MAID M (one where no
decision has probability zero), and do inference in the BN
M [o] induced by this strategy profile, by computing

Py (inst (Ne) | inst (NV)) (3)

The value of this expression does not depend on our choice
of o. To see why this is true, note that if we split on a de-
cision variable D before C, then the decision rule o does
not affect the computation of Py, (inst(N;) | inst(N)),
because inst (V) includes values for D and all its parents. If
we split on D after C, then D cannot be an ancestor of C' in
the MAID. Also, by the topological ordering of the nodes in
the tree, we know that inst (V) cannot specify evidence on
D or any of its descendants. Therefore, op cannot affect the
computation. Hence, the probabilities of the chance nodes are
well-defined.

We define the payoffs at the leaves by computing a distri-
bution over the utility nodes, given an instantiation of G. For
a leaf IV, the payoff for agent a is:

> Y. Pup(U=ulinst(N))-u 4)

U€EUa uedom(U)

We can also show that the value of (4) does not depend on our
choice of 0. The basic idea here is that inst (V') determines
the values of D and Pa(D) for each decision variable D.
Hence, the agents’ moves and information are all fully deter-
mined, and the probabilities with which different actions are
chosen in ¢ are irrelevant. We omit details.

The mapping between MAIDs and trees also induces an
obvious mapping between strategy profiles in the different
representations. A MAID strategy profile specifies a proba-
bility distribution over dom(D) for each pair (D, pa), where
pa is an instantiation of Pa(D). The information sets in the
game tree correspond one-to-one with these pairs, and a be-
havior strategy in the game tree is a mapping from infor-
mation sets to probability distributions. Clearly the two are
equivalent.

Based on this construction, we can now state the following
equivalence proposition:

Proposition 1 Let M be a MAID and 7 be its corresponding
game tree. Then for any strategy profile o, the payoff vector
for o in M is the same as the payoff vector for o in T .

The number of nodes in 7 is exponential in the number
of decision variables, and in the number of chance variables
that are observed during the course of the game. While this
blowup is unavoidable in a tree representation, it can be quite
significant. In some games, a MAID can be exponentially
smaller than the extensive game it corresponds to.

Example 2 Suppose a road is being built from north to south
through undeveloped land, and n agents have purchased plots
of land along the road. As the road reaches each agent’s plot,
the agent needs to choose what to build on his land. His util-
ity depends on what he builds, on some private information
about the suitability of his land for various purposes, and on
what is built north, south, and across the road from his land.
The agent can observe what has already been built immedi-
ately to the north of his land (on both sides of the road), but he
cannot observe further north; nor can he observe what will
be built across from his land or south of it.

Figure 2: A MAID for the Road example with n = 6.

The MAID representation, shown in Fig. 2 for n = 6, is
very compact. There are n chance nodes, corresponding to
the private information about each agent’s land, and n deci-
sion variables. Each decision variable has at most three par-
ents: the agent’s private information, and the two decisions
regarding the two plots to the north of the agent’s land. Thus,
the size of the MAID is linear in n. Conversely, any game tree
for this situation must split on each of the n chance nodes and
each of the n decisions, leading to a representation that is ex-
ponential in n. Concretely, suppose the chance and decision
variables each have three possible values, corresponding to
three types of buildings. Then the game tree corresponding to
the Road MAID has 32" leaves.

A MAID representation is not always more compact. If the
game tree is naturally asymmetric, a naive MAID representa-
tion can be exponentially larger than the tree. We return to
the problem of asymmetric scenarios in Section 6.

4 Strategic Relevance

To take advantage of the independence structure in a MAID,
we would like to find a global equilibrium through a series of
relatively simple local computations. The difficulty is that,
in order to determine the optimal decision rule for a sin-
gle decision variable, we usually need to know the decision
rules for some other variables. In Example 1, when Alice is
deciding whether to poison the tree, she needs to compare
the expected utilities of her two alternatives. However, the
probability of the tree dying depends on the probability of
Bob calling a tree doctor if he observes that the tree is sick.
Thus, we need to know the decision rule for CallTreeDoctor
to determine the optimal decision rule for PoisonTree. In
such situations, we will say that PoisonTree (strategically) re-
lies on CallTreeDoctor, or that CallTreeDoctor is relevant to
PoisonTree. On the other hand, CallTreeDoctor does not rely
on PoisonTree. Bob gets to observe whether the tree is sick,
and TreeDead is conditionally independent of PoisonTree
given TreeSick, so the decision rule for PoisonTree is not rel-
evant to Bob’s decision.

We will now formalize this intuitive discussion of strategic

relevance. Suppose we have a strategy profile, and we would
like to find a decision rule for a single decision variable D €
D, that maximizes a’s expected utility, assuming the rest of
the strategy profile remains fixed.

According to Definition 3, to determine whether a deci-
sion rule § for D is optimal for o, we construct the induced
MAID where all decision nodes except D are turned into
chance nodes, with their CPDs specified by ¢. Then § is op-
timal for o if it maximizes a’s expected utility in this single-
decision MAID. The key question that motivates our defini-
tion of strategic relevance is the following: What other deci-
sion rules are relevant for optimizing the decision rule at D?

Definition 5 Let D be a decision node in a MAID M, ¢ be
a decision rule for D, and o be a strategy profile such that
¢ is optimal for o. D strategically relies on a decision node
D' in M if there is another strategy profile o' such that ¢’
differs from ¢ only at D', but ¢ is not optimal for ¢', and
neither is any decision rule ¢’ that agrees with § on all parent
instantiations pa € dom(Pa(D)) where Py, (pa) > 0.

In other words, if a decision rule § for D is optimal for
a strategy profile o, and D does not rely on D, then § is
also optimal for any strategy profile o that differs from o
only at D'. The last clause of this definition is needed to
deal with a problem that arises in many other places in game
theory — the problem of suboptimal decisions in response to
observations that have zero probability (such as observing an
irrational move by another agent).

Relevance is a numeric criterion that depends on the spe-
cific probabilities and utilities in the MAID. It is not obvious
how we would check for strategic relevance without testing
all possible pairs of strategy profiles ¢ and o/. We would
like to find a qualitative criterion which can help us determine
strategic relevance purely from the structure of the graph. In
other words, we would like to find a criterion which is analo-
gous to the d-separation criterion for determining conditional
independence in Bayesian networks.

First, the optimality of the decision rule at D depends only
on the utility nodes Up that are descendants of D in the
MAID. The other utility nodes are irrelevant, because the de-
cision at D cannot influence them. Now, consider another
decision variable D’. The decision rule at D' is relevant to
D only if it can influence the probability distribution over
the utility nodes Up. To determine whether the CPD for a
node can affect the probability distribution over a set of other
nodes, we can build on a graphical criterion already defined
for Bayesian networks, that of a requisite probability node:

Definition 6 Let G be a BN structure, and let X and Y
be sets of variables in the BN. Then a node Z is a requi-
site probability node for the query P(X | Y) if there exist
two Bayesian networks B; and B over G, that are identi-
cal except in the CPD they assign to Z, but Pg, (X | Y) #
Pp, (X |Y).
As we will see, the decision rule at D’ is only relevant to D if
D' (viewed as a chance node) is a requisite probability node
for P(Up | D, Pa(D)).

Geiger et al. [1990] provide a graphical criterion for testing
whether a node Z is a requisite probability node forAa query

P(X |Y). We add to Z a new “dummy” parent Z whose

values correspond to CPDs for Z, selected from some set of
possible CPDs. Then Z is a requisite probability node for

P(X |Y) ifand only if Z can influence X given Y.

Based on these considerations, we can define s-
reachability, a graphical criterion for detecting strategic rel-
evance. Note that unlike d-separation in Bayesian networks,
s-reachability is not necessarily a symmetric relation.

Definition 7 A node D' is s-reachable from a node D in a
MAID M if there is some utility node U € Up such that if

a new parent D' were added to D', there would be an active

path in M from D’ to U given Pa(D) U {D}, where a path
is active in a MAID if it is active in the same graph, viewed
as a BN.

We can show that s-reachability is sound and complete
for strategic relevance (almost) in the same sense that
d-separation is sound and complete for independence in
Bayesian networks. As for d-separation, the soundness result
is very strong: without s-reachability, one decision cannot be
relevant to another.

Theorem 1 (Soundness) If D and D' are two decision nodes
in a MAID M and D’ is not s-reachable from D in M, then
D does not rely on D',

As for BNs, the result is not as strong in the other direc-
tion: s-reachability does not imply relevance in every MAID.
We can choose the probabilities and utilities in the MAID
in such a way that the influence of one decision rule on an-
other does not manifest itself. However, s-reachability is the
most precise graphical criterion we can use: it will not iden-
tify a strategic relevance unless that relevance actually exists
in some MAID that has the given graph structure. We say
that two MAIDs have the same graph structure when the two
MAIDs have the same sets of variables and agents, each vari-
able has the same parents in the two MAIDs, and the assign-
ment of decision and utility variables to agents is the same in
both MAIDs. The chance and decision variables must have
the same domains in both MAIDs, but we allow the actual
utility values of the utility variables (their domains) to vary.
The CPDs in the two MAIDS may also be different.

Theorem 2 (Completeness) If a node D’ is s-reachable
from a node D in a MAID, then there is some MAID with
the same graph structure in which D relies on D’.

Since s-reachability is a binary relation, we can represent
it as a directed graph. As we show below, this graph turns out
to be extremely useful.

Definition 8 The relevance graph for a MAID M is a di-
rected graph whose nodes are the decision nodes of M, and
which contains an edge D — D'’ if and only if D’ is s-
reachable from D.

The relevance graph for the Tree Killer example is shown in
Fig. 4(a). By Theorem 1, if D relies on D', then there is an
edge from D to D' in the relevance graph.

To construct the graph for a given MAID, we need to deter-
mine, for each decision node D, the set of nodes D’ that are
s-reachable from D. Using an algorithm such as Shachter’s
Bayes-Ball [Shachter, 1998], we can find this set for any
given D in time linear in the number of nodes in the MAID.

[0 5] [0
o] 0
<> o] <> <> o]
<> <>
[D] [D1 [Oo] [o] [
o] o] m‘ =] g‘
(@ (b) © (@) (@)

Figure 3: Five simple MAIDs (top), and their relevance
graphs (bottom). A two-color diamond represents a pair of
utility nodes, one for each agent, with the same parents.

By repeating the algorithm for each D, we can derive the rele-
vance graph in time quadratic in the number of MAID nodes.

Recall our original statement that a decision node D strate-
gically relies on a decision node D’ if one needs to know
the decision rule for D' in order to evaluate possible decision
rules for D. Although we now have a graph-theoretic charac-
terization of strategic relevance, it will be helpful to develop
some intuition by examining some simple MAIDs, and seeing
when one decision node relies on another. In the five exam-
ples shown in Fig. 3, the decision node D belongs to agent a,
and D’ belongs to agent b. Example (a) represents a perfect-
information game. Since agent b can observe the value of D,
he does not need to know the decision rule for D in order to
evaluate his options. Thus, D’ does not rely on D. On the
other hand, agent a cannot observe D' when she makes de-
cision D, and D' is relevant to a’s utility, so D relies on D'.
Example (b) represents a game where the agents do not have
perfect information; agent b cannot observe D when making
decision D’. However, the information is “perfect enough”:
the utility for b does not depend on D directly, but only on the
chance node, which b can observe. Hence D’ does not rely
on D. Examples (c) and (d) represent scenarios where the
agents move simultaneously, and thus neither can observe the
other’s move. In (c), each agent’s utility node is influenced by
both decisions, so D relies on D’ and D' relies on D. Thus,
the relevance graph is cyclic. In (d), however, the relevance
graph is acyclic despite the fact that the agents move simul-
taneously. The difference here is that agent a no longer cares
what agent b does, because her utility is not influenced by b’s
decision. In graphical terms, there is no active path from D’
to a’s utility node given D.

One might conclude that a decision node D' never relies
on a decision node D when D is observed by D', but the situ-
ation is more subtle. Consider example (e), which represents
a simple card game: agent a observes a card, and decides
whether to bet (D); agent b observes only agent a’s bet, and
decides whether to bet (D'); the utility of both depends on
their bets and the value of the card. Even though agent b
observes the actual decision in D, he needs to know the de-
cision rule for D in order to know what the value of D tells
him about the chance node. Thus, D’ relies on D; indeed,

when D is observed, there is an active path from D that runs
through the chance node to the utility node.

5 Computing Equilibria

The computation of a Nash equilibrium for a game is arguably
the key computational task in game theory. In this section,
we show how the structure of the MAID can be exploited to
provide efficient algorithms for finding equilibria in certain
games. The key insight behind our algorithm is the use of the
relevance graph to break up the task of finding an equilibrium
into a series of subtasks, each over a much smaller game.
Since algorithms for finding equilibria in general games have
complexity that is superlinear in the number of levels in the
game tree, breaking the game into smaller games significantly
improves the complexity of finding a global equilibrium.

Our algorithm is a generalization of existing backward in-
duction algorithms for decision trees and perfect information
games [Zermelo, 1913] and for influence diagrams [Jensen
et al., 1994]. The basic idea is as follows: in order to opti-
mize the decision rule for D, we need to know the decision
rule for all decisions D' that are relevant for D. For example,
the relevance graph for the Tree Killer example (Fig. 4(a))
shows that to optimize PoisonTree, we must first decide on
the decision rules for BuildPatio and TreeDoctor. However,
we can optimize TreeDoctor without knowing the decision
rules for either of the other decision variables. Having de-
cided on the decision rule for TreeDoctor, we can now opti-
mize BuildPatio and then finally PoisonTree.

Poison
Tree

\
Build
Patio
\

Tree
Doctor

(@)

Figure 4: Relevance graphs for (a) the Tree Killer example;
(b) the Road example with n = 6.

We can apply this simple backward induction procedure
in any MAID which, like the Tree Killer example, has an
acyclic relevance graph. When the relevance graph is acyclic,
we can construct a topological ordering of the decision nodes:
an ordering D4, ... ,D,, such that if ¢ < 7, then D; is not s-
reachable from D;. We can then iterate backward from D, to
Dy, deriving an optimal decision rule for each decision node
in turn. Each decision D; relies only on the decisions that
succeed it in the order, and these will have been computed by
the time we have to select the decision rule for D;.

The relevance graph is acyclic in all perfect-information
games, and in all single-agent decision problems with per-
fect recall. There are also some games of imperfect informa-
tion, such as the Tree Killer example, that have acyclic rele-

vance graphs. But in most games we will encounter cycles in
the relevance graph. Consider, for example, any simple two-
player simultaneous move game with two decisions D; and
Dy, where hoth players’ payoffs depend on the decisions at
both Dy and Do, as in Fig. 3(c). In this case, the optimality
of one player’s decision rule is clearly intertwined with the
other player’s choice of decision rule, and the two decision
rules must “match” in order to be in equilibrium. Indeed, as
we discussed, the relevance graph in such a situation is cyclic.

However, we can often utilize relevance structure even in
games where the relevance graph is cyclic.

Example 3 Consider the relevance graph for the Road ex-
ample, shown in Fig. 4(b) for n = 6 agents. We can see
that we have pairs of interdependent decision variables, cor-
responding to the two agents whose lots are across the road
from each other. Also, the decision for a given plot relies on
the decision for the plot directly to the south. However, it does
not rely on the decision about the land directly north of it, be-
cause this decision is observed. None of the other decisions
affect this agent’s utility directly, and therefore they are not
s-reachable.

Intuitively, although the last pair of nodes in the relevance
graph rely on each other, they rely on nothing else. Hence,
we can compute an equilibrium for the pair together, regard-
less of any other decision rules. Once we have computed an
equilibrium for this last pair, the decision variables can be
treated as chance nodes, and we can proceed to compute an
equilibrium for the next pair.
We formalize this intuition in the following definition:

Definition 9 A set S of nodes in a directed graph is a
strongly connected component (SCC) if for every pair of
nodes D # D' € S, there exists a directed path from D
to D’. A maximal SCC is an SCC that is not a strict subset of
any other SCC.

The maximal SCCs for the Road example are outlined in
Fig. 4(b).

We can find the maximal SCCs of a relevance graph in lin-
ear time, by constructing a component graph whose nodes are
the maximal SCCs of the graph [Cormen et al., 1990]. There
is an edge from component C to component C' in the com-
ponent graph if and only if there is an edge in the relevance
graph from some element of C to some element of C’. The
component graph is always acyclic, so we can define an or-
dering Cy, ... ,C,, over the SCCs, such that whenever i < j,
no element of C; is s-reachable from any element of C;.

We can now provide a divide-and-conquer algorithm for
computing Nash equilibria in general MAIDs.

Algorithm 1

Given a MAID M
a topological ordering Cy, . . . , C,, of the component
graph derived from the relevance graph for M

1 Leto? be an arbitrary fully mixed strategy profile

2 Fori = 0throughm — 1:

3 Let 7 be a partial strategy profile for C(,,,_; thatis a
Nash equilibrium in M [0t

4 Let ot = (Uic(m—i)’/r)

5 Output ¢™ as an equilibrium of M

The algorithm iterates backwards over the SCC’s, finding
an equilibrium strategy profile for each SCC in the MAID
induced by the previously selected decision rules (with arbi-
trary decision rules for some decisions that are not relevant
for this SCC). In this induced MAID, the only remaining de-
cision nodes are those in the current SCC; all the other deci-
sion nodes have been converted to chance nodes. Finding the
equilibrium in this induced MAID requires the use of a sub-
routine for finding equilibria in games. We simply convert the
induced MAID into a game tree, as described in Section 3,
and use a standard game-solving algorithm [McKelvey and
McLennan, 1996] as a subroutine. Note that if the relevance
graph is acyclic, each SCC consists of a single decision node.
Thus, step 3 involves finding a Nash equilbrium in a single-
player game, which reduces to simply finding a decision rule
that maximizes the single agent’s expected utility.

In proving the correctness of Algorithm 1, we encounter
a subtle technical difficulty. The definition of strategic rele-
vance (Def. 5) only deals with the optimality of a single deci-
sion rule for a strategy profile. But in Algorithm 1, we derive
not just single decision rules, but a complete strategy for each
agent. To make the leap from the optimality of single deci-
sion rules to the optimality of whole strategies in our proof,
we must make the standard assumption of perfect recall —
that agents never forget their previous actions or observations.
More formally:

Definition 10 An agent a has perfect recall with respect to
a total order Dy,...,D, over D, if for all D;, D; € D,,
i < j implies that D; € Pa(D;) and Pa(D;) C Pa(Dj).

We can now prove the correctness of Algorithm 1.

Theorem 3 Let M be a MAID where every agent has per-
fect recall, and let C4, ... ,C,, be a topological ordering of
the SCCs in the relevance graph for M. Then the strategy
profile o™ produced by running Algorithm 1 with M and
Ci,...,Cy asinputs is a Nash equilibrium for M.

To demonstrate the potential savings resulting from our al-
gorithm, we tried it on the Road example, for different num-
bers of agents n. Note that the model we used differs slightly
from that shown in Fig. 2: In our experiments, each agent
had not just one utility node, but a separate utility node for
each neighboring plot of land, and an additional node that de-
pends on the suitability of the plot for different purposes. The
agent’s decision node is a parent of all these utility nodes.
The idea is that an agent gets some base payoff for the build-
ing he builds, and then the neighboring plots and the suitabil-
ity node apply additive bonuses and penalties to his payoff.
Thus, instead of having one utility node with 3% = 243 par-
ent instantiations, we have 4 utility nodes with 3% = 9 parent
instantiations each. This change has no effect on the structure
of the relevance graph, which is shown for n = 6 in Fig. 4(b).
The SCCs in the relevance graph all have size 2; as we dis-
cussed, they correspond to pairs of decisions about plots that
are across the road from each other.

Even for small values of n, it is infeasible to solve the
Road example with standard game-solving algorithms. As
we discussed, the game tree for the MAID has 32" leaves,
whereas the MAID representation is linear in n. The normal

form adds another exponential factor. Since each agent (ex-
cept the first two) can observe three ternary variables, he has
27 information sets. Hence, the number of possible pure (de-
terministic) strategies for each agent is 327, and the number
of pure strategy profiles for all n players is ($7)("=2) . (3%)2,
In the simplest interesting case, where n = 4, we obtain a
game tree with 6561 terminal nodes, and standard solution
algorithms, that very often use the normal form, would need
to operate on a game matrix with about 4.7 x 10%7 entries
(one for each pure strategy profile).

600

500

N
o
o

Solution Time (s)
N w
o o
o o

100 -

Divide and Conquer Algorithm ——
0 5 10 15 20 25 30 35 40
Number of Plots of Land

Figure 5: Performance results for the Road example.

Solving the Road game either in its extensive form or in
the normal form is infeasible even for n = 4. By contrast, our
divide-and-conquer algorithm ends up generating a sequence
of small games, each with two decision variables. Fig. 5
shows the computational cost of the algorithm as n grows.
We converted each of the induced MAIDs constructed dur-
ing the algorithm into a small game tree, and used the game
solver GAMBIT [2000] to solve it. As expected, the time re-
quired by our algorithm grows approximately linearly with
n. Thus, for example, we can solve a Road MAID with 40
agents (corresponding to a game tree with 389 terminal nodes)
in 8 minutes 40 seconds.

6 Discussion and Future Work

We have introduced a new formalism, multi-agent influence
diagrams (MAIDs), for modeling multi-agent scenarios with
imperfect information. MAIDs use a representation where
variables are the basic unit, and allow the dependencies be-
tween these variables to be represented explicitly, in a graph-
ical form. They therefore reveal important qualitative struc-
ture in a game, which can be useful both for understanding
the game and as the basis for algorithms that find equilibria
efficiently. In particular, we have shown that our divide-and-
conquer algorithm for finding equilibria provides exponential
savings over existing solution algorithms in some cases, such
as the Road example, where the maximal size of an SCC in
the relevance graph is much smaller than the total number
of decision variables. In the worst case, the relevance graph
forms a single large SCC, and our algorithm simply solves
the game in its entirety, with no computational benefits.
Although the possibility of extending influence diagrams
to multi-agent scenarios was recognized at least fifteen years
ago [Shachter, 1986], the idea seems to have been dormant

for some time. Suryadi and Gmytrasiewicz [1999] have used
influence diagrams as a framework for learning in multi-agent
systems. Milch and Koller [2000] use multi-agent influence
diagrams as a representational framework for reasoning about
agents’ beliefs and decisions. However, the focus of both
these papers is very different, and they do not consider the
structural properties of the influence diagram representation,
nor the computational benefits derived from it. Nilsson and
Lauritzen [2000] have done related work on limited memory
influence diagrams, but they focus on the task of speeding
up inference in single-agent settings. MAIDs are also related
to La Mura’s [2000] game networks, which incorporate both
probabilistic and utility independence. La Mura defines a no-
tion of strategic independence, and also uses it to break up
the game into separate components. However, his notion of
strategic independence is an undirected one, and thus does
not allow as fine-grained a decomposition as the directed rel-
evance graph used in this paper, nor the use of a backward
induction process for interacting decisions.

This work opens the door to a variety of possible exten-
sions. On the representational front, it is important to ex-
tend MAIDs to deal with asymmetric situations, where the
decisions to be made and the information available depend
on previous decisions or chance moves. Game trees repre-
sent such asymmetry in a natural way, whereas in MAIDs (as
in influence diagrams and BNSs), a naive representation of an
asymmetric situation leads to unnecessary blowup. We be-
lieve we can avoid these difficulties in MAIDs by explicitly
representing context-specificity, as in[Boutilier et al., 1996;
Smith et al., 1993], integrating the best of the game tree and
MAID representations.

Another direction relates to additional structure that is re-
vealed by the notion of strategic relevance. In particular, even
if a group of nodes forms an SCC in the relevance graph, it
might not be a fully connected subgraph; for example, we
might have a situation where D, relies on D, which relies on
D3, which relies on Dy. Clearly, this type of structure tells us
something about the interaction between the decisions in the
game. An important open question is to analyze the meaning
of these types of structures, and to see whether they can be
exploited for computational gain. (See [Kearns et al., 2001]
for results in one class of MAIDs.)

Finally, the notion of strategic relevance is not the only
type of insight that we can obtain from the MAID represen-
tation. We can use a similar type of path-based analysis in
the MAID graph to determine which of the variables that an
agent can observe before making a decision actually provide
relevant information for that decision. In complex scenarios,
especially those that are extended over time, agents tend to
accumulate a great many observations. The amount of space
needed to specify a decision rule for the current decision
increases exponentially with the number of observed vari-
ables. Thus, there has been considerable work on identify-
ing irrelevant parents of decision nodes in single-agent influ-
ence diagrams [Howard and Matheson, 1984; Shachter, 1990;
1998]. However, the multi-agent case raises subtleties that are
absent in the single-agent case. This is another problem we
plan to address in future work.

Acknowledgements This work was supported by Air Force
contract F30602-00-2-0598 under DARPA’s TASK program
and by ONR MURI N00014-00-1-0637 under the program
”Decision Making under Uncertainty”.

References

[Boutilier et al., 1996] C. Boutilier, N. Friedman, M. Goldszmidt,
and D. Koller. Context-specific independence in Bayesian net-
works. In Proc. 12th UAI, pages 115-123, 1996.

[Cormenetal., 1990] T.H. Cormen, C.E. Leiserson, and R.L.
Rivest. Introduction to Algorithms. MIT Press, 1990.

[Fudenberg and Tirole, 1991] D. Fudenberg and J. Tirole. Game
Theory. MIT Press, 1991.

[Gambit, 2000] GAmBIT software, California Institute of Technol-
ogy, 2000. http://www.hss.caltech.edu/gambit/Gambit.html.

[Geiger et al., 1990] D. Geiger, T. Verma, and J. Pearl. Identify-
ing independence in Bayesian networks. Networks, 20:507-534,
1990.

[Howard and Matheson, 1984] R. A. Howard and J. E. Matheson.
Influence diagrams. In Readings on the Principles and Applica-
tions of Decision Analysis, pages 721-762. Strategic Decisions
Group, 1984.

[Jensen et al., 1994] F. Jensen, F.V. Jensen, and S.L. Dittmer. From
influence diagrams to junction trees. In Proc. 10th UAI, pages
367-373, 1994.

[Kearns et al., 2001] M. Kearns, M.L. Littman, and S. Singh.
Graphical models for game theory. Submitted, 2001.

[Koller et al., 1994] D. Koller, N. Megiddo, and B. von Stengel.
Fast algorithms for finding randomized strategies in game trees.
In Proc. 26th STOC, pages 750-759, 1994.

[LaMura, 2000] P. LaMura. Game networks. In Proc. 16th UAI,
pages 335-342, 2000.

[McKelvey and McLennan, 1996] R.D. McKelvey and A. McLen-
nan. Computation of equilibria in finite games. In Handbook
of Computational Economics, volume 1, pages 87-142. Elsevier
Science, Amsterdam, 1996.

[Milch and Koller, 2000] B. Milch and D. Koller. Probabilistic
models for agents’ beliefs and decisions. In Proc. 16th UAI, 2000.

[Nash, 1950] J. Nash. Equilibrium points in n-person games. Proc.
National Academy of Sciences of the USA, 36:48-49, 1950.

[Nilsson and Lauritzen, 2000] D. Nilsson and S.L. Lauritzen. Eval-
uating influence diagrams with LIMIDs. In Proc. 16th UAI, pages
436-445, 2000.

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in Intelligent Sys-
tems. Morgan Kaufmann, San Francisco, 1988.

[Romanovskii, 1962] 1. V. Romanovskii. Reduction of a game with
complete memory to a matrix game. Soviet Mathematics, 3:678-
681, 1962.

[Shachter, 1986] R. D. Shachter. Evaluating influence diagrams.
Operations Research, 34:871-882, 1986.

[Shachter, 1990] R. D. Shachter. An ordered examination of influ-
ence diagrams. Networks, 20, 1990.

[Shachter, 1998] R. D. Shachter. Bayes-ball: The rational pastime.
In Proc. 14th UAI, pages 480-487, 1998.

[Smith et al., 1993] J. E. Smith, S. Holtzman, and J. E. Matheson.
Structuring conditional relationships in influence diagrams. Op-
erations Research, 41(2):280-297, 1993.

[Suryadi and Gmytrasiewicz, 1999] D. Suryadi and P.J. Gmy-
trasiewicz. Learning models of other agents using influence dia-
grams. In Proc. 7th Int’l Conf. on User Modeling, 1999.

[Zermelo, 1913] E. Zermelo. Uber eine Anwendung der Mengen-
lehre auf der Theorie des Schachspiels. In Proceedings of the
Fifth International Congress on Mathematics, 1913.

