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1. Introduction

In a sequential decision problem at any stage a decision maker, based

on the history, takes a decision and receives a payoff which depends on the

decision as well as on the realized state of nature. A strategy, f , determines
which (possibly mixed) action to take after any history. After using f for a

while, the decision maker may examine the track record of f . For instance,
the decision maker may compare the performance of f with the performance

of any stationary strategy. Hannan Theorem (1957) states that there is a
strategy which does as good as any stationary strategy, independently of the

history of states.
Another way to examine the performance of a strategy is to check whether

on some subsets of stages the average payoff is as high as it could have been

had a fixed action been played instead. Fudenberg and Levine (1999) showed
that for any finite division of the set of stages which is known in advance,
there is a strategy that outperforms any strategy that dictates playing a fixed

action in each one of the subsets.

Suppose that a and b are two actions. An (a, b)−replacing scheme is a
scheme that dictates playing action b whenever f dictates playing a. Note
that a replacing scheme depends, at any given stage, on the action dictated
by f and not only on past information, and is therefore not referred to as a
strategy but as a scheme. Hart and Mas-Colell (1996) showed that there is a
strategy which is simultaneously as good as all (a, b)−replacing schemes. In
other words, there exists a strategy f with the property that, independently
of the sequence of realized states, a decision maker has no regret for not
playing action b instead of action a whenever the latter is the one determined
by f .

A decision maker may want to play a strategy that is as good as all the

strategies or schemes mentioned above and even as others. In this paper we
consider a wide range of alternatives. An alternative is characterized by a
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replacing scheme and a function, called an activeness function, that indicates

the active periods of the strategy. A strategy is as good as an alternative if,
over the periods declared by the activeness function as active, the average

payoff actually received is as high as the average payoff that could have been
received had the replacing scheme been played. In this case the decision
maker has no regret against the alternative.

The notion of the activeness function enables us to model a decision
maker who wants to examine the performance of the strategy used in subsets
of periods. For instance, in case the decision maker would like to have a
good track record over a set of specially important days, like weekend days,
the activeness function would indicate only the weekend days as active. The
result of Fudenberg and Levine (1999) can be therefore rephrased as follows.

Consider a finite partition of the set of periods and for each subset consider
the corresponding activeness function (the one that indicates only those times

in the subset as active). Such an activeness function and a fixed action
constitute an alternative. Fudenberg and Levine (1999) showed that there
exists a strategy which is, in the long run, as good as any alternative of this
kind independently of the history of states.

The model involved replacing schemes and activeness functions unifies the

existing regret free results under a general theorem which is the main result
of this paper. The latter states that for any distribution over alternatives
there is a strategy which is as good as any member of a set of alternatives

having probability 1. That is, there is a strategy which is regret free against
a wide range of alternatives. This wide range no-regret theorem implies, in
particular, that against any countable set of alternatives there is a strategy
which is regret free, regardless of the sequence of states.

Hannan theorem can be also expressed in terms of finite automata. Sta-

tionary strategies are the strategies that can be generated by automata with

one state. Thus, Hannan theorem states that there is a strategy which is, in
the long run, as good as any strategy generated by an automaton with one
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state. The wide range no-regret theorem implies, in particular, that there is

a regret free strategy against any strategy in the countable set of the alter-
natives that can be generated by deterministic finite automata. This result
may be extended verbatim to all the stochastic automata with rational num-

bers transition probabilities and mixed actions. Since the set of all stochastic
automata (not only those restricted to rational numbers) is not countable,
we can only have an “almost surely” statement.

The proof of existence uses the approachability theorem of Lehrer (1997)
which extends Blackwell’s theorem (1956) to infinite dimensional spaces.

The paper is organized as follows. The model is introduced in Section 2.
Examples are given in Section 3. Existing no-regret theorems are presented
in Section 4. The wide range no-regret theorem is introduced in Section 5. A
short review of the extended approachability theorem, adapted to the current

context, is given in Section 6. Section 7 contains the proof of existence. The

paper is concluded with some final remarks in Section 8.

2. The Model

Let Ω be a finite state space. At any period nature chooses a state from

Ω and the decision maker takes an action from a finite set A. At period, say,
n, after nature chose a state, say, ωn, and the decision maker took the action,

say, an, the decision maker receives the payoff u(ωn, an).
A history of length n (n = 1, 2, ...), is a list of n states and n actions,

hn = (ω1, ..., ωn, a1, ..., an). Let H be the set of all finite histories and of the
null history, h0. A strategy, f , is a function from the set of all histories to
the set of distributions over A, denoted ∆(A). That is, f : H → ∆(A). Note

that for any infinite sequence of states, ω = (ω1, ω2, ...), the strategy f and ω
induce a probability distribution over the set of infinite sequences of actions,

AIN : At the first stage f determines a distribution according to which the
first action, say, a1, is to be chosen. Then at the second stage, based on the
realized state, ω1, and on a1, f determines a distribution according to which
the second action, a2, is to be chosen, etc. Sometimes, when no ambiguity
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arises, we use (ω, f) to denote the distribution induced by (ω, f).

Definition. A replacing scheme is a function, g from H× A to A.

In words, a replacing scheme replaces an action (in A) with another ac-
tion. This replacement may depend on the history. Note that we use the
term scheme rather than strategy. This is so because a replacing scheme may
depend not only on the history but also on an additional action. In case the
strategy f is compared to the replacing scheme, the additional action is the

one determined by f .

Definition. An activeness function is a function I from H× A to {0, 1}.
For an activeness function I, we denote by I(hn−1, an), where hn−1 ∈ H

is a history of length n − 1 and an ∈ A, the number of times I was active
up to period n along hn−1. That is, I(hn−1, an) =

∑n
t=1 I(ht−1, at), where

hn−1 = (ω1, ..., ωn−1, a1, ..., an−1).
We say that a strategy f is as good as the pair (g, I) at the sequence

(ω = (ω1, ω2, ...), if (ω, f)− almost surely I(hn−1, an) →n ∞ implies

(1) lim inf
n

∑n
t=1 I(ht−1, at)

[

u(ωt, at)− u(ωt, g(ht−1, at))
]

I(hn−1, an)
≥ 0,

where ht−1 = (ω1, ..., ωt−1, a1, ..., at−1), t = 1, ..., n. The meaning of (1) is the
following. Suppose that according to strategy f the action taken at period t
is at. The payoff then is u(ωt, at). The decision maker compares it with the
payoff resulted from the replacing scheme g, u(ωt, g(ht−1, at)). The difference
between the two payoffs is therefore u(ωt, at)−u(ωt, g(ht−1, at)). Whether or
not the decision maker wants to compare f with g at period t, is determined
by the activeness function I. The comparison with g takes place only in

the periods where I attains the value 1. The average, up to time n, of the
difference in payoffs over the periods where the comparison takes place is
therefore,

∑n
t=1 I(ht−1, at)

[

u(ωt, at)− u(ωt, g(ht−1, at))
]

I(hn−1, an)
.
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For a fixed sequence of states, if on almost any sequence of actions where

the activeness function is active infinitely many times, the limit inferior of
these averages is at least zero, we say that f is as good as (g, I). This means

that the performance of f is on average (over the active times) not worse
than that of g.

In the sequel we refer to a pair (g, I) also as an alternative to f .

3. Examples

It is convenient to give a short hand to some frequently used replacing
schemes and activeness functions. For any action a, a∗ denotes the stationary
strategy that dictates playing a all the time, regardless of history. Let a, b be
a pair of actions. There are many schemes that replace a with b. The symbol

ga,b stands for the scheme that replaces a with b and keeps all other actions
unchanged. That is, ga,b(ht−1, a) = b and ga,b(ht−1, c) = c for any c ∈ A,

c 6= a and history ht−1. By Ia we denote the activeness function which is 1
only if the action in the argument is a. That is, Ia(ht−1, b) = 1 only if b = a.

Let 1 be the activeness function which is always 1. A strategy f is as
good as (a∗,1), at the sequence ω1, ω2, ..., if in the long run the average

payoff obtained by employing f is at least the payoff that could be achieved

by playing constantly the action a. In other words, the decision maker does
not regret playing f instead of playing constantly the action a. The average
payoff obtained by the strategy a∗ at time, say, t, equals the payoff obtained
by playing the action a against the empirical distribution of states at time t.

Thus, strategy f is as good as (a∗,1) at a sequence of states, if over almost

any sequence of actions, there is a time from which on f outperforms the

action a against the empirical distribution of states. Strategy f is, therefore,
as good as (a∗,1) for every a ∈ A, if f is not worse than playing always a
best response to the long-run empirical distribution of states.

The use of the activeness functions is better exemplified in what follows.

Suppose that a decision maker would like to examine the performance of
the strategy he employs separately on the even number periods and on the
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odd number periods. Let E and O be two activeness functions, such that

E(t) = 1 only if t is an even number and O = 1−E. In particular, E and O
are complementary: E is active when O is not. A strategy f is as good as

(a∗, E), if in the long run, the average payoff over the even number periods is

greater than what the action a could ensure against the empirical distribution

of the states over these periods. Strategy f may be as good as many pairs
of replacing schemes and activeness functions. For instance, strategy f is
as good as both (a∗, E) and (a∗, O), if, at the long run, first, the average
payoff over the even number periods is greater than what the action a could

ensure against the empirical distribution of the states over these periods and,
second, the average payoff over the odd number periods is greater than what

the action a could ensure against the empirical distribution of the states over

the odd number periods.
Strategy f is simultaneously as good as (ga,b, Ia) and as (a∗, O), if first,

over the times where a was played, a is not worse than b; and, second, over
the odd number periods f is as good as the action a.

Remark 1. Note that the fact that f is as good as (ga,b, Ia) implies that
f is as good as (ga,b,1). The reason is that the denominator of (1) that

corresponds to (ga,b, Ia) (the number of times that a was played up to period
n) is not greater than n, the denominator of (1) that corresponds to (ga,b,1).

A decision maker may also want to examine his strategy in a Markovian

fashion. For instance he may want to ensure that the strategy he employs

is as good as another strategy over stages that follow a specific action or a
specific state. In order to illustrate it, fix ω ∈ Ω and a ∈ A and define the

activeness function Mω,a as 1 only if the last state and action were ω and a,

respectively. Strategy f is as good as, say, (b∗,Mω,a), if f is as good as the
action b over the periods that follow the occurrence of ω, a.

4. Existing Related Results

4.1 Hannan Theorem
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Hannan Theorem (1957) refers only to stationary strategies. It states that

there is a strategy that is as good as any stationary strategy at any sequence
of realizations. That is, without knowing anything about the selection of

states by nature, there is a way to ensure, based on past information only,
that the average payoffs is as high as the average payoff obtained by playing
a constant strategy.

Formally,

Theorem (Hannan, 1957). There is a strategy f which is as good as (a∗,1)
for any a ∈ A at any sequence ω1, ω2, ... .

4.2 Hart and Mas-Colell No-Regret Theorem

Hart and Mas-Colell deals with replacing schemes of the kind ga,b. Simi-

larly to Hannan theorem it ensures the existence of a strategy which is regret

free when only the strategies of the kind ga,b are considered.

Theorem (Hart and Mas-Colell, 1996). There is a strategy f which is as

good as (ga,b,1) at any sequence ω1, ω2, ... and for any a, b ∈ A.

4.3 Fudenberg and Levine No-Regret Theorem

Suppose that B1, ..., Bk is a partition of the set of periods. That is, the

sets B1, ..., Bk are disjoint and cover the set of all integers. Denote by a∗|Bj

the scheme that replaces any action on Bj with the action a and leaves any
action out of Bj unchanged.

Fudenberg and Levine (1999) showed that Hannan theorem can be gen-
eralized to subsets of periods. In other words, there is a strategy which is
better than any fixed strategy over each one of the subsets.

Theorem (Fudenberg and Levine, 1999). For any partition of the set of

stages B1, ..., Bk there is a strategy f which is as good as (a∗|Bj,1) at any
sequence ω1, ω2, ... for any a ∈ A and 1 ≤ j ≤ k.
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5. A Wide Range No-Regret Theorem

This section presents the main result of this paper. Each one of the results

that have been quoted above restricts itself to a specific finite set of replacing

schemes. Here we consider the set of all replacing schemes.
Denote by R the set of all pairs (g, I), where g is a replacing scheme and

I is an activeness function. The set R is measurable2. Let µ be a probability

measure over R. The measure µ can be interpreted as the distribution over
all possible replacements that the decision maker compares the strategy he

employs to. It can also be interpreted as the subjective weight of importance
the decision maker attributes to any possible alternative.

The measure µ can assign a positive probability to only countably many
pairs. As an example one may think of all the schemes, denoted as ct

a,b,
that are constantly a up to stage t and are constantly b thereafter. The

set consisting of all pairs (ct
a,b,1) is a countable set. Another example of a

countable set is that of all the alternatives (recall, these consist of a scheme
and an activeness function) that can be generated by finite automata.

The result of this paper is that for any µ there is a strategy f which is
regret free against µ-almost any alternative considered. That is, f is as good
as µ-almost any pair (g, I). In other words, f is immunized against regret

when a wide range of alternatives is considered. Formally,

Theorem Given a distribution µ over R, there is a strategy f , such that

for any sequence ω1, ω2, ... , f is as good as µ-almost any pair (g, I) ∈ R at
ω1, ω2, ... .

Remark 2. In case µ has a countable support, the theorem states that
there is a strategy which is regret free against any alternative in the sup-

port. In particular it means that there is a strategy which is as good as any
alternative (g, I) that can be produced by a finite automaton.

2Both, g and I , are functions defined on H × A and are therefore similar to pure strategies.
Thus, R is similar to the set of a repeated game pure strategies, and is therefore, measurable.
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Remark 3. Note that due to Remark 1, the theorem implies a stronger
result than that of Hart and Mas-Colell (see Section 4.2): There is a strategy
f which is as good as (ga,b, Ia) at any sequence ω1, ω2, ... and for any a, b ∈ A.

Remark 4. The theorem implies, in particular, that if I1, I2, ... is a se-
quence of activeness functions, not necessarily complementary, then there

exists a strategy f which is as good as any (a∗, Ij), j = 1, 2, ... , a ∈ A. In
other words, for any j, the average payoff obtained by playing f is, over the

periods where Ij is equal to 1, at least what any constant action can ensure
at the same set of periods.

This result extends that of Fudenberg and Levine (1999) (see Section 4.3)
in two ways. First, the fact that f is as good as (a∗, Ij) implies that f is
as good as (a∗|Bj,1), where Bj is the set of periods where Ij is equal to 1.
Second, this result allows for more than finitely many activeness functions,

and furthermore, these functions should not necessarily induce a partition
(i.e.,

∑

Ij can be greater or smaller than 1.)

Remark 5. In this discussion we restrict ourselves to pure replacing
schemes. A behavioral replacing scheme can be defined like a replacing strat-

egy with the only change that the range of the behavioral replacing scheme
is the set of mixed actions (instead of the set of pure actions). In a similar
way one can define a behavioral activeness function. A pair of a behavioral
replacing scheme and a behavioral activeness function is called a behavioral
alternative. Since the game played is with perfect recall, any behavioral
alternative is equivalent to a distribution over pairs of replacing schemes
and activeness functions. Thus, a distribution over behavioral alternatives
is equivalent to a distribution over pure pairs. Therefore, the restriction to

pure alternatives does not create any loss in the generality of the theorem. In
other words, the theorem can be rephrased as follows. For any distribution
over behavioral alternatives there is a strategy which is regret free against

almost all pure alternatives at any sequence of states. The “almost all” here
means with probability 1 according to both, the distribution over behavioral
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alternatives and the distribution over pure alternatives induced by the be-

havioral alternatives. This statement implies that for any distribution over
behavioral alternatives there is a strategy which is regret free against almost

all behavioral alternatives at any sequence of states.

6. Approachability in Large Spaces

It is well known that the various no-regret theorems mentioned in Section

4 can be proven by an approachability theorem. Our result is not exceptional.
We prove it by an approachability theorem in infinite dimensional space. For
this purpose we resort to Lehrer (1997) which extends the approachability

theorem of Blackwell (1956). This section is devoted to a short review of this
result.

We think of the decision maker and of nature as two competing players.
Instead of having only one objective as usual (usually to maximize the ex-

pected payoff), here the decision maker has a multiple objective. He wants
to ensure that he has no regret against many alternatives.

Considering one alternative, the decision maker regrets not playing this
alternative, if the average payoff he actually received is smaller than the

average payoff that could have been received had he played the alternative.
In other words, he has no regret if the actual average payoff is at least the

average payoff ensured by the alternative. Thus, for a given alternative his
goal is to ensure that the average realized payoff minus the “could have been”

payoff is at least zero. This goal extends to many alternatives. That is, in
case many alternatives are considered, the goal is to ensure that for each
alternative the average of the actual payoff minus the “could have been”

payoff is at least zero.
The formal presentation of the game is as follows. Let µ be a probability

measure over R. At any stage the decision maker chooses (possibly in a
random fashion) an action in A. Nature chooses a state in Ω. After t − 1
stages the history of actions is a1, a2, ..., at−1 and the history of states is
ω1, ω2, ..., ωt−1. At this time the decision maker decides to play an action, at,
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and nature decides to choose a state, ωt. The payoff is a function over R,

denoted X(at,ωt). That is, for any (g, I) ∈ R there is a value attached. In
this context, we refer to (g, I) as a coordinate. The value of X(at,ωt) at the
coordinate (g, I), X(at,ωt)(g, I), is

(2) I(ht−1, at)
[

u(ωt, at)− u(ωt, g(ht−1, at))
]

,

where ht−1 = (ω1, ..., ωt−1, a1, ..., at−1). The goal of the decision maker is to

ensure that the (long run) average payoff in almost every coordinate is at
least zero.

Note that the payoff in (2) depends on the history. Stated differently, in
the games played between the decision maker and nature, the payoffs (recall,
these are functions over R) depend on the history ht−1.3 As stated above,

whether the coordinate (g, I) is active or not depends on whether I(ht−1, at)
is 0 or 1.

Up to period n, the coordinate (g, I) was active I(hn−1, an) times. Thus,

the average payoff up to period n, over the active periods, at the (g, I)
coordinate is precisely the quotient of (1). That is, considering the alternative

(g, I), the decision maker has no regret against (g, I), if the average payoff
at the (g, I) coordinate is, asymptotically, at least 0.

Denote by Xn(g, I) the average payoff in the coordinate (g, I) up to time

n along the history hn = (ω1, ..., ωn, a1, ..., an). That is,

Xn(g, I) =
∑n

t=1 X(at,ωt)(g, I))
I(hn−1, an)

.

Using this notation, strategy f is as good as (g, I) at the sequence ω =

(ω1, ω2, ...), if lim inf Xn(g, I) ≥ 0 at (ω, f)-almost any sequence a1, a2, ... ,

provided that I → ∞. In order to link it with approachability, a few more
notations are needed.

Let C be the set of all non negative functions over R. That is, C = {ψ :
R → IR; ψ(g, I) ≥ 0 for µ− almost all (g, I)}. Fix two infinite sequences,

3It is actually a stochastic game with deterministic transition probabilities (i.e., 0 or 1).
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a1, a2, ... of actions and ω1, ω2, ... of states. Denote by 1l{I→∞} the indicator of
the set of alternatives, (g, I), satisfying I →∞. That is, 1l{I→∞}(g, I) takes
the value 1 if I → ∞ and the value 0 otherwise. Note that the indicator
1l{I→∞} depends on the two sequences a1, a2, ... and ω1, ω2, ... .

Let X
−
n (g, I) = min{Xn(g, I), 0}. We say that 1l{I→∞}Xn → C, if the

difference between C and 1l{I→∞}Xn goes to zero µ-almost surely. That is,
if 1l{I→∞}X

−
n (g, I) → 0 µ-almost surely. Strategy f is as good as µ-almost

every (g, I), at the sequence ω = (ω1, ω2, ...), if 1l{I→∞}Xn → C (ω, f)-
almost surely (i.e., for (ω, f)-almost all sequences of actions). Alternatively,
if 1l{I→∞}Xn approaches the set C, then the decision maker has no regret

playing f , against almost all alternative strategies.
Lehrer (1997) provides a condition that guarantees that the decision

maker has a strategy that ensures that for any strategy of nature 1l{I→∞}Xn

approaches the set C. The adaptation to the current context of Theorem 3
in Lehrer (1997) is as follows.

Proposition 1 1. For any ω ∈ Ω, if at any period n and after any history
of length n − 1, hn−1 = (ω1, ..., ωn−1, a1, ..., an−1), there is a mixed action p
of the decision maker (a distribution over A) such that,

(3)
∫

R
X
−
n (g, I)

∑

a∈A

(

I(hn−1,a)
I(hn−1,a)

p(a)
[

u(ω, a)− u(ω, g(hn−1, a))
]

)

dµ ≤ 0,

then there is a strategy f , such that (ω, f)-almost surely 1l{I→∞}Xn → C.

In the statement of the proposition there are two probabilities involved.
The first is the probability over R, µ. The second is the probability over
sequences of actions induced by (ω, f). The theorem claims that, if (3) holds,

then there exists a strategy f such that with (ω, f)-probability 1, 1l{I→∞}Xn

converges to C with µ-probability 1. Note that the theorem ensures that

Xn(g, I) → 0 (ω, f)-almost surely only subject to the condition that I is

active infinitely many times. There is no way to ensure the convergence of
the quotient of (1) to 0 in case the denominator does not converge to infinity.
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The goal of the decision maker is to bring the function Xn as close as
possible to the target set (of functions), C. At period n the gap between Xn

and the set C, referred to later as the error, is the difference between Xn and
the closest point in C to Xn. This is precisely X

−
n .

In case the decision maker chose the action a and nature chose the state ω,
the payoff at time n corresponding to coordinate (g, I), is I(hn−1, a)

[

u(ω, a)−
u(ω, g(hn−1, a))

]

. The contribution of this single stage payoff to the average
Xn(g, I) is greater as the coordinate is less active. That is, the contribution
of a single stage payoff to the average Xn(g, I) decreases with I(hn−1, a).

Furthermore, the contribution of a single stage payoff to the average at the
coordinate (g, I) depends whether I(hn−1, a) is 1 or not. Taking these facts
into account, we consider a weighted next-time payoff, I(hn−1,a)

I(hn−1,a)

[

u(ω, a) −
u(ω, g(hn−1, a))

]

, which depends on I(hn−1, a) and on I(hn−1, a). Note that

the weighted next-time payoff decreases with I(hn−1, a). Furthermore, it

is equal to 0 when I(hn−1, a) = 0. The expected next-time weighted payoff,
when the mixed action p is played, is therefore,

∑

a∈A

(

I(hn−1,a)
I(hn−1,a)

p(a)
[

u(ω, a)−

u(ω, g(hn−1, a))
]

)

.

Inequality (3) says that the integral of the product of the error and the
expected weighted next-time payoff is less than or equal to zero. In terms of

the geometry of the space of functions over R this means that the expected

next-time weighted payoff and the average payoff, Xn, are located in two

different sides of a hyper space that separates between Xn and C.4 In this
sense the next-time payoff “corrects” the past error. Proposition 1 states that
if at any period n, there is a mixed action that ensures that the expected
payoff “corrects” the error accumulated up to period n−1, then the error can

be diminished to zero. That is, there is a strategy f , such that 1l{I→∞}Xn

approaches C (ω, f)-almost surely.

4In fact this is not just a hyper space that separates Xn from C. This is the one that passes
through the closest point in C to Xn, Xn − X

−
n , and is perpendicular to X

−
n , the difference

between Xn and C .
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Remark 6. In fact Lehrer (1997) not only provides the condition, it
also provides, like in Blackwell (1956), the strategy f that ensures that
1l{I→∞}Xn(g, I) approaches C (ω, f)-almost surely. The strategy defined
there dictates at any stage to choose an action according to the mixed action
p that satisfies (3).

7. The Proof of the Wide-Range No-Regret Theorem

What remains to be done is to show that the condition of Proposition 1
is satisfied. Let hn−1 be a history of length n − 1. Denote for any a, b ∈ A
Ra,b = {(g, I); g(hn−1, a) = b}. For any a {Ra,b}b∈A is a partition of R into
finitely many disjoint sets. Thus, for any a

∫

R
X
−
n (g, I) I(hn−1,a)

I(hn−1,a)

[

u(ω, a)− u(ω, g(hn−1, a))
]

dµ =

∑

b∈A

∫

Ra,b

X
−
n (g, I) I(hn−1,a)

I(hn−1,a)
[u(ω, a)− u(ω, b)]dµ.

Thus, for any mixed action, say, q, (compare with (3))
∫

R
X
−
n (g, I)

∑

a∈A

(

I(hn−1,a)
I(hn−1,a)

q(a)
[

u(ω, a)− u(ω, g(hn−1, a))
]

)

dµ =

∑

a∈A

(

∫

R
X
−
n (g, I) I(hn−1,a)

I(hn−1,a)
q(a)

[

u(ω, a)− u(ω, g(hn−1, a))
]

dµ
)

=

∑

a∈A

∫

R
X
−
n (g, I) I(hn−1,a)

I(hn−1,a)
q(a)u(ω, a)dµ−

∑

a∈A

∑

b∈A

∫

Ra,b

X
−
n (g, I) I(hn−1,a)

I(hn−1,a)
q(a)u(ω, b)dµ =

∑

a∈A

∫

R
X
−
n (g, I) I(hn−1,a)

I(hn−1,a)
q(a)u(ω, a)dµ−

∑

b∈A

∑

a∈A

∫

Rb,a

X
−
n (g, I) I(hn−1,b)

I(hn−1,b)
q(b)u(ω, a)dµ =

14



∑

a∈A

u(ω, a)
(

∫

R
X
−
n (g, I) I(hn−1,a)

I(hn−1,a)
q(a)dµ−

∑

b∈A

∫

Rb,a

X
−
n (g, I) I(hn−1,b)

I(hn−1,b)
q(b)dµ

)

=

∑

a∈A

u(ω, a)
(

q(a)
∫

R
X
−
n (g, I) I(hn−1,a)

I(hn−1,a)
dµ−

∑

b∈A

q(b)
∫

Rb,a

X
−
n (g, I) I(hn−1,b)

I(hn−1,b)
dµ

)

.

The condition of Proposition 1 is that there exists p such that

∑

a∈A

u(ω, a)
(

p(a)
∫

R
X
−
n (g, I) I(hn−1,a)

I(hn−1,a)
dµ−

∑

b∈A

p(b)
∫

Rb,a

X
−
n (g, I) I(hn−1,b)

I(hn−1,b)
dµ

)

≤ 0.

This inequality will be guaranteed if we show that there exists p such that
for any a the term in the parenthesis is equal to zero. That is,

(4) p(a)
∫

R
X
−
n (g, I) I(hn−1,a)

I(hn−1,a)
dµ−

∑

b∈A

p(b)
∫

Rb,a

X
−
n (g, I) I(hn−1,b)

I(hn−1,b)
dµ = 0.

Consider the matrix {Wb,a}b,a∈A, where Wb,a = −
∫

Rb,a
X
−
n (g, I) I(hn−1,b)

I(hn−1,b)
dµ

for b 6= a and Wb,b =
∫

R−Rb,b
X
−
n (g, I) I(hn−1,b)

I(hn−1,b)
dµ. Note that

∑

a Wb,a. Thought
of as a zero-sum game, where the row player (the player who chooses the ac-

tion b) is the minimizer, the matrix W has a value zero. To see this, note

that the column player (here the maximizer) can ensure getting at least 0
by playing the uniform distribution over A. Furthermore, against any distri-

bution over the a’s (of the column player), say, s, the row player can choose
a row, say, b, whose s probability is maximal. Thus, if s(b) is maximal, the

expected payoff that corresponds to b and s is,
∑

a 6=b s(a)Wb,a + s(b)Wb,b =
∑

a6=b

(

(s(b)−s(a))
∫

Rb,a
X
−
n (g, I) I(hn−1,b)

I(hn−1,b)
dµ

)

≤ 0 because X
−
n (g, I) I(hn−1,b)

I(hn−1,b)
≤

0. Since the row player can ensure at most zero against any mixed action s of

the column player, we obtain, by the minmax theorem, that the row player
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has an action p that ensures the value. That is, there exists p such that for

any column the payoff is at most zero.
In order to conclude the argument we need to show that with p the payoff

is precisely zero for any column. However, this is obvious since there exists

an optimal action of the column player which assigns a positive probability

to any column: the uniformly distributed mixed action. That is, the mixed
action p satisfies (4), and therefore satisfies the condition of Proposition 1.

Proposition 1 ensures the existence of a strategy f that guarantees that
the average payoff, 1l{I→∞}Xn → C (ω, f)-almost surely, regardless of na-
ture’s choices. We conclude that there is a strategy f which is regret free
against µ-almost all alternatives (g, I) at any sequence of realizations ω1, ω2, ...
.

8. Final Remarks

8.1 An Alternative Proof5

The main result of this paper can be proven in an alternative way. San-
droni, Smorodinsky and Vohra (2000) proved that there exists a forecasting
rule that calibrates with a large set of checking rules. For any replacing
scheme one can find a few corresponding checking rules that have the fol-
lowing property. A best response to the forecasting rule that calibrates with
the corresponding checking rules is a regret free strategy against the replac-

ing scheme under consideration. When a large set of replacing schemes is
considered one can find, using Sandroni, Smorodinsky and Vohra (2000), a

forecasting rule that calibrates with almost all the corresponding checking

rules. Like in Hart and Mac-Colell (1996), a best response to this forecasting
rule is regret free against almost all the replacing schemes under considera-
tion.

5The contents of this section has been suggested independently by Rann Smorodinsky and by
an anonymous referee.
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From a computational point of view the proof provided here is signifi-

cantly simpler than the alternative proof. The reason is that here the ap-
proachability theorem requires solving, at any stage, a fixed size, |A| × |A|,
zero-sum game (recall the matrix {Wb,a}b,a∈A). In contrast, in the proof of
Sandroni, Smorodinsky and Vohra (2000) the size of the zero-sum game that
the forecaster needs to solve at any stage (in order to apply the approachabil-

ity theorem) increases with time. Furthermore, in the alternative proof the

construction of the regret free strategy must pass through a forecasting rule
which is conceptually rather complicated. The forecasting rule provided by
Sandroni, Smorodinsky and Vohra (2000) is, at any stage, a random choice

from some distributions over the set Ω.

8.2 No-regret and Correlated Equilibrium

In a game with a few players, each one may consider the other players as

nature. In this case, other players’ chosen actions are, in terms of the previous
sections, the realized state of nature. Denote by Ai player i’s set of actions.
As stated in Hart and Mas-Colell (1996), if each player i plays a strategy
which is as good as (ga,b, Ia) for any a, b ∈ Ai, then the empirical frequency
of the joint actions played converges to the set of correlated equilibria. It may
well happen that the empirical frequency over the even times is meaningless.
That is, it may happen that the empirical frequency of the joint actions over
the entire set of times converges to the set of correlated equilibria, while

the statistics over the even number times does not converge to anything

meaningful.
The wide range no-regret theorem ensures that each player has a strategy

f which is regret free against each one of the alternatives (ga,b, Ia), a, b ∈ Ai,
and simultaneously against (recall the activeness function E mentioned in
Section 2) (ga,b, EIa), a, b ∈ Ai. That is, over the even number periods

where f dictates playing a, f performs at least as well as the action b. The
same argument as in Hart and Mas-Colell (1996) implies that if each player
employs such a strategy, the empirical frequencies over the entire history
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and that restricted to the even number periods, both converge to the set of

correlated equilibria. There is no guarantee that the two frequencies are in
any sense similar to each other.

One can employ many other activeness functions that are active on pre-

specified subsets of periods. In case all players do the same and if a subset
of periods is infinite, the empirical frequency of the joint actions (over this
subset) converges to the set of correlated equilibria.

8.3 Guessing Games

At the end of Section 7 above I defined a matrix W and showed that
the row player has an action that guarantees that the expected payoff at
any column is exactly zero. The matrix −W belongs to a family of games

called Guessing games (see Lehrer (1998)). A guessing game is a zero sum
game in which both players have the same set of actions, A. The payoffs
on the diagonal of the game matrix are non-negative while the other payoffs

are non-positive. Finally, the sum of all payoffs in any row is zero. The
interpretation of such a game is as follows. The column player chooses an
action a and the row player guesses which action was it. In case the row player
guesses correctly, he receives a reward (a payoff in the diagonal) otherwise he
is penalized by receiving a non-positive payoff (off the diagonal). In guessing
games, for any guess b, of the row player, the sum of all penalties is equal
to the reward. Lehrer (1998) uses the fact that any positive combination of

guessing games is a guessing game to show that a player who participates
in many sequential guessing games at the same time, can ensure that, on
average, the payoff in each one of them is asymptotically non-negative.

One can find references (explicit or insinuated) to guessing games in Hart
and Schmeidler (1989) Nau and McCradle (1990) and in Foster and Vohra
(1999).

8.4 No-Regret Theorem with Imperfect Monitoring

Rustichini (1999) generalized Hannan theorem to the case of imperfect
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monitoring. At any stage the decision maker receives a signal which stochas-

tically depends on the state and the action chosen. Since the information
about the previous choices of nature is partial, there are many possible dis-

tributions over Ω that are informationally consistent with the empirical fre-
quency of the signals received (see also Lehrer (1989)). Rustichini showed
that there is a strategy whose long-run average payoff is as high as the payoff
obtainable by playing a best response to the worst mixed choice of nature

which is informationally consistent with the empirical frequency of signals.
In other words, there exists a strategy which is regret free against the worst
(in the sense of minmax) mixed choice of nature which is indistinguishable

(using the signals received through the information structure) from the actual

frequency of states.
I conjecture that Rustichini’s result can be generalized to a wide range of

alternatives. In other words, it is conjectured that in the case of imperfect
monitoring there exists a strategy which is regret free (in a sense adapted to

the information structure) against many alternatives.
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