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Abstract

In an oligopoly, prior to choosing quantities/prices, each ¯rm has an opportunity to
form pair-wise collaborative links with other ¯rms. These pair-wise links lower costs
of production of the ¯rms which form a link. The collection of pair-wise links de¯nes
a collaboration network. We study stable and e±cient networks under di®erent types
of market competition.
We ¯nd that except under extreme competition, a la Bertrand, ¯rms have an incentive
to collaborate with their competitors to lower costs of production. We ¯nd that two
simple architectures, the complete network, where every ¯rm has a collaboration link
with every other ¯rm, and the network with a dominant group, which contains a large
number of completely connected ¯rms and several isolated ¯rms, are stable under
di®erent market conditions. We also observe that stable networks are often e±cient
from a social point of view.
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1 Introduction

Firms often collaborate with each other to share information on market conditions/new

technologies as well as to jointly bear the cost of common facilities. These collaborative

arrangements typically strengthen the competitive position of the ¯rms involved in the col-

laboration and weaken the position of the ¯rms outside the collaboration. Thus inter-¯rm

collaborations have important e®ects on the functioning of the market. In this paper we

study the incentives for ¯rms to engage in collaborative arrangements and their aggregate

welfare implications.

We develop a simple model to study these issues. Consider a oligopoly with symmetric

¯rm; each ¯rm has an opportunity to form pair-wise collaborative links with other ¯rms.

These pair-wise links lower costs of production of ¯rms which form a link. The collection of

pair-wise links de¯nes a collaboration network and induces a distribution of costs across the

¯rms in the industry. The ¯rms then compete in the market. We study the nature of stable

collaboration networks under di®erent types of market competition.

The distinctive feature of our approach is that we allow for intransitive structures of collabo-

ration. Thus, for example, it is possible that ¯rm 1 has a collaborative relationship with ¯rms
12 and 3, respectively, but that ¯rms 2 and 3 do not have any collaborative relationship.

Allowing for intransitive structures opens up a very rich class of collaboration arrangements

and also requires novel methods of analysis.

2We start with a consideration of the textbook oligopoly setting: there are n ¯rms, demand is

1Such intransitive relationships are commonly observed in practice, both with regard to sharing common
facilities as well as with regard to research and development activities. We give some examples of the
latter. For instance, Raychem Corporation has collaboration relationships with General Signal Corporation
(ATM Forum) and Whirlpool Corporation (NAHB Research Foundation), respectively, but General Signal
Corporation and Whirlpool Corporation do not have any collaborative links. Similarly, Hubbell Inc. has
collaboration relationships with Cooper Industries Inc. (NAHB Research Foundation) and Reliance Electric
Co. (Corporation for Open Systems International), respectively, but Cooper Industries Inc. and Reliance
Electric Co. have no collaboration relations with each other. We thank Nicholas Vonortas, for providing
these, and other, instances of intransitive collaboration relationships from his NCRA-RJV database.

2 n(n¡1)=2 28There are 2 possible networks. Thus, if n = 8 then there are 2 possible networks of collabora-
tion!
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linear in price, and initially ¯rms are symmetric, with zero ¯xed costs and identical marginal

costs of production. We assume that pair-wise links lower this marginal cost. In this setting,

we ¯nd that price competition leads ¯rms to form no collaborative links, yielding the empty

network, while quantity competition leads every pair of ¯rms to form a link, thus generating

the complete network. These networks are given in Figure 1. We also ¯nd that under price

competition, every network with two or more fully connected ¯rms is e±cient, while with

Cournot competition, the complete network is the unique e±cient network. These results

suggests that the nature of market competition has an important e®ect on the type of

collaboration networks that arise, and that this has a bearing on the level of welfare as well.

The above results for quantity competition are obtained under the assumption that the

marginal costs of a ¯rm are declining linearly in the number of its collaboration links. We

also examine the case of non-linearly decreasing marginal costs. We ¯nd that if marginal

cost decrease is a decreasing function of the number of links, then connected but intransitive

networks of collaboration are stable. If, on the other hand, marginal cost decrease is an

increasing function of the the number of links, then the complete network is stable. In ad-

dition, networks with a large dominant group and several isolated ¯rms are also stable. Our

results on intransitive stable networks rely on diminishing returns from link formation and,

therefore, suggests that such patterns arise quite naturally. This ¯nding is important since

one of the motivations for the study of networks is precisely the possibility of modeling in-

transitive relationships. The rest of the paper explores the relationship between competition

and collaboration in more general settings.

We approach the general problem as follows. A set of collaborative links de¯nes a network,

which in turn generates a vector of costs for the di®erent ¯rms. Given these costs, ¯rms

compete in the product market. Thus for a ¯xed type of competition, we can de¯ne the

corresponding payo®s of the ¯rms for any given network. We model di®erent types of com-

petition in terms of restrictions on the payo® functions. In particular, we consider two types

of competition: aggressive and moderate.

Under aggressive competition, all but the lowest cost ¯rms make zero pro¯ts. This allows

for two subcases of interest: one, in which a lowest cost ¯rm makes pro¯ts only if it is the
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unique such ¯rm and two, if all lowest cost ¯rms make positive pro¯ts. The ¯rst possibility

corresponds to the standard Bertrand competition under general homogeneous demand. In

this case we ¯nd that, the unique stable network is the empty network (Theorem 4.1). In the

latter case we provide a complete characterization of stable networks: for markets with four

or more ¯rms, a network is stable if and only if it consists of one non-singleton complete

component of size k 2 f3; 4; ¢ ¢ ¢ ; ng and n ¡ k singleton components (Theorem 4.2). This

collaboration architecture resembles the familiar dominant cartel and fringe ¯rms structure.

Figure 2 illustrates the set of stable networks in this case, for a market with 5 ¯rms.

Under moderate competition, all ¯rms make positive pro¯ts, but lower cost ¯rms make

larger pro¯ts. This case accommodates quantity competition under general homogeneous or

di®erentiated demand, and price competition under di®erentiated demand. In this setting,

stable networks possess greater variety and richer structure and it is di±cult to characterize

them. We ¯rst show that every ¯rm with the same costs must be directly linked in a stable

network. Thus, every pair of ¯rms with the same costs levels must be linked in a stable

network. We develop su±cient conditions for the complete network to be the unique stable

network (Theorem 4.3). We ¯nd that these conditions, though strong, are satis¯ed by a

variety of standard models such as those mentioned above.

These results are in marked contrast to the results obtained by other authors (we discuss this

literature below). One important assumption we make is that there are no spillovers across

collaboration links of ¯rms. This motivates an enquiry into the role of spillovers/externalities

across collaboration links. The network structure allows us to de¯ne the `distance' between

¯rms. We suppose that the extent of spillovers is inversely related to the `distance' between

the ¯rms in a collaboration network. Our analysis focusses on positive spillovers. Our

results on aggressive competition extend to this setting easily. We, therefore, focus on the

case of moderate competition. We ¯nd that the complete network is a stable network in

the presence of positive spillovers. However, in the linear demand model with quantity

competition, partially connected networks are also stable. A comparison of this ¯nding with

our above results suggests that, under moderate competition, spillovers may have the e®ect

of lowering the level of collaboration.
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This paper is a contribution to the study of group formation and cooperation in oligopolies.

Our model of collaborative networks is inspired by the recent work on strategic models of net-

work formation; see e.g., Aumann and Myerson (1989), Bala and Goyal (1999), Goyal (1993),

Goyal and Joshi (1999a, 1999b), Jackson and Wolinsky (1996), Jackson and Watts (1998),

and Kranton and Minehart (1998). To the best of our knowledge, the present paper is the

¯rst application of network games to the study of collaboration among oligopolistic ¯rms.

Issues relating to group formation and cooperation have long been a central concern of

economic theory, and game theory in particular. The traditional approach to these issues is in

terms of coalitions. In recent years, there has been considerable work on coalition formation

in games; see e.g., Bloch (1995,1996), Ray and Vohra (1997, 1998), and Yi (1997,1998). For a

survey of this work, refer to Bloch (1998). One application of this theory is to the formation

of groups in oligopolies. In this literature, group formation is modeled in terms of a coalition

structure which is a partition of the set of ¯rms. Each ¯rm therefore, can belong to one and

only one element of the partition, referred to as a coalition.

In our paper, we consider two-player relationships. In this sense, our model is somewhat

restrictive as compared to the work referred to above, which allows for groups of arbitrary

size. However, the principal distinction concerns the nature of collaboration structures we

examine. Our approach accommodates collaborative relations that are non-transitive. From

a conceptual point of view, this distinction is substantive. It means that we allow for

relationships across coalitions. Thus, we consider a class of cooperative structures which

is signi¯cantly di®erent from those studied in the coalition formation literature.

The network approach also leads to quite di®erent predictions concerning the nature of

collaboration among ¯rms. Bloch (1995,1996) develops a sequential coalition unanimity game

in which ¯rms propose coalitions and a coalition is formed only if every member of a proposed

coalition agrees to become a member. Each ¯rm's marginal cost is linearly declining in the

size of the coalition of which it is a member. After coalitions are formed, the ¯rms compete as

Cournot/Bertrand oligopolists in a di®erentiated market with homogeneous demand. Bloch

demonstrates that generally there is a unique stable coalition structure in which ¯rms are

divided into two unequal groups. By contrast, we ¯nd that the complete network, where
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every ¯rm has a collaborative link with every other ¯rm, is always stable. The arguments

underlying these result exploit the possibility of intransitive relationships.

Yi and Shin (1995) and Yi (1998) propose a simultaneous open membership game in which

all players announce their decision to form coalitions at the same time and non-members

cannot be excluded from joining a coalition. They obtain the grand coalition as the stable

outcome of the open membership game. Their approach is akin to a game in which the

decision to join a coalition is one-sided. In such a game, in the presence of perfect spillovers,

a member of a smaller group always has an incentive to join a larger group. In our paper,

by contrast, link-formation is based on pair-wise incentive compatibility considerations, and

it is therefore interesting to observe that a grand coalition can be obtained in such a setting

also. Thus our results on complete networks (Theorems 4.2 and 4.3) provide an alternative

explanation as to how a grand coalition may emerge.

Our paper is also related to the literature on cooperative R&D in oligopoly; see e.g.,

d`Apremont and Jacquemin (1988), Katz (1986), Leahy and Neary (1998), Suzumura (1992).

This literature considers a two stage process: in the ¯rst stage, ¯rms choose the intensity

of their R&D e®ort. This R&D lowers their cost of production. In the second stage, they

compete in the market by choosing quantities/prices. The R&D e®ort of a ¯rm has positive

spillovers: it helps in lowering the costs of all other ¯rms. Thus, these spillovers generate an

externality. The literature examines the role of cooperative R&D in resolving the incentive

problems arising out of the externality. In particular, existing work compares the level of

R&D e®ort under two di®erent situations. The ¯rst situation is the pure non-cooperative

model, where both R&D e®ort as well as the strategy in the market stage is non-cooperatively

chosen. The second situation is a mixed one: the R&D is chosen in a cooperative manner so

as to maximize the joint pro¯ts of ¯rms, while the strategies at the market stage are chosen

in a non-cooperative manner. In the latter case, it is assumed that the ¯rms form a grand

coalition. Thus, in this literature the group sizes are exogenously speci¯ed.

Our paper makes two contributions to this literature. The ¯rst contribution is the formu-

lation of spillovers. In our model, spillovers accrue only in the event of collaboration and

are therefore not industry wide, as is the case in this literature. In particular, we allow for
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the extent of spillovers to be related to the `distance' between the ¯rms in a collaboration

network. The network framework permits a natural de¯nition of the distance. This allows us

to model the idea that ¯rms that are `far apart' receive lower spillovers as compared to ¯rms

that are `close' in the network. The second contribution of our paper pertains to the study

of stable networks. In the existing literature, the group structure is usually exogenously

speci¯ed. By contrast, we allow for collaboration structures to be endogenously determined

and study the nature of stable networks.

The model is presented in Section 2. In Section 3, we present two examples relating to

network formation in the case of price and quantity competition, respectively. This motivates

the general analysis of network formation in oligopoly, which is presented in Section 4.

We discuss extensions { to allow positive spillovers, for ¯xed costs of link formation, and

asymmetric ¯rms { and some conceptual issues in Section 5, while Section 6 concludes.

2 The Model

We consider a setting in which a set of ¯rms ¯rst choose their collaboration links with

other ¯rms. These collaboration agreements are pair-wise and help lower marginal costs of

production. The ¯rms then compete in the product market by choosing either quantities or

prices. We are interested in the network of collaboration that emerges in this setting. We

now develop the required terminology and provide some de¯nitions.

2.1 Networks

Let N = f1; 2; :::; ng denote a ¯nite set of ex-ante identical ¯rms. To avoid trivialities, we

shall assume that n ¸ 3. For any i; j 2 N , the pair-wise relationship between the two ¯rms

is captured by a binary variable, g 2 f0; 1g; g = 1 means that a direct link is establishedi;j i;j

between ¯rms i and j while g = 0 means that no direct link is formed. By de¯nition,i;j

g = 1 and g = g 8i; j 2 N . A network, g = f(g ) g, is a formal descriptioni;i i;j j;i i;j i;j2N

of the pair-wise collaboration relationships that exist between the ¯rms in N . We let G
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cdenote the set of all networks. Two special cases are the complete network, g , in which
eg = 1 8i; j 2 N , and the empty network, g , in which g = 0 8i; j 2 N , i6= j. Let g + gi;j i;j i;j

denote the network obtained by replacing g = 0 in network g by g = 1. Similarly, leti;j i;j

g ¡ g denote the network obtained by replacing g = 1 in network g by g = 0.i;j i;j i;j

Given a network g, let N(g) = fi 2 N : 9j6= i s:t: g = 1g. Each ¯rm in N(g) has at leasti;j

c eone direct link to another distinct ¯rm in the network g. Therefore, N(g ) = n andN(g ) = ;.
We will let jN (g)j denote the cardinality of N(g). A path in g connecting ¯rms i and j is

a distinct set of ¯rms fi ; : : : ; i g ½ N (g) such that g = g = g = ¢ ¢ ¢ = g = 1.1 n i;i i ;i i ;i i ;j1 1 2 2 3 n

Given any two ¯rms i and j , let d (g) denote the number of links in the shortest pathij

between i and j in the network g . We refer to d (g) as the geodesic distance between ¯rmsij

i and j in g. We shall use the convention that d (g) =1 if there exists no path between iij

c eand j in g. For instance, d (g ) = 1 and d (g ) = 1 8i; j 2 N . We say that a network isij ij

connected if there exists a path between any pair i; j 2 N .

Given a network, g, let N (g) = fj 2 N : j 6= i s:t: g = 1g be the set of ¯rms with whomi i;j

¯rm i has a direct collaboration link. Let ´ (g; 1) denote the cardinality of N (g). In general,i i

let ´ (g; k) denote the number of ¯rms who are at a geodesic distance of k from ¯rm i.i

0 0A network, g ½ g, is a component of g if for all i; j 2 N(g ), i 6= j, there exists a path
0 0 0in g connecting i and j , and for all i 2 N(g ) and j 2 N (g), g = 1 implies g 2 g .i;j i;j

0Generally, in a component g with three or more agents, there will exist agents i and j
0 0such that d (g ) ¸ 2. We shall say that a component g ½ g is complete if g = 1 for allij i;j

0i; j 2 N (g ).

2.2 Collaboration Links and Cost Reduction

A collaboration link in our framework can be interpreted in di®erent ways. One possible

interpretation is that ¯rms form collaborations to share the costs of a common facility.

The facility may involve some large ¯xed costs and, therefore, the collaboration generates

economies of scale which lowers costs of production of the collaborating ¯rm. A second

interpretation is that ¯rms have an agreement to jointly invest in cost-reducing R&D activity.
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We suppose that ¯rms are initially symmetric, with zero ¯xed costs and identical marginal

costs. Collaborations lower marginal costs of production. We analyze the network formation

process under various speci¯cations of the marginal cost function. In the basic model, we

use the following linear function:

c (g) = ° ¡ °´ (g; 1) ; i 2 N: (1)i 0 i

where ° is a positive parameter representing a ¯rm's marginal cost when it has no links. In0

this case, ¯rm i's marginal costs are linearly declining in the number of direct links it has

with other ¯rms.

When cost-reducing activity takes the form of capacity-sharing agreements, gains from co-

operation may decrease due to congestion as a ¯rm forms additional links. In this case

marginal cost is a decreasing convex function of the number of direct links. Alternatively, it

is also possible that bene¯ts from cooperation increase as a ¯rm forms additional links. For

instance, a larger number of links between ¯rms aids standardization of the product with

ensuing gains from network externalities. In this formulation, marginal cost is a decreas-

ing concave function of the number of links. The following formulation accomodates these

di®erent possibilities.

c (g) = c(´ (g; 1)); c(´ (g; 1) + 1) < c(´ (g; 1)); i 2 N: (2)i i i i

We assume throughout that the extent of cost reduction via collaborations is exogenously

speci¯ed. This simpli¯es the analysis and allows us to focus on the structure of stable

networks under oligopolistic competition. To check for robustness of our ¯ndings, we brie°y

examine the impact of ¯xed costs of link formation in Section 5.2.

2.3 Payo®s

Given a network g, ¯rm i's cost for producing an output, q , is given by the following costi

function showing constant returns to scale in output:
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C (g; q ) = c (g)q (3)i i i i

where c (g) is the marginal cost of production as a function of the network of collaborationi

links. To rule out uninteresting cases, we shall always suppose that c (g) ¸ 0, 8i 2 N ,i

8g 2 G. A network g, therefore, induces a marginal cost vector for the ¯rms which is

given by c(g) = fc (g); c (g); :::; c (g)g. Given this cost vector, and the speci¯cation of the1 2 n

demand functions in the product market, the ¯rms compete in the second stage as either

Cournot or Bertrand oligopolists. For every network g, we assume there is a well-de¯ned

Nash equilibrium in the second stage product market game. The pro¯ts of ¯rm i in this
3equilibrium are given by ¼ (g).i

2.4 Stable and E±cient Networks

A network g is stable if for all i; j 2 N :

(i) ¼ (g) > ¼ (g ¡ g ) and ¼ (g) > ¼ (g ¡ g )i i i;j j j i;j

(ii) if ¼ (g + g ) > ¼ (g), then ¼ (g + g ) · ¼ (g)i i;j i j i;j j

In words, in a stable network, any ¯rm that is directly linked to another has a strict incentive

to maintain the link and any two ¯rms that are not directly linked have no strict incentive to

form a direct link with each other. The above de¯nition of stability is inspired by a related

notion of stability presented in Jackson and Wolinsky (1996). We discuss the two di®erent

de¯nitions in Section 5.4 below.

This de¯nition of stability re°ects the idea that a link is formed if and only if both ¯rms

forming the link. It implicitly incorporates the view that link formation may involve small

costs: thus individual ¯rms will only form a link if such a link generates strictly positive

pro¯ts. The second idea is that of the absence of transfers: we suppose that there are no

3This implicitly assumes that there are no coordination problems of choosing across di®erent equilibria
at this stage.
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transfers possible across links. Taken together with the idea of small positive costs of link

formation, this implies that both ¯rms must make strictly greater pro¯ts, by forming a link.

The requirements above are very weak and should be seen as necessary conditions for a

network to be stable. One of the points of our analysis is that these weak requirements

provide su±cient structure in an interesting class of network games.

In order to study e±cient networks, we need to consider aggregate welfare. For any network

g, this is de¯ned as the sum of consumer surplus and aggregate pro¯ts of the n ¯rms. We
¤ ¤shall say that a network g is e±cient if W (g ) ¸W (g), for all g 2 G.

3 Homogeneous Product Oligopoly

In this section, we analyze the nature of collaboration among ¯rms in a homogeneous product

oligopoly, i.e., a market where the outputs of the ¯rms are perfect substitutes. In particular,
4we restrict attention to linear inverse market demand:

X
p = ® ¡ q ; ® > 0 (4)i

i2N

The pro¯ts of the ¯rms depend on the nature of market competition. In the following

subsections, we will consider both price and quantity competition.

3.1 Linear Marginal Costs

In this subsection, we assume that marginal costs are linearly decreasing in the number of

links that a ¯rm has. Formally, the marginal cost structure is given by (1). To ensure that

all ¯rms make positive pro¯ts we shall assume that ® > 3° and ° ¸ (n ¡ 1)°. We start0 0

with the case of Bertrand competition. Given a network g, what are the payo®s of di®erent

¯rms under Bertrand competition? Standard considerations (exploiting the idea of a ¯nite

4We analyze the general oligopoly model in Section 4.
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price grid) allow us to state that there exists an equilibrium, and in this equilibrium a ¯rm

will make pro¯ts only if it is the unique minimal cost ¯rm in the market. In other words:

¼ (g) = 0; if c (g) ¸ c (g); for i6= j; ¼ (g) > 0; if c (g) < c (g); 8 j6= i: (5)i i j i i j

Since g is arbitrary, the above expression allows us to specify the payo®s for all possible net-

works. What are the stable networks of collaboration in this setting of extreme competition?

The following result provides a complete answer to this question:

Proposition 3.1 Suppose there is price competition among the ¯rms. If demand satis¯es
e(4) and the marginal cost function satis¯es (1), then the empty network, g , is the unique

stable network.

Proof Consider some non-empty network g. There are two possibilities. First, there is

some ¯rm i 2 N which is the unique lowest cost ¯rm. But this implies that ¯rm i must have

at least two links since all ¯rms are ex-ante identical. However, since ¯rm i is the unique

lowest cost ¯rm, all other ¯rms make zero pro¯ts. In particular, consider j 6= i such that

g = 1. For this ¯rm, condition (i) of stability is violated since ¼ (g) = ¼ (g ¡ g ) = 0.i;j j j i;j

Hence, ¯rm i cannot be uniquely minimal cost in a stable network.

The second possibility, given that links are bilateral, is that one or more pairs of ¯rms have

minimal cost. Let i; j 2 N be two ¯rms with minimal costs. Under price competition both

¯rms make zero pro¯ts. If these ¯rms would delete their links they would still make zero

pro¯ts. Thus ¼ (g) = ¼ (g ¡ g ) = 0. This once again violates condition (i) of stability.i i i;j

eThus the only candidate for a stable network is g . Condition (i) is trivially satis¯ed since
ethere are no links to sever. In the network g + g , there are two lowest cost ¯rms, i and j.i;j

From (5), it follows that both ¯rms will get a payo® of zero. Thus condition (ii) is satis¯ed.

This completes the proof.

4
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The arguments in this proof are very general; in particular, we do not make use of the linear

structure of the demand or the cost function. This suggests that the absence of collaborative

links is likely to obtain in general settings where competition is extreme (see Section 4.1).

Next, we turn to Cournot competition between the ¯rms. We start by de¯ning the payo®s

in the quantity competition game. Given any network g, the Cournot equilibrium output

can be written as:

P
(® ¡ ° ) + n°´ (g; 1)¡ ° ´ (g; 1)0 i jj6=iq (g) = ; i 2 N (6)i

(n+ 1)

This implies that aggregate Cournot output, for a given g, is:

PX n(® ¡ ° ) + ° ´ (g; 1)0 ii2NQ(g) = q (g) = (7)i
(n+ 1)i2N

2The second stage Cournot pro¯ts for ¯rm i 2 N are given by ¦ (g) = q (g). In our studyi i

of stable networks, we will ¯nd it convenient to use a positive monotone transform of the

¯rm's pro¯ts to write the payo®s as follows:

X
¼ (g) = (®¡ ° ) + n°´ (g; 1)¡ ° ´ (g; 1) ; i 2 N (8)i 0 i j

j6=i

Our restrictions on the parameters ensures that each ¯rm produces a positive quantity in the

Cournot game. We can now characterize the stable collaboration networks under quantity

competition.

Proposition 3.2 Suppose there is quantity competition among the ¯rms. If demand satis¯es
c(4) and the marginal cost function satis¯es (1), then the complete network, g , is the unique

stable network.
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c c cProof We ¯rst show that g is stable. In g ; ´ (g ; 1) = n ¡ 1; 8i 2 N . Therefore, ¯rm ii

has a marginal cost of ° ¡ °(n¡ 1) and payo® of:0

c¼ (g ) = (® ¡ ° ) + °(n¡ 1) (9)i 0

There are no links to add so condition (ii) of stability is automatically satis¯ed. We check

condition (i) next. Suppose we set g = 0 for some pair i and j . In the ensuing network,i;j

cg ¡ g , the payo® to i is given by:i;j

c¼ (g ¡ g ) = ®¡ (n¡ 1)[° ¡ °(n¡ 2)] + (n¡ 2)[° ¡ °(n¡ 1)] = (®¡ ° ) (10)i i;j 0 0 0

cThe payo® to ¯rm j is identical. There is no incentive to delete link g = 1 since ¼ (g )¡i;j i

c¼ (g ¡ g ) = °(n¡ 1) > 0.i i;j

c cWe now show that g is the unique stable network. Consider a stable network g6= g . Then,

there exists a pair of ¯rms i; j 2 N with g = 0. We show that both i and j are strictlyi;j

better o® by forming a link. In the network, g + g , the payo® to ¯rm i is given by:i;j

X
¼ (g + g ) = (®¡ ° ) + n°´ (g + g ; 1)¡ °´ (g + g ; 1)¡ ° ´ (g + g ; 1)) (11)i i;j 0 i i;j j i;j k i;j

k6=i;j

Note that ´ (g + g ; 1) = ´ (g; 1) + 1 for l = i; j and ´ (g + g ; 1) = ´ (g; 1) for k 6= i; j.l i;j l k i;j k

Therefore, ¼ (g + g ) ¡ ¼ (g) = °(n ¡ 1) > 0. An identical argument establishes that fori i;j i

¯rm j, ¼ (g+g )¡¼ (g) = °(n¡1) > 0. Thus, condition (ii) is violated and g is not stable,j i;j j

a contradiction.

4

The intuition behind this result is as follows. First note that if two ¯rms form a link then

the costs of all other ¯rms are una®ected, while the cost advantage to both ¯rms forming

a link is the same under (1). An inspection of the pro¯t expression in (8) reveals that the

positive e®ects on the pro¯ts of a ¯rm i from a link with another ¯rm j is given by n°, while
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the negative e®ects are given by °. Thus link formation is clearly pro¯t enhancing. This

argument shows that any network other than the complete network cannot be stable. To

see why the complete network is stable note that no further links can be added, while the

deletion of a link by a ¯rm i, with (say) ¯rm j only increases the costs of ¯rm i and j but

leaves the costs of all other ¯rms una®ected, lowering pro¯ts of ¯rm i by (n ¡ 1)°. Thus it

is not pro¯table to delete links either. This completes the argument.

It is interesting to compare our result with that of Bloch [3, Proposition 2] who, under

a similar speci¯cation of demand and marginal cost, derives a stable coalition structure

consisting of two asymmetrically-sized coalitions in which the number of ¯rms in the larger

coalition is the integer closest to 3(n + 1)=4. To explain this sharp di®erence in our results,
0consider some ¯rm i who belongs to a complete component, g , with k ¸ 2 ¯rms. In the

network framework, since collaboration links can be intransitive, ¯rm i can initiate a link
0with some ¯rm j =2 N(g ) if it is pro¯table to do so. Given (1) and (4), Proposition 3.2 shows

that i and j always establish a link because it yields a net gain of (n¡ 1)° > 0.

In the coalition framework of Bloch [3, 4], however, collaboration links are, by assumption,

transitive; therefore, i can form a link with j if and only if all other k ¯rms in the same

coalition as i agree to merge with the singleton coalition fjg. However, it may be no longer

pro¯table for ¯rm i to have a collaboration link with j in the coalition framework where,

under a merger of coalitions, all other k ¯rms will have a link with j as well. In this case,

each of the k6= i ¯rms in the coalition experiences a reduction in marginal cost of °. Further,

¯rm j experiences a reduction of (k+1)° in its marginal costs because of its k+1 additional

links after the merger. Therefore, the payo® to ¯rm i changes by (n ¡ 1)° ¡ 2k°. If i is

already a part of a large coalition (k > (n ¡ 1)=2), then it may not want to be part of a

merger with the singleton fjg.

3.2 Non-linear Marginal Costs

In this section we examine non-linear reductions in marginal cost. For price competition,

the empty network continues to be the unique stable network even if we allow for a general
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marginal cost function. Therefore, in the following analysis, we restrict attention to Cournot

competition. Here the analysis is more interesting, since the relative decrease in costs mat-

ters in the incentives to form links. Our analysis suggests that incomplete and intransitive

networks arise naturally in this setting.

Recall that under Cournot competition, when the inverse demand is given by (4), the Cournot

equilibrium output for a generally speci¯ed marginal cost vector, c(g) is given by:

P
® ¡ nc (g) + c (g)i kk6=iq (g) = ; i 2 N (12)i

(n+ 1)

2The Cournot pro¯ts of ¯rm i are q (g). Under a monotonic transform, we can write thei

payo® of i as ¼ (g) = (n + 1)q (g).i i

We consider the following simple case: a ¯rm gains from forming collaboration links only if

it has a small number of links, after a critical number of links have been reached, there are
5no further gains from forming additional links.

¤c (g) = ° ¡ °´ (g; 1) ; ´ (g; 1) · ki 0 i i

¤ ¤c (g) = ° ¡ °k ; ´ (g; 1) > k (13)i 0 i

¤Note that (1) is a special case of (13) for k ¸ n¡ 1. Therefore, in the following we assume
¤that k < n¡ 1. We can now characterize the structure of stable networks.

Proposition 3.3 Suppose there is quantity competition among the ¯rms and demand and

marginal costs are speci¯ed by (4) and (13) respectively. (a) In the class of connected net-

works, every stable network is incomplete. A connected network in which every ¯rm has
¤ ¤exactly k links is stable. (b) If n=2 · k < n ¡ 1, then a stable unconnected network can

consist of at most two components. The network with one complete component with exactly

5The costs functions we consider in this section are analogous to those considered by Bloch [3, Assumption
3]. Our results hold under somewhat more general speci¯cations. But using analogous speci¯cations helps
us in clarifying the implications of the network approach.
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¤ ¤ ¤k + 1 ¯rms and one complete component with n¡ (k + 1) ¯rms is stable. (c) If k < n=2,
¤then a stable unconnected network can consist of at most [n=(k + 1)] components, where [x]

denotes the smallest integer exceeding a real number x.

The proof is given in Appendix A. Figure 3 gives examples of stable networks under convex

costs. The ¯rst part of the result is particularly interesting, since it illustrates that intran-
¤sitive networks can be stable. In fact, in the set of connected networks, since k < n ¡ 1

by assumption, the ¯rst part of the above proposition implies that that all stable networks

must be intransitive. The intuition behind this result is simple: each ¯rm lowers costs for
¤every additional link if and only if it has fewer than k links. Deleting a link lowers prof-

its; this follows from arguments in Proposition 3.2, while forming additional links is at best
¤ 6worthless, since there is no cost reduction from links over and above k links.

Next, we consider the case where cost reduction requires a certain minimum number of links.

We specify the following functional form:

¤c (g) = ° ¡ ° ; ´ (g; 1) · ki 0 i

¤ ¤c (g) = ° ¡ °(´ (g; 1)¡ k + 1) ; ´ (g; 1) ¸ k (14)i 0 i i

¤Note that (1) follows as a special case of (14) when k = 0. So, in the following discussion, we
¤assume that k ¸ 1. The next result provides a complete characterization of stable networks

for concave costs.

¤Proposition 3.4 Let 1 · k < n ¡ 1. Suppose there is quantity competition among the

¯rms. If demand satis¯es (4) and marginal costs satisfy (14) respectively, then: (a) In the

set of connected networks, the only stable network is the complete network. (b) In the set

of unconnected networks, the empty network is stable. Further, all other stable unconnected
¤networks are of the following kind: there is one complete component with at least k +1 ¯rms

and all other ¯rms constitute singleton components.

6This result does not depend on the speci¯c functional form we have assumed. Similar results hold under
more general convex speci¯cations. The details of this derivation are available from the authors upon request.
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The proof is given in Appendix A. Figure 4 shows the set of stable networks in a market
¤ ¤with n = 5 and k = 3. Given that k < n¡ 1, the stability of the complete network follows

from arguments in Proposition 3.2. The stability of the empty network follows by noting

that forming only one link is not worthwhile. Consider non-empty but incomplete networks
¤next. First, note that since there are no bene¯ts to having fewer than k links, every ¯rm

¤in a non-singleton component must have at least k links. This implies one, that every non-
¤singleton component must have at least k + 1 ¯rms. Second, it implies from arguments in

Proposition 3.2 that every pair of ¯rms in a non-singleton component must be linked, i.e.

the component must be complete. These arguments constitute the proof of the proposition.

The second part of the proof shows how the delimited set of networks is stable.

3.3 E±cient Networks

In this section, we study e±cient networks under price and quantity competition. On the

demand side, we restrict attention to the linear speci¯cation given by (4). On the cost side,

however, the analysis is relatively general and accommodates the various speci¯cations of

marginal cost listed under (1), (13) and (14).

We now examine the nature of e±cient networks, under price competition. Let c be the

minimum cost attainable by a ¯rm in any network. Under (1), and (14), this is achieved
¤ 7when a ¯rm has (n¡ 1) links, while under (13) it is achieved if a ¯rm has at least k links.

The following result provides a complete characterization of e±cient networks.

Proposition 3.5 Suppose there is price competition among the ¯rms. If demand satis¯es

(4) and the marginal cost function satis¯es (2), then a network g is e±cient if and only if
8there are two or more ¯rms which attain the minimum cost, c.

7The arguments given below can be extended in a straightforward manner to the case of spillovers, which
are discussed later in section 5.1.

8This result also holds in the case of convex and concave decreasing costs considered in section 3.2 above.
For expositional simplicity, we do not mention these cases in the proof.
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Proof Fix some network g. Let ¯rm i be a minimum cost ¯rm in this network and let its

cost be given by c (g) > c. Let equilibrium price be given by p(g). Under price competition,i

2it follows that p(g) ¸ c (g). Hence the consumer surplus is given by 1=2[® ¡ p(g)] , whilei

the pro¯ts of ¯rms are bounded above by [p(g) ¡ c (g)][® ¡ p(g)]. Thus social welfare in ai

network g is bounded above by the expression:

2[® ¡ p(g)]
Ŵ (g) = + [p(g)¡ c (g)][®¡ p(g)] (15)i

2

It is easily seen that this expression is strictly declining with respect to p(g) so long as

p(g) > c (g). Thus for a network g, the potential social welfare is bounded above by thei

2expression, [®¡ c (g)] =2.i

It is easily checked that this maximum potential social welfare is decreasing in c (g) andi

is, therefore, maximized when the price in the market is equal to c. Thus social welfare is

maximized when the product is produced and sold at the minimum marginal cost, c.

Note that if there is only one ¯rm with this minimum cost, then under price competition it

will charge a price higher than c, and earn positive pro¯ts in equilibrium. If there are two

or more ¯rms with this minimum cost, then price competition will force the ¯rms to charge

this minimum cost. Thus two or more ¯rms are necessary as well as su±cient for the market

price to be equal to the minimum cost level. This completes the proof.

4

In the case of price competition, we observe a con°ict between stability and e±ciency in

networks. The stability result indicates that, irrespective of the speci¯cation of marginal

cost, no ¯rm has any incentive to form a link with another. E±ciency, on the other hand,

dictates a connected network under (1) and (14); under (13), e±ciency requires either a
0connected network, or an unconnected network in which at least one component g satis¯es

0 ¤jN(g )j ¸ k .

We now consider the nature of e±cient networks under quantity competition. Let c(0)

denote the marginal cost of a ¯rm with no links and c(n¡ 1) the marginal cost with (n¡ 1)
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links. To ensure that all ¯rms produce a strictly positive output in the Cournot equilibrium

corresponding to any network, we will maintain the restriction that ® > 3nc(0). Social

welfare is de¯ned as:

X1 2 2W (g) = Q (g) + q (g) (16)i2 i2N

We shall consider a general class of marginal cost functions that satisfy ( 2). This formulation

accommodates the linear speci¯cation of marginal cost given by (1). Further, as long as each
¤¯rm has at least k links, it also covers concave marginal costs speci¯ed by (14). For all

cthese cases, the following proposition shows that adding a link in any arbitrary g 6= g
c 9strictly increases social welfare implying thereby that g is uniquely e±cient.

Proposition 3.6 Suppose there is quantity competition. If demand and cost satisfy (4) and

(2) respectively, then the complete network is the unique e±cient network.

cProof Consider any network g 6= g with g = 0 for some i; j 2 N . Letting ¤ ´i;j
P fc (g)¡c (g+g )g, it follows that ¢q (g) ´ q (g+g )¡q (g) = fc (g)¡ c (g + g )g¡k k i;j l l i;j l l l i;jk2fi;jg
¤=(n+ 1), l 2 fi; jg. Further, for any ¯rm k =2 fi; jg, ¢q (g) = ¡¤=(n+ 1). Therefore, thek

change in aggregate pro¯ts is given by:

" #h iX X ¤2 2q (g + g )¡ q (g) = 2q (g) + fc (g)¡ c (g + g )g ¡ ¢q (g)i;j l l l i;j lh h (n + 1)h2N l2fi;jg
" #X ¤¡ 2q (g)¡ ¢q (g) (17)k k

(n+ 1)
k=2fi;jg

9 ¤The case of concave marginal costs needs to be quali¯ed because if all ¯rms have less than k links, then
adding another link may not strictly increase social welfare. But such networks cannot be e±cient because
social welfare will strictly increase with each additional link by virtue of Proposition 3.6 once all ¯rms have

¤ ¤ ¤at least k links. If (n¡ 1) ¯rms have k or more links and ¯rm i has less than k links, then any link of i
with some j 6= i will only reduce the marginal cost of i. This case can be covered similar to Corollary 3.1
which follows Proposition 3.6. We have bunched the concave case with speci¯cation (1) because, in contrast
to the convex case, it has the complete network as uniquely e±cient.
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The change in consumer surplus, ¢CS(g) ´ CS(g + g )¡ CS(g), is given by:i;j

" # " #
1 ¤ ¤

¢CS(g) = 2Q(g) + (18)
2 (n+ 1) (n+ 1)

Therefore, to show that W (g + g )¡W (g) > 0, it su±ces to show that:i;j

" #X X¤ ¤ ¤
Q(g) + 2 q (g) fc (g)¡ c (g + g )g ¡ ¡ 2 q (g) > 0l l l i;j k

(n+ 1) (n+ 1) (n + 1)
l2fi;jg k=2fi;jg

(19)

After some manipulation, we can simplify (19) to:

X X
q (g) [(2n+ 2)fc (g)¡ c (g + g )g ¡¤] > q (g)¤ (20)l l l i;j k

l2fi;jg k=2fi;jg

Theoretically, the lowest output produced by any ¯rm is when it is a singleton and all other

¯rms belong to a complete component. This is given by:

®¡ nc(0) + (n ¡ 1)c(n¡ 1)
q = (21)

(n+ 1)

Similarly, theoretically the largest possible output that can be produced by any ¯rm is when

its marginal cost is minimum at c(n¡ 1) and all other ¯rms are singletons with the highest

marginal cost of c(0). This is given by:

®¡ nc(n¡ 1) + (n ¡ 1)c(0)
q = (22)

(n+ 1)

Therefore, (20) holds for any arbitrary network if it holds when q (g) = q for l 2 fi; jg andl

q (g) = q for k =2 fi; jg. Substituting (21) and (22) into (20), it follows that aggregatek
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welfare strictly increases with the addition of the link g = 1 if (2n¡ ´ (g; 1)¡ ´ (g; 1))q >i;j i j

2(n¡´ (g; 1)¡´ (g; 1)¡2)q. For this, it su±ces to show that ®(n+2) > [3n ¡3n¡2(´ (g; 1)+i j i

´ (g; 1)) + (2 + ´ (g; 1) + ´ (g; 1))]c(0) which is true under our assumption that ® > 3nc(0).j i j

4

In the case where marginal cost is speci¯ed by (13), it is possible that an additional link only
¤reduces the marginal cost of one ¯rm (which has less than k links) and not the collaborator

¤(which has more than k links). The following corollary adds to Proposition 3.6 by demon-

strating that social welfare increases strictly when an additional link strictly decreases the

marginal cost of just one ¯rm while leaving all other (n¡ 1) marginal costs una®ected.

Corollary 3.1 Suppose demand is speci¯ed by (4) and marginal cost is speci¯ed by (13).
¤Under quantity competition, any network in which each ¯rm has at least k links is e±cient.

cProof Consider a network g 6= g in which g = 0 for some i; j 2 N . If the link g = 1i;j i;j

strictly decreases the marginal cost of both ¯rms, then Proposition 3.6 implies that W (g +

g ) > W (g). Now suppose that c (g + g ) < c (g) but c (g + g ) = c (g) 8k6= i. Lettingi;j i i;j i k i;j k

¤ ´ c (g)¡ c (g + g ), an argument identical to the one in Proposition 3.6 establishes thati i i;j
P

W (g + g ) > W (g) if (2n + 1)q (g) > q (g). Recalling (21) and (22), it follows thati;j i kk6=i
W (g + g ) > W (g) for any arbitrary network g if (2n+ 1)q > (n¡ 1)q. This is equivalenti;j

2to showing ®(n+ 2) + c(n¡ 1)[(2n+ 1)(n¡ 1) +n(n¡ 1)] > c(0)[(2n+ 1)n+ (n¡ 1) ] which

is true under our parametric restriction ® > 3nc(0).

4

Our results on quantity competition in networks do not indicate the sharp divergence between

stability and e±ciency that is exhibited under price competition in networks as well as in the

literature on formation of coalitions under price and quantity competition. When marginal

costs are linear, then the complete network is both uniquely stable and uniquely e±cient

in the class of all networks. With concave marginal costs, the complete network is stable

and uniquely e±cient; therefore, the set of e±cient networks is a proper subset of the set of
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stable networks. When marginal costs are convex, the set of stable networks and the set of
¤e±cient networks have in common all networks in which each ¯rm has exactly k links.

4 Network Formation under General Payo®s

Our analysis of the Bertrand and Cournot models of market competition under homogeneous

linear inverse demand suggests that the nature of market competition has a major in°uence

on the structure of networks that we should expect to see. We now analyze the robustness

of this ¯nding under more general conditions on the nature of demand, the cost function,

and types of market competition.

4.1 Collaboration under Aggressive Competition

In this subsection, we characterize the structure of stable networks under aggressive compe-

tition. The notion of aggressive competition should be seen as a generalization of Bertrand

competition for a homogeneous good. We shall say that competition among ¯rms is aggres-

sive if all but the lowest cost ¯rms make zero pro¯ts. There are two sub-cases: one, the

lowest cost ¯rm makes positive pro¯ts only if it is the unique such ¯rm, and two, all the

lowest cost ¯rms make positive pro¯ts. The former case is written as follows:

Assumption B Fix some g. If c (g) ¸ c (g), then ¼ (g) = 0, while if c (g) < c (g) for alli j i i j

j 2 Nnfig then ¼ (g) > 0.i

This speci¯cation generalizes the Bertrand competition of Section 3 to allow for general

demand functions and also general cost reduction functions. We can now state our ¯rst

general result on the architecture of stable networks in an oligopoly.

Theorem 4.1 Suppose the marginal cost function satis¯es (2) and the payo® function sat-

is¯es (B). Then no collaboration links are formed by ¯rms and the unique stable network is
ethe empty network, g .
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The proof of this result is essentially the same as the proof of Proposition 3.1 and therefore

omitted.

We now analyze the case where all lowest cost ¯rms make positive pro¯ts. This case may be

formally written as follows:

Assumption AC Fix some g. If c (g) > c (g), then ¼ (g) = 0, while if c (g) · c (g) for alli j i i j

j 2 Nnfig then ¼ (g) > 0.i

By way of motivation, consider a set of ¯rms that are competing to apply for a patent for

a cost reducing process technology. Suppose that each of the ¯rms has some useful com-

plementary knowledge. If they collaborate then this knowledge can be jointly used to lower

costs. Moreover, only the lowest cost technology is patented. Once the patent is available, it

is randomly allotted to one of the ¯rms who have the lowest cost technology. Price compe-

tition then ensures that only this ¯rm makes pro¯ts. The positive pro¯ts mentioned above

then should be seen as the (ex-ante) expected pro¯ts from collaboration.

In our analysis we shall use the following symmetry assumption with respect to the lowest

cost ¯rms.

Assumption SY1 Fix some g. Suppose that for a pair of ¯rms i and j, c (g) = c (g) =i j

min c (g). (i) If g = 0 then ¼ (g + g ) > ¼ (g) > 0 and ¼ (g + g ) > ¼ (g) > 0. (ii)k2N k i;j i i;j i j i;j j

If g = 1 then ¼ (g ¡ g ) < ¼ (g) and ¼ (g ¡ g ) < ¼ (g).i;j i i;j i j i;j j

In words, the ¯rst condition says that if in g two ¯rms have minimum costs and they are

not connected directly, then they get strictly greater payo®s if they form a direct link. It

is immediate that such a direct link will lower the costs of only these two ¯rms and thus

improve their competitive position relative to the rest of the ¯rms. It seems natural then

that their payo®s should also increase. Hence the two ¯rms that form a link will still remain

the minimum cost ¯rms and will also gain competitive advantage since their costs will go

down more as compared to the others ¯rms, who may be linked to them directly or indirectly.

The second condition says that in a network g, if two minimum cost ¯rms have a link then

this link is strictly advantageous, in the sense that deleting this link will strictly lower the
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payo®s of the ¯rms. The reasoning behind this condition is analogous to the ¯rst condition.

Symmetry in the presence of aggressive competition has strong implications for collaboration.

This is demonstrated in the following result.

Theorem 4.2 Let n ¸ 4. Suppose (AC) and (SY1) hold and marginal cost is speci¯ed by

(2). Then a network is stable if and only if it has the following structure: there is a complete

component with k 2 f3; 4; ¢ ¢ ¢ ; ng ¯rms and all the other n ¡ k ¯rms constitute singleton

components.

The number of stable networks is very small as compared to the number of total networks.

For example, when n is 3, 4, 5 or 6, the total number of networks is given by 8, 64, 1024 and

32768. By contrast, the number of stable networks is given by 3, 5, 16, and 42. Thus the

two simple requirements of stability lead to a strong restriction on the class of networks.

The argument in the proof of this theorem proceeds as follows: ¯rst we show that any non-

singleton component in a stable network must be complete. In proving this property, we

also establish that all ¯rms in a non-singleton component must have the same costs and that

these costs must be the minimum in the given network. Second, we show that there can

be at most one non-singleton component in a stable network. These two properties reduce

the set of candidates for stable networks dramatically. The last step then completes the
10characterization. The proof builds on two lemmas.

Lemma 4.1 Let g be a stable network. Then every non-singleton component in g is com-

plete.

0Proof Suppose that g is a stable network and g ½ g is a non-singleton component of g.
0We show that g must be complete. We know that no unique ¯rm can have the lowest cost

0in g ; this follows from an argument as in the ¯rst part of Proposition 3.1. Thus, there must

10The above result is stated for n ¸ 4. It is easily seen that in case of n = 3 an analogous result obtains:
a stable network is either complete or has two components, one component with two ¯rms and the other
component with a singleton ¯rm. We have stated the result for n ¸ 4 as it allows for a simpler statement.
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exist at least a pair of ¯rms i; j 2 N such that c (g) = c (g) = min c (g). Consider anyi j k2N k

0other ¯rm l 2 N(g ), l6= i; j. If such a ¯rm has c (g) > c (g), then under (AC), clearly thisl i

cannot be uniquely optimal for the ¯rm. For instance, ¯rm l can delete a link g = 1 andl;k

0retain zero pro¯ts. Hence, all ¯rms in g must have the same costs, and these costs must
0 0be minimum. Thus, c (g) = min c (g) 8j 2 N (g ). Finally, if i; j 2 N (g ) are notj kk2N(g)

connected, then under Assumption SY1(i), they can do strictly better by forming a direct
0link. Thus g must be complete.

4

We next characterize the number of non-singleton components.

Lemma 4.2 In a stable network g, there can be at most one non-singleton component.

0 00 0Proof Suppose there are two non-singleton components, g and g and let ¯rm i 2 N(g ) and
00that ¯rm j 2 N(g ). From the proof of Lemma 4.1 we know that ¯rms i and j are minimum

cost ¯rms. It now follows from Assumption SY1(i), that these ¯rms can do strictly better

by forming a link. This violates condition (ii) in the de¯nition of stability. Thus g is not

a stable, a contradiction. This shows that a stable network cannot have more than one

non-singleton component.

4

We have shown that in a market with four or more ¯rms there can be at most one non-

singleton component, and that it is complete. This means that the only candidates for

stable networks are networks of the following form: there is a complete component with

k ¸ 1 ¯rms and there are n¡ k singleton components. The proof of the theorem shows that

networks with k = 1 and k = 2 are not stable, while the networks with k ¸ 3 are stable.

Proof of Theorem 4.2 The candidates for stable networks can be parameterized in terms

of the size of the non-singleton component, k. Given the ex-ante symmetry of ¯rms, Assump-

tion SY1(i) immediately implies that a network with k = 1 cannot be stable. Next consider

k = 2. This is a network with one component with 2 ¯rms and (since n ¸ 4) at least 2
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singleton components. Given speci¯cation (2), it follows that if the two singleton ¯rms form

a link then they have will have the same costs as the two ¯rms already in the 2 ¯rm compo-

nent. Under Assumption (AC) this yields them positive payo®s, violating requirement (ii)

in the de¯nition of stability. Thus any network g with k = 2 is not stable. We are left with

networks where k ¸ 3. In such a network every ¯rm i in the non-singleton component is a

minimum cost ¯rm, with (say) marginal cost c (g). Under speci¯cation (2), it follows thati

c (g) < c (g), for all ¯rms j which are singleton components. Thus under assumption (AC),i j

¼ (g) > 0 and ¼ (g) = 0. Now suppose a ¯rm j forms a link with another ¯rm i. Then thei j

marginal cost of the former ¯rm will fall still further and under (2) will remain below the

marginal cost of ¯rm j. Thus ¯rm j has no incentive to form such a link. Since k ¸ 3, and

competition is speci¯ed by assumption (AC), it is also clear that two singleton component

¯rms j and k do not have an incentive to form a link either. Finally, using assumption

(SY1(ii)), it follows that ¯rms in the non-singleton component have no incentive to delete a

link. We have thus shown that both requirements (i) and (ii) are satis¯ed for any network

with the structure: a non-singleton complete component with k ¸ 3 ¯rms and n¡k singleton

¯rms. This completes the proof.

4

4.2 Collaboration under Moderate Competition

We now consider a market in which competition is such that all ¯rms, irrespective of their

costs, make positive pro¯ts. However, lower cost ¯rms make higher pro¯ts. Such a situation

is described as moderate competition. Formally, this situation is captured in the following

assumption:

Assumption MC Fix some g. ¼ (g) > 0 for all i 2 N ; ¼ (g) = ¼ (g) if c (g) = c (g), whilei i j i j

¼ (g) > ¼ (g) if c (g) < c (g).i j i j

The next assumption concerns the payo®s of similar cost ¯rms and is a stronger version of

Assumption SY1, stated in the previous section.
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Assumption SY2 Fix some g. Suppose that for a pair of ¯rms i and j, c (g) = c (g). (i) Ifi j

g = 0 then ¼ (g + g ) > ¼ (g) > 0 and ¼ (g + g ) > ¼ (g) > 0. (ii) If g = 1 theni;j i i;j i j i;j j i;j

¼ (g ¡ g ) < ¼ (g) and ¼ (g ¡ g ) < ¼ (g).i i;j i j i;j j

Essentially we require the conditions mentioned in the earlier assumption to hold for all

symmetrically located ¯rms and not just the minimum cost ¯rms. We note that this as-

sumption implicitly incorporates the idea of moderate competition: for example, part (i)

cannot be satis¯ed under aggressive competition, for a pair of high cost ¯rms. Symmetry in

the presence of moderate competition implies the following property of stable networks.

Proposition 4.1 Suppose that (SY2) and (2) hold. Consider a stable network, g. If

´ (g; 1) = ´ (g; 1), then g = 1.i j i;j

Proof Let g be stable. If ´ (g; 1) = ´ (g; 1) = n, then by de¯nition g = 1. Therefore,i j i;j

consider the case where ´ (g; 1) = ´ (g; 1) < n and g = 0. Under (2) the costs of i and j arei j i;j

identical if ´ (g; 1) = ´ (g; 1). Under assumption (SY2)(i), it follows that ¼ (g+ g ) > ¼ (g)i j i i;j i

and ¼ (g + g ) > ¼ (g). This violates requirement (ii) of stability and contradicts thej i;j j

hypothesis that g is stable.

4

Remark: We note here that (SY1) is not su±cient for the conclusion of Proposition 4.1. In

our earlier result on completeness of components, Lemma 4.1, we used assumption (AC) in

addition to (SY1).

Proposition 4.1 has several interesting implications for the nature of stable networks. The

¯rst implication is that a stable network cannot have two or more singleton components.

This implies in particular that the empty network cannot be stable. The second implication

is that the star/hub-spokes network is not stable. This is because in all these networks, there

are at least two ¯rms i and j who have the same number of direct links but g = 0. Byi;j

Proposition 4.1, such ¯rms have an incentive to form a direct link. A third implication of

this result is that if a stable network contains two or more complete components then they

must be of unequal size.
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In general many networks can be stable. We now examine some properties of stable networks.

The ¯rst question pertains to the set of symmetric stable networks. The result above implies

that if all ¯rms have the same cost, then every pair of ¯rms must be directly linked; thus,

the only candidate for stability is the complete network.

Corollary 4.1 Suppose that (SY2) and (2) hold. Then the unique symmetric stable network
cis the complete network, g .

The above results leave open the issue of existence of stable networks. The next result shows

that the set of stable networks is non-empty. It also provides conditions under which there

is a unique stable network.

Theorem 4.3 Suppose that hypotheses (MC) and (SY2) hold. Then the complete network,
cg , is stable. If in addition, for every network g and any link g = 0 it is true that ¼ (g +i;j i

cg ) > ¼ (g) and ¼ (g + g ) > ¼ (g) then the complete network, g , is the unique stablei;j i j i;j j

network.

Proof We provide a proof of the ¯rst statement. The second statement is immediate and
c ca proof is omitted. In g , ´ (g ; 1) = n¡ 1; 8i 2 N . Therefore, all ¯rms have the same costi

and this is the minimum cost. There are no links to add so requirement (ii) of stability is

automatically satis¯ed. We check requirement (i) next. Suppose we set g = 0 for somei;j

cpair i and j. In the ensuing network, g ¡ g , assumption (SY2)(ii) implies that both ¯rmsi;j

ci and j loose strictly. This implies that requirement (i) is also satis¯ed. Thus g is stable.

4

The additional monotonicity condition in Theorem 4.3 may seem strong. However, it is

satis¯ed by Cournot oligopoly under fairly general demand conditions. Suppose that the

inverse demand, p(Q), satis¯es the following general speci¯cation: p(Q) is a twice continu-
0 00ously di®erentiable function with p (Q) < 0 and p (Q) · 0. We show that if inverse demand

satis¯es this condition, then the additional monotonicity condition on pro¯ts of the ¯rms is
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also satis¯ed. The details are in Appendix B. It is easily veri¯ed that this condition is also

satis¯ed by the standard model of a di®erentiated oligopoly with linear demand and linearly
11reducing costs (as in(1)).

Finally, we note that the monotonicity condition in Theorem 4.3 is also satis¯ed in the

case where each of the ¯rms is a monopoly in its own market. This is true since the only

`costs' of forming links in our model arise out of the greater competitiveness of a ¯rm whose

costs are lowered. However, if the other ¯rms are in unrelated markets then there is no

`cost' to forming additional links while there are bene¯ts in terms of of lowering marginal

costs of production. It is then immediate that in such a case every pair of ¯rms has an

incentive to form links and thus the unique stable network is the complete network. This

¯nding supports the general argument in the paper: collaboration among ¯rms is easier when

market competition is mild.

We brie°y comment on the number of components under general costs conditions. We know

from Proposition 4.1 that complete components in stable network are of unequal size. This

allows us to derive an upper bound on the number of complete components in a market with

a ¯xed number of ¯rms. The idea here is that minimum number of ¯rms needed to support

k unequal components is given by k(k + 1)=2. This implies that for a ¯xed number of ¯rms,

n, the maximum number of complete components possible in a stable network is given by

the largest number k that satis¯ed the inequality k(k+ 1)=2 · n. This implies, for instance,

that in a market with 10 ¯rms there are at most 4 complete components.

5 Discussion

In this section we brie°y discuss the role of some assumptions in our analysis.

11The calculations are available from the authors upon request.
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5.1 Spillovers

In the analysis so far, we have restricted attention to the case where there are no spillovers

across the collaborative links of ¯rms. We found that the nature of stable collaborative

arrangements di®er considerably from the ¯ndings in the literature on coalition formation.

An important assumption in our analysis has been the absence of spillovers and in this

section we examine if this is crucial for our results. The analysis is brief and our results

are quite incomplete. However, they serve to illustrate two points: one, that the complete

network is stable so long as spillovers are positive but imperfect and two, that incomplete

networks can also be stable in the presence of spillovers.

In principle, it is possible that the collaborative links of a collaborator will also have some

in°uence on the bene¯ts that a ¯rm can expect from the joint R&D activity. These indirect

e®ects can be negative (when resources can be diverted into competing collaborations) or

positive (if there are cross-collaboration knowledge spillovers). We follow the literature (for

instance, d'Aspremont and Jacquemin [7], Kamien, Muller and Zang [13], Suzumura [21] and

Leahy and Neary [16]) in considering the case of positive spillovers in our analysis.

Let ± 2 [0; 1] be a parameter measuring the extent of spillovers. The case of ± = 0 corresponds

to zero spillovers. The extent of spillovers is increasing in ± and is perfect when ± = 1. The

e®ects of indirect collaborations are inversely related to the distance between two ¯rms, in

a network. An example of a simple cost function which re°ects this is:

h i
n¡2c (g) = ° ¡ ° ´ (g; 1) + ±´ (g; 2) + ::: + ± ´ (g; n¡ 1) ; i 2 N (23)i 0 i i i

If there is no path between two ¯rms in a given network, then the distance between them is

1, and there are thus no spillovers. In our speci¯cation, spillovers only occur if two ¯rms i

and j are either directly or indirectly connected.

It is relatively straightforward to extend the arguments for Bertrand competition and more

generally, aggressive competition, to cover the case of positive spillovers. The same results

on stable and e±cient networks obtain. In what follows, we will therefore focus on the case of
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quantity competition. In this setting, the e®ects of spillovers are substantive. The complete

network remains stable under positive spillovers; however, even in the basic linear demand

model with linear cost reduction, other networks can be stable. Broadly speaking, this

suggests that spillovers have a negative e®ect on the incentives for collaborative relationships.

We start by stating a fairly general result on the stability of the complete network under

moderate competition and in the presence of positive spillovers.

Proposition 5.1 Suppose (SY2) holds and marginal cost is speci¯ed by (23). Then the
ccomplete network, g , is stable.

The proof of this proposition follows along the lines of Theorem 4.3, and is omitted.

We have been unable to obtain a complete characterization of stable networks in the presence

of spillovers. To get some intuition into the e®ects of spillovers, we consider an example.

This example illustrates that positive spillovers can lead to less collaboration under moderate

competition. Recall from Proposition 3.2 that the complete network is the unique stable

network when demand is linear and marginal cost is speci¯ed by (1). We now show that

with positive spillovers speci¯ed quite generally by (23), in addition to the complete network,

some incomplete networks can also be stable.

Example: The impact of spillovers Let n = 10. Suppose the demand is linear as in

Section 3, and let the cost reduction function satisfy (23). Moreover, ¯rms compete in

quantities. We show that a network g with two complete components, one with 8 ¯rms and

another with 2 ¯rms is stable. Let the ¯rms in the ¯rst component be numbered from 1 to

8 while ¯rms 9 and 10 belong to the second component. Figure 5 below gives an example of

such a network.

We begin by showing that no ¯rm in this network has an incentive to delete links. The

condition of all ¯rms in component 1 is symmetric. The payo® to ¯rm 1 in network g is
P 2given by [(®¡ 10c (g) + c (g))=11] . The payo® to ¯rm 1, from the network g¡ g is1 j 1;2j6=1 P 2given by [(®¡ 10c (g¡ g ) + c (g¡ g ))=11] . Using the fact that these components1 1;2 j 1;2j6=1

in g are complete, it follows that ¯rm 1 looses payo® by deleting the link g . Identical1;2
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arguments apply in the case of ¯rms 9 and 10. Thus requirement (i) is satis¯ed by g. We

now check the incentives of ¯rms to form additional links.

Suppose without loss of generality that ¯rms 1 and 9 form link. The payo® to ¯rm 1 is given
P 2by [(®¡10c (g+g )+ c (g+c ))=11] . Consider, for the sake of argument, the case of1 1;9 j 1;9j6=1

perfect spillovers, i.e., where ± = 1. In this case, the payo® to ¯rm 1 in the network g+g is1;2

2 2given by [(®¡ (° ¡9°))=11] . The payo® of ¯rm 1 under g is given by [(®¡(° ¡19°))=11] .0 0

It is then immediate that ¯rm 1 looses payo® by forming the link g . Since payo®s are1;2

continuous with respect to the spillover parameter, ±, the strict inequality also obtains for ±

close to 1. Given the symmetry of ¯rms location in component 1, no ¯rm in this component

has an incentive to form a link with a ¯rm in component 2. Thus requirement (ii) is also

satis¯ed and the network g is stable.

4

5.2 Fixed Costs of Link Formation

In our analysis, we have assumed that link formation does not involve any direct costs. Our

de¯nition of stability implicitly allows for small costs of forming links, but signi¯cant costs

are ruled out. In this section, we discuss the nature of stable networks when every ¯rm has

to incur a ¯xed cost, denoted by F , for every link it forms with another ¯rm. This ¯xed cost

can be interpreted as the contribution to joint research or as the individual ¯rm's share of

the cost of a common facility created by the collaboration between the ¯rms.

We study the nature of stable networks in the linear demand model with no spillovers

presented in Section 3.1. Apart from an additional cost for every link formed by ¯rm,

the payo®s of a ¯rm are as speci¯ed before.

Recall that under price competition, even in the absence of ¯xed costs of link formation,

the unique stable network was the empty network. The introduction of ¯xed costs of link

formation can only make the prospects of link formation less sanguine. It is easily checked
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that the empty network is the unique stable network under price competition. In what

follows we therefore focus on the case of quantity competition.

The ¯rst step in the analysis is to note the following interesting property of stable networks:

Lemma 5.1 Consider the linear demand model with quantity competition. Suppose that

(1) and (4) hold. Let i and j be two distinct ¯rms. Then any stable network satis¯es the

following property: if there exists a ¯rm k such that g = 1 and a ¯rm l such that g = 1,i;k j;l

then it must also be true that g = 1.i;j

Proof The proof is by contradiction. Suppose that g = 0. Since g is stable it follows thati;j

¼ (g)¡ ¼ (g¡ g ) > F . Using the expressions for pro¯ts stated in section 3, we can rewritei i i;k

this condition as follows:
" #P 2
®¡ ° + n´ (g; 1)° ¡ ´ (g; 1)°0 i mm6=i (24)

n+ 1
" #P 2
®¡ ° + n[´ (g; 1)¡ 1]° ¡ ´ (g; 1)° ¡ [´ (g; 1)¡ 1]°0 i m km6=i;k¡ > F:

n+ 1

It is convenient to de¯ne:

X
T (g) = ®¡ ° + n(´ (g; 1)°)¡ ´ (g; 1)°): (25)0 i m

m6=i

Then we can rewrite the above inequality as follows:
" # " #2 2
T (g) T (g)¡ (n ¡ 1)°¡ > F: (26)
n + 1 n+ 1

Next we observe that the additional (gross) payo® to ¯rm i from forming a link with ¯rm j

is given by ¼ (g + g )¡ ¼ (g). This can be written as follows:i i;j i

" #P 2
®¡ ° + n[´ (g; 1) + 1]° ¡ ´ (g; 1)° ¡ [´ (g; 1) + 1]°0 i m jm6=i;j (27)

n+ 1
" #P 2
® ¡ ° + n´ (g; 1)° ¡ ´ (g; 1)° ¡ ´ (g; 1)°0 i m jm6=i;j¡ > F:

n+ 1
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Using the above de¯nition of T (g) this can be rewritten as follows:

" # " #2 2
T (g) + (n ¡ 1)° T (g)¡ : (28)

n+ 1 n+ 1

From the above calculations, it is immediate that

¼ (g + g )¡ ¼ (g) > ¼ (g)¡ ¼ (g ¡ g ): (29)i i;j i i i i;k

Since the right hand side term is larger than F , it follows that ¯rm i has an incentive to form

a link with ¯rm j. The only property we have used is that ¯rm i has a link with some other

¯rm. In this respect the situation of ¯rm j is similar. Hence, using identical arguments, we

can show that ¯rm j has an incentive to form a link with ¯rm i. This shows that g is not

stable, a contradiction which completes the proof.

4

The lemma says that, in a stable network, if a pair of ¯rms have any links at all then they

must also be linked with each other. The proof exploits the convexity of the pro¯t function

with respect to the level of costs. The lemma has some interesting implications: one, it

implies that every component in a stable network must be complete; two, it implies that

in a stable network, there will be at most one non-singleton component. Thus this lemma

sharply restricts the set of possible networks that can be stable. The following proposition

summarizes these observations and also shows that stable networks always exist. De¯ne
¤ 2 2F = [(® ¡ ° + (n ¡ 1)°)=(n+ 1)] ¡ [(® ¡ ° )=(n+ 1)]0 0

Proposition 5.2 Consider the linear demand model with quantity competition. Suppose that

demand satis¯es (4) and the marginal cost function satis¯es (1). Then there is at most one

non-singleton component in a stable network and this component is complete. The complete
¤network is stable if and only if F < F , while the empty network is stable if and only if

¤F > F .
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Proof The payo® to a ¯rm i from the complete network is given by,

" #2
® ¡ ° + (n¡ 1)°0 ¡ (n¡ 1)F: (30)

n + 1

The payo® to a ¯rm i if it were to delete one of its (n ¡ 1) links is given by,

" #2
®¡ ° + n(n¡ 2)° ¡ (n¡ 2)(n ¡ 1)° ¡ (n¡ 2)°0 ¡ (n¡ 2)F: (31)

n + 1

Thus the change in payo® to ¯rm i by deleting a link with another ¯rm j, given that all the

other ¯rms are directly linked is given by,

" #2 · ¸2®¡ ° + (n¡ 1)° ®¡ °0 0 ¤¡ + + F = F ¡ F : (32)
n+ 1 n + 1

¤This expression is negative if and only if F < F . Similarly, we can check the conditions for

the empty network to be stable.

4

5.3 Asymmetries and Stable Networks

In the analysis we have assumed that all ¯rms are ex-ante symmetric with respect to initial

costs. Moreover, they also have the same costs reduction function. In this section we brie°y

discuss the role of this symmetry assumption with the help of a simple example. The main

point of this example is to illustrate that intransitive networks { such as stars { can arise when

¯rms are ex-ante asymmetric. The general model of asymmetric ¯rms is quite complicated

and its analysis lies outside the scope of the present paper.

Example: Asymmetries and intransitive networks Suppose there are three ¯rms, 1,2

and 3 with initial costs given by c (0) = °, c (0) = 2°, and c (0) = 2°, respectively. Let1 2 3

the inverse demand be given by P = ® ¡ Q. Assume that direct collaborative links lower
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costs of the linking ¯rms by °, unless these costs are already zero. In the latter case, there

are no further cost reductions possible via the formation of additional links. Suppose that

there are no knowledge spillovers. Assume that ¯rms compete by setting quantities. Finally

let ® > 6°. This last requirement ensures that all ¯rms make positive pro¯ts in equilibrium,

given any network g.

eIn this setting, there are four possible network architectures: the empty network g , the
snetwork with one pair of ¯rms linked and one ¯rm isolated, the star network, g , and the

c scomplete network, g . We claim that the star network g , with ¯rm 2 or ¯rm 3 at the center

of the star, are the only two stable networks. Figure 6 depicts these networks.

To see the incentives of the ¯rms suppose that 2 is the center of the star. In this star network

¯rms 2 and 1 have both moved down to a cost level of 0, while ¯rm 3 still has a a positive

cost level. It follows that ¯rm 3 will in principle be interested in forming a link with ¯rm 1.

But ¯rm 1 will not gain anything in terms of costs since its costs are already zero, while a

link with ¯rm 3 will lower the costs of ¯rm 3, making it more competitive, thereby lowering

the pro¯ts of ¯rm 1. It is easily checked that this star is stable. Similar calculations prove

that the star with 3 at the center is also stable. Direct comparisons of payo®s show that

(apart from the star with 3 at the center) there is no other stable network.

4

This example also shows that intransitive networks arise quite naturally with asymmetric

¯rms. This provides a motivation for a further study of network games, since this approach

allows for intransitive relationships, unlike the earlier approach based on coalitions.

5.4 Notion of Stability

We have employed a notion of stability which requires that in a network each link formed

must generate strictly greater payo®s for the concerned ¯rms and secondly that there are no

unformed links with this property. In an earlier paper, Jackson and Wolinsky [11], proposed
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a related notion of stability. Their de¯nition of stability { which we shall term JW-stability

{ had two requirements. A network g is JW-stable if for all i; j 2 N ,

(i) ¼ (g) ¸ ¼ (g ¡ g ) and ¼ (g) ¸ ¼ (g ¡ g )i i i;j j j i;j

(ii) if ¼ (g + g ) > ¼ (g), then ¼ (g + g ) < ¼ (g)i i;j i j i;j j

The ¯rst requirement says that every link in g must yield non-negative bene¯ts. The second

requirement says that every link not in g must have the property that if one ¯rms prefer to

have it then the other ¯rm must strictly loose from it. What are the JW-stable networks in

oligopoly and what is their relationship to the stable networks we have identi¯ed? We will

not provide a characterization of JW-stable networks here. Instead we will brie°y compare

the requirements on stability and then say a few words about what this implies about the

set of stable networks.

The ¯rst requirement in the two de¯nitions pertains to the incentives for having the existing

links. In our de¯nition, we require that all such links yield strictly greater payo®s to the

¯rms that form such links, while in their de¯nition, Jackson and Wolinsky require only that

existing links yield non-negative additional payo®s. This suggests that our ¯rst requirement

is stronger. This has important e®ects on the results. For instance, take the Bertrand

example of Section 3. In this setting, we showed that the unique stable network was the

empty network. On the other hand, it can be veri¯ed that under price competition, the

complete network is JW-stable!

The second requirement pertains to potential links which are not formed in a given network.

We require that such unformed links not be strictly pro¯table for the ¯rms individually. By

contrast, Jackson and Wolinsky require that if such a link is strictly pro¯table to one ¯rm

then it should not be unpro¯table for the other ¯rm. In this case, our requirement is milder

than their requirement. This di®erence again has important e®ects. Take for example the

case of aggressive competition covered by Theorem 4.2. We showed that for markets with 4

or more ¯rms a stable network has the following structure: there is a non-singleton complete

component of k 2 f3; 4; :::; ng ¯rms and n¡ k singleton components. It can be seen that the
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disconnected networks of this type, i.e., where k · n ¡ 1, are not stable under requirement

(ii) of Jackson and Wolinsky. This is because a ¯rm in the non-singleton component will

typically have an incentive to lower its costs further while a singleton ¯rm will be indi®erent

between forming or not forming a link. Thus a network of the type we have identi¯ed above

will violate requirement (ii) of Jackson and Wolinsky. The complete network satis¯es both

their requirements.

6 Conclusion

In this paper, we have examined the endogenous formation of networks in an oligopoly

with either price or quantity competition. We have characterized the set of stable networks

and compared them with e±cient networks. Our results suggest that except under extreme

competition, a la Bertrand, ¯rms have an incentive to collaborate with their competitors

to lower costs of production. Stable networks of collaboration possess simple architectures,

which can be characterized under a variety of circumstances. In particular, the complete

network, where every ¯rm has a collaboration link with every other ¯rm, and the network

with a dominant group, which contains a large number of completely connected ¯rms and

several isolated ¯rms, appear to be stable under di®erent competitive environments. Finally,

we observe that stable networks are often e±cient, from a social point of view. Our ¯ndings

are very di®erent from those derived by other authors who have used a coalition formation

approach to study these questions.

We have assumed that the e®ort level in collaboration arrangements is ¯xed and exoge-

nously speci¯ed. Collaboration agreements create possibilities for free-riding and the case of

endogenous e®ort levels merits closer attention. A second avenue for further research is the

dynamics of network formation. We have examined a static model. There are several incen-

tive issues that seem to be related to the timing of collaboration. This requires a dynamic

model of network formation, which we hope to study in future work.
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7 Appendix A

¤Proof of Proposition 3.3 a. The ¯rst claim follows from the hypothesis that k < n¡1. A
¤network in which all ¯rms have k links is stable because, if g = 0, then ¼ (g+g ) = ¼ (g)i;j l i;j l

for l = i; j implying no incentive to form an additional link. If g = 1, then ¼ (g¡g ) < ¼ (g)i;j l i;j l

implying no incentive to sever a link.

0 00b. Suppose that a stable network, g, has three or more components. If g and g are the
0 00two smallest components, then jN(g )j = l · k = jN(g )j < n=2. In this case, it is easily

0 00veri¯ed that for any i 2 N (g )j and j 2 N(g )j, ¼ (g + g ) > ¼ (g) and ¼ (g + g ) > ¼ (g)i i;j i j i;j j

contradicting the stability of g. The proof of the latter part of this statement is immediate.

c. The proof is similar to that in part 2 and is, therefore, omitted.

4

Proof of Proposition 3.4 a. We ¯rst show that any non-singleton component of stable

network must be complete. Fix a stable network and consider a non-singleton component
0g . By virtue of connectedness, there exist i; j 2 N such that g = 0 and 1 · ´ (g; 1) ·i;j i

¤´ (g; 1) < (n¡1). If k · ´ (g; 1) · ´ (g; 1), then ¼ (g+g ) > ¼ (g) for l = i; j contradictingj i j l i;j l

¤the stability of g. Now suppose that ´ (g; 1) < k · ´ (g; 1). Consider some ¯rm k 2 N(g),i k

¤k6= i, such that g = 1. Then, ¼ (g ¡ g ) = (>)¼ (g) if ´ (g; 1) · (>)k contradicting thei;k i i;k i k

¤stability of g. This argument also covers the case where ´ (g; 1) · ´ (g; 1) < k , establishingi j

the result.

Now observe that if a stable network is connected then it has only one component, and the
cabove argument implies that it must be complete. Next we show that g is stable. There

c care no links to add, and it is easily veri¯ed that ¼ (g ¡ g ) < ¼ (g ) for any l = i; j.l i;j l

e ¤b. Note that g is stable because there are no links to sever, and given that k ¸ 1, adding a

link between any pair of ¯rms leaves pro¯ts una®ected. Note that no ¯rm in the component
0has any incentive to delete a link because this will reduce pro¯ts. Further, if i 2 N(g ), and

j is a singleton, then ¼ (g + g ) > ¼ (g) but ¼ (g + g ) < ¼ (g).i i;j i j i;j j
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eTo show that such networks are the only stable unconnected networks (except for g ), note

¯rst of all that if a component is a non-singleton, then from the proof of part 1, it must have
¤at least k + 1 ¯rms and must be complete. Second, there cannot be two (or more) such

0 00 0 00non-singleton components g ; g ½ g for otherwise i 2 N (g ) and j 2 N(g ) will pro¯t from

forming a link. This proves the result.

4

8 Appendix B

0Assumption D p(Q) is a twice continuously di®erentiable function with p (Q) < 0 and
00p (Q) · 0.

Proposition Suppose there is quantity competition. Let p(Q) satisfy Assumption D and
cmarginal cost be speci¯ed by (1). In any network g6= g , if g = 0, then ¼ (g + g ) > ¼ (g)i;j i i;j i

and ¼ (g + g ) > ¼ (g).j i;j j

cProof Consider any arbitrary network g6= g . Given g, each ¯rm k 2 N chooses its output,

q to maximize p(Q)q ¡ (° ¡ °´ (g; 1))q while taking the output pro¯le of the other ¯rmsk k 0 k k

as ¯xed. The ¯rst order conditions are:

0p(Q(g)) + p (Q(g))q (g)¡ ° + °´ (g; 1) = 0 ; k 2 N (33)k 0 k

We start by showing that a ¯rm with a larger number of direct links in g has a larger Cournot

output. Let ´ (g; 1) > ´ (g; 1). Then:i j

°(´ (g; 1)¡ ´ (g; 1)i j
q (g)¡ q (g) = ¡ > 0 (34)i j 0p (Q(g))

cNow note that in any g6= g , there exist i; j such that g = 0 and some m6= i; j such thati;j

q (g) · q (g) · q (g). In the network g + g , the ¯rst order condition for any k 2 N is:i j m i;j

0p(Q(g + g )) + p (Q(g + g ))q (g + g )¡ ° + °´ (g + g ; 1) = 0 (35)i;j i;j k i;j 0 k i;j
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Note that ´ (g+ g ; 1) = ´ (g; 1) + 1 for l = i; j. Let ¢q (g) ´ q (g+ g )¡ q (g). Therefore,l i;j l l l i;j l

subtracting (33) from (35) yields for l = i; j:

0 0 0p(Q(g+g ))¡p(Q(g))+p (Q(g+g ))¢q (g)+[p (Q(g + g ))¡ p (Q(g))] q (g)+° = 0 (36)i;j i;j l i;j l

On the other hand, ´ (g + g ; 1) = ´ (g; 1) for k6= i; j. Therefore:k i;j k

0 0 0p(Q(g+g ))¡p(Q(g))+p (Q(g+g ))¢q (g)+[p (Q(g + g ))¡ p (Q(g))] q (g) = 0 (37)i;j i;j k i;j k

Let ¢Q(g) ´ Q(g + g )¡Q(g). From the intermediate value theorem:i;j

0 ^p(Q(g + g )¡ p(Q(g)) = p (Q(g))¢Q(g) ;i;j

0 0 00 ~p (Q(g + g )¡ p (Q(g)) = p (Q(g))¢Q(g) (38)i;j

0 00 0^ ~ ^ ~for some Q(g) and Q(g). Let » ´ [p (Q(g)) + p (Q(g))q (g)]=p (Q(g + g )), k 2 N . Notek k i;j

from (D) that » > 0. Using (38), we can now rewrite (36) and (37) as:k

°
¢q (g) = ¡» ¢Q(g)¡ ; l = i; j (39)l l 0p (Q(g + g ))i;j

¢q (g) = ¡» ¢Q(g) ; k6= i; j (40)k k

PnSumming up (39) and (40) and letting » = » , we get:kk=1

2°
¢Q(g) = ¡ > 0 (41)0(1 + »)p (Q(g + g ))i;j

Therefore, if ¯rms i and j establish a collaboration link, then aggregate output is greater

in the new Cournot equilibrium. Substituting (41) in (40) shows that ¢q (g) < 0, i.e.k

¯rms k 6= i; j produce a lower output in the new Cournot equilibrium. This implies that

¢q (g) + ¢q (g) > 0. We now show that ¢q (g) > 0 and ¢q (g) > 0. Consider ¯rm i andi j i j

substitute (41) in (39) to get:

2°» °i
¢q (g) = ¡ (42)i 0 0(1 + »)p (Q(g + g )) p (Q(g + g ))i;j i;j
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P
Therefore, ¢q (g) > 0 if and only if » < 1+ » . But this is true since in g there is somei i kk6=i
m6= i; j such that q (g) · q (g) and, therefore, » · » . Similarly for j.i m i m

We now turn to the change in pro¯ts for ¯rms i and j. Recalling (38), note that:

¼ (g + g )¡ ¼ (g) = p(Q(g + g ))q (g + g )¡ p(Q(g))q (g)i i;j i i;j i i;j i

¡ f° ¡ °´ (g; 1)g¢q (g) + °q (g + g )0 i i i i;j

= [p(Q(g))¡ f° ¡ °´ (g; 1)g] ¢q (g)0 i i

0 ^+ p (Q(g))¢Q(g)q (g + g ) + °q (g + g ) (43)i i;j i i;j

0Note from (33) that p(Q(g)) ¡ f° ¡ °´ (g; 1)g = ¡p (Q(g))q (g) > 0, and we have already0 i i

shown that ¢q (g) > 0. Therefore, substituting for (41) in (43), to show that ¼ (g + g )¡i i i;j

¼ (g) > 0, it su±ces to show that:i

" #¡2°0 ^p (Q(g)) q (g + g ) + °q (g + g ) > 0 (44)i i;j i i;j0(1 + »)p (Q(g + g ))i;j

Some simple manipulation shows that (44) is equivalent to:

X0 0 00^ ~p (Q(g + g )) + (n¡ 2)p (Q(g)) + p (Q(g))q (g) < 0 (45)i;j k

k2N

However, (45) is true by virtue of (D). Similarly, ¼ (g + g ) > ¼ (g).j i;j j

4
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