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Abstract

The analysis explores Bayes-rational sequential decision making in
a game with pure information externalities, where each decision maker
observes only her predecessor’s binary action. Under perfect informa-
tion the martingale property of the stochastic learning process is used
to establish convergence of beliefs and actions. Under imperfect infor-
mation, in contrast, beliefs and actions cycle forever. However, despite
the instability, over time the private information is ignored and decision
makers become increasingly likely to imitate their predecessors. Con-
sequently, we observe longer and longer periods of uniform behavior,
punctuated by increasingly rare switches. These results suggest that
imperfect information premise provides a better theoretical description
of fads and fashions. (JEL D82, D83).
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1 Introduction

In the last decade a number of studies have explored the process of observa-
tional learning. Banerjee (1992) and Bikhchandani, Hirshleifer and Welch
(1992) introduced the basic concepts and stimulated further research in this
area. The literature analyzes an economy where a sequence of Bayesian
decision-makers (dms) make a once-in-a-lifetime decision under incomplete
and asymmetric information. The typical conclusion is that, despite asym-
metry of information, eventually dms will imitate their predecessor’s behav-
ior even if it conflicts with their private information.

A central assumption of the previous models is that all dms are assumed
to be able to observe all the decisions that have previously been made, i.e.,
they have perfect information about the entire history of actions that have
been taken before them. The dm thus compares her information with that
of a large (in the limit, unboundedly large) number of other dms. In reality,
dms have imperfect information. For greater realism, our model relaxes
the perfect-information assumption, dealing instead with the case in which
each dm observes only her immediate predecessor’s decision. Our goal is to
understand behavior under such an imperfect information structure.

The model which we analyze builds on Gale (1996). Each dm is faced
with a once-in-a-lifetime binary choice, say, an investment decision. While
non-investment is a safe action yielding a zero payoff, the payoff from invest-
ment is a random variable with expected value zero. Each dm receives an
informative private signal and observes only her immediate predecessor. We
describe the dms’ optimal strategies recursively; they in turn, characterize
the dynamics of learning and actions.

Smith and Sørensen (2000) make a clear distinction between learning
dynamics and action dynamics. They emphasize the difference between in-
formational cascades and herd behavior, two notions introduced by Banerjee
(1992) and Bikhchandani, Hirshleifer and Welch (1992) to address the same
phenomenon. Informational cascades occur when, after some finite time, all
dms ignore their private information when choosing an action, while herd
behavior occurs when, after some finite time, all dms choose the same action,
not necessarily ignoring their private information.

Hence, an informational cascade implies herd behavior but herding is not
necessarily the result of an informational cascade. When acting in a herd,
dms choose the same action, but they could have acted differently from one
another if the realization of their private signals had been different. In an
informational cascade, a dm considers it optimal to follow the behavior of
her predecessors without regard to her private signal since her belief is so
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strongly held that no signal can outweigh it.
We replicate the results of the literature under perfect information and

use them as a benchmark. The main difference between perfect and imper-
fect information is that learning under perfect information has the martin-
gale property that permits establishment of convergence of beliefs and ac-
tions. Under imperfect information, by contrast, the learning process does
not have the martingale property. The important implication is that beliefs
and actions are not convergent but cycle forever. Despite this instability,
over time, private information is increasingly ignored and dms become in-
creasingly likely to imitate their predecessors (Theorem 1). Consequently,
we observe longer and longer periods of uniform behavior, punctuated by
increasingly rare switches (Theorem 2). In other words, under perfect in-
formation, social learning eventually ceases as individual behavior becomes
purely imitative and hence is uninformative. Under imperfect information,
by contrast, individuals become more and more likely to imitate because
the behavior of their immediate predecessors remains informative and, at
the same time, behavior fails to converge.

These results suggest that the kind of episodic instability that is char-
acteristic of socioeconomic behavior in the real world makes more sense
in the imperfect-information model. The key economic phenomenon that
imperfect information captures is a succession of fads starting suddenly,
expiring rather easily, each replaced by another fad. As such, the imperfect-
information model gives insight into phenomena such as manias, fashions,
crashes and booms, and better answers such questions as: Why do mar-
kets move from boom to crash without settling down? Why is a technology
adopted by a wide range of users more rapidly than expected and then,
suddenly, replaced by an alternative? What makes a restaurant fashionable
over night and equally unexpectedly unfashionable, while another becomes
the ‘in place’, and so on?

The paper is organized as follows. In the next section, we provide a
discussion of closely related literature. The model is outlined in section 3,
analyzed under some distribution specification in section 4 and for general
distributions in section 5. We conclude in section 6.

2 Related literature

Observation of an immediate predecessor’s action is a particular form of
imperfect information. Smith and Sørensen (1996) relax perfect informa-
tion by assuming that each dm observes a random unordered sample of her
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predecessors’ actions. This approach is in fact the finite-dm counterpart of
Banerjee and Fudenberg (1995)’s continuum-dmmodel. Smith and Sørensen
(1996) provide a thorough characterization for the case of unbounded beliefs,
but their results are not exhaustive for the case of bounded beliefs1. With
unbounded beliefs, Smith and Sørensen (1996) agree with Banerjee and Fu-
denberg (1995) that learning leads to correct decisions, and with bounded
beliefs, they show that what is “learned” can be incorrect.

Taking off from Smith and Sørensen (1996), we assume that each dm
samples her immediate predecessor’s choice with probability one. This as-
sumption captures, in an extreme format, the idea that more recent prede-
cessors are more likely to be observed. Aside from modeling choices, the
present paper differs from Smith and Sørensen (1996) in two ways. First,
we show that behavior can be radically different under perfect and imper-
fect information. Second, we are able to describe not only the asymptotic
outcomes but also the behavior in case of divergence.

In another study, Smith and Sørensen (1997) develop an example in
which each dm observes her immediate predecessor’s decision. But, their
signal distribution assumes unbounded beliefs and their focus is on different
properties of learning, so results are not directly comparable.

3 The model

3.1 Preliminaries

Our economy consists of a finite number of Bayes-rational dms indexed by
n = 1, 2, · · · , N . Each dm n makes a once-in-a-lifetime decision, to invest
or not to invest, indicated by xn = 1 and xn = 0 respectively. Decisions
are made sequentially in an exogenously determined order. The preferences
of the dms are assumed to be identical and represented by the risk neutral
vN-M utility function

u(xn) =

½
Θ if xn = 1
0 if xn = 0

where the value of investment Θ is a random variable defined by

Θ =
PN

n=1 θn

and θn is dm n’s private signal about Θ. We assume that the θn’s are iden-
tically and independently distributed with c.d.f. F over a compact support

1Private beliefs are said to be bounded when there is no private signal that can perfectly
reveal the true state of the world, and to be unbounded otherwise.
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S with convex hull [a, b], such that E [θ] = 0. Further, F satisfies symmetry
when a+ b = 0 and F (θ) = 1− F (−θ) ∀θ ∈ [a,−a].

It is immediate that the range of Θ defines the set of the states of the
world. Moreover, since the risk-free action xn = 0 constitutes a bench-
mark for decision making, the payoff-relevant states are partitioned into two
decision-relevant events, high Θ ≥ 0 and low Θ < 0. Notice that the signal
structure is informative in the sense that, conditional on the true state of
the world, one is more likely to receive a signal favoring the realized event,
i.e., P (θ ≥ 0 |Θ ≥ 0) > 1

2 and P (θ < 0 |Θ < 0) > 1
2 . Yet, private beliefs are

bounded for any N > 2.
The summation version of Θ makes the model nicely tractable, but some

clarifications are in order. Notice that we define a finite economy, yet we are
interested in the behavior when the size of the economyN is arbitrarily large.
In other words, we analyze the limit behavior of a sequence of economies
indexed by N . With infinite N , the problem is not well formulated since
Θ may not be summable as defined. Further, if we define Θ as the average
signal rather than the sum of signals, then Θ is (with probability one) equal
to zero by the law of large numbers, so dms are always indifferent between
different actions. However, with any finite N , the model is robust to any
scaling ofΘ, and thus, there are no practical problems since we are interested
in limit theorems rather than theorems in the limit. That is to say, we are
interested in approximating the behavior when the economy size increases.
By the same token, even though the information of a dm about Θ is not
constant across different sized economies, the underlying decision problem,
the optimal decision rule, and hence our results are independent of N as in
the traditional social learning models.

We refer to a perfect information economy EF = {F, xn, un, In}Nn=1, as
an economy where the information set of each dm n consists of her private
signal as well as the entire history of actions, i.e.,

In = {θn, (xi)n−1i=1 } ∈ S × {0, 1}n−1.

An imperfect information economy E 0F = {F, xn, un, I 0n}Nn=1 differs in that
each dm n > 1 observes only her immediate predecessor’s action, i.e.,

I 0n = {θn, xn−1} ∈ S × {0, 1}.

Finally, we assume that the structure of any dm’s information set is common
knowledge. Thus, every dm knows whose actions each dm observes as well
as all the decision rules.
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3.2 The decision problem

A dm’s strategy is a mapping from her information set into the set of actions.
Next, we provide a definition that will be useful in characterizing the optimal
strategy.

Definition 1 dm n follows a cutoff strategy if her decision rule is defined
by

xn =

½
1 if θn ≥ θ̃n
0 if θn < θ̃n

for some cutoff θ̃n ∈ [a, b]2.

The decision problem of dm n is to choose xn ∈ {0, 1} to maximize her
expected utility given her information set In. That is,

Max
xn∈{0,1}

xnE [Θ | In]

which yields the optimal decision rule

xn = 1 if and only if E [Θ | In] ≥ 0.

Since In does not provide any information about the content of successors’
signals, we obtain

xn = 1 if and only if θn ≥ −E
hXn−1

i=1
θi | In

i
.

It readily follows that the optimal decision takes the form of a cutoff strategy.
We state this in the next proposition.

Proposition 1 For any n, the optimal strategy is the cutoff strategy

xn =

½
1 if θn ≥ θ̂n
0 if θn < θ̂n

where
θ̂n = −E

hXn−1
i=1

θi | In
i

(1)

is the optimal history-contingent cutoff.

2Notice that the tie-breaking assumption is such that xn = 1 when θn = θ̃n. One
may assume different tie-breaking rules, but since these are probability zero events, the
analysis does not alter.
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The optimal cutoff θ̂n contains all the information that dm n acquires
from the history and thus determines the minimum private signal for which
she optimally decides to invest. Hence, θ̂n is sufficient to characterize dm n’s
behavior, and {θ̂n}Nn=1 characterizes the behavior of the economy. Hence-
forth, we take {θ̂n}Nn=1 as the object of our analysis and refer to it as a cutoff
process or learning process interchangeably.

3.3 Definitions

Next, we define some key concepts to which we refer throughout the paper.
To economize on notation, whenever we take a limit over n we allow N to
accommodate n by taking a double limit as N →∞ and n→∞.

Definition 2 (Informational cascade) An informational cascade on ac-
tion x = 1 (x = 0) occurs when ∃n such that θ̂k ∈ (−∞, a] (θ̂k ∈ [b,∞))
∀k ≥ n. Analogously, a limit-cascade on action x = 1 (x = 0) occurs when
the process of cutoffs {θ̂n} converges almost surely to a random variable
θ̂∞ = limn→∞ θ̂n, with supp(θ̂∞) ⊆ (−∞, a] (supp(θ̂∞) ⊆ [b,∞)).

Hence, a cascade occurs in the limit when all but finitely many dms are
almost surely convinced about which of the events will take place. Further,
we call a finite sequence of dms who act alike a finite herd and, we let

lNn ≡ #{xk = xn, n ≤ k ≤ N}

denote the length of a finite herd following dm n in an economy of size N .
Herd behavior is said to occur if dms eventually settle on an action, i.e.,
action convergence almost surely obtains.

Definition 3 (Herd behavior) Herd behavior occurs when ∃n such that
limN→∞ lNn /N = 1.

Thus, dm n acts in a herd but does not follow a cascade when θ̂n ∈ (a, b),
indicating that for some signal she is willing to make either decision, but
when her private signal is realized she acts as her predecessors did.

4 The uniform case

In order to illustrate the model we study a simple symmetric example where
private signals are distributed with uniform distribution U, over the support
[−1, 1].
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4.1 The case of perfect information

According to (1), in the perfect information economy, EU = {U, xn, un, In}Nn=1,
dm n’s optimal history-contingent cutoff rule is

θ̂n = −E
hXn−1

i=1
θi | (xi)n−1i=1

i
.

Since with perfect information any history of actions is public information
shared by all succeeding dms, all the information revealed by the history
(xi)

n−2
i=1 is already accumulated in dm (n − 1)’s cutoff. Therefore, dm n’s

cutoff is altered only by the new information revealed by dm (n−1)’s action.
To be exact, θ̂n is different from θ̂n−1 only by E[θn−1 | xn−1, θ̂n−1]. As a
result, the cutoff rule exhibits the following recursive structure,

θ̂n = θ̂n−1 − E[θn−1 | xn−1, θ̂n−1] (2)

where

E
h
θn−1 | xn−1, θ̂n−1

i
=

(
1+θ̂n−1

2 if xn−1 = 1
−1+θ̂n−1

2 if xn−1 = 0
. (3)

Equations (2) and (3) yield the following cutoff process:

Proposition 2 In EU , the cutoff dynamics follows the stochastic process

θ̂n =

( −1+θ̂n−1
2 if xn−1 = 1

1+θ̂n−1
2 if xn−1 = 0

(4)

where θ̂1 = 0.

The impossibility of an informational cascade follows immediately since |
θ̂n |< 1, ∀n. Thus, in making a decision, any dm takes her private signal into
account in a non-trivial way. Moreover, the learning process {θ̂n} has the
martingale property E[θ̂n+1 | θ̂n] = θ̂n. So, by the Martingale Convergence
Theorem, it converges almost surely to a random variable θ̂∞ = limn→∞ θ̂n.
Hence, it is stochastically stable in the neighborhood of the fixed points, −1
and 1, meaning that there is a limit-cascade. Finally, since convergence of
the cutoff process implies convergence of actions, behavior can not overturn
forever. In other words, behavior settles down in some finite time and is
consistent with the limit learning. In conclusion, we agree with Smith and
Sørensen (2000) that a cascade need not arise but a limit-cascade and herd
behavior must.
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4.2 The case of imperfect information

In the imperfect information economy, E 0U = {U, xn, un, I 0n}Nn=1, the action
of a dm is the only source of information available to her successor to indi-
cate the nature of all past signals. Thus, according to (1) dm n’s history-
contingent cutoff rule is,

θ̂n = −E
hXn−1

i=1
θi | xn−1

i
.

It can readily be noted that θ̂n can take two different values, conditional on
xn−1 ∈ {0, 1}. That is,

θ̂n =

½
θn if xn−1 = 1
θn if xn−1 = 0

(5)

where,

θn = −E
hXn−1

i=1
θi | xn−1 = 1

i
,

θn = −E
hXn−1

i=1
θi | xn−1 = 0

i
.

The derivation of the cutoff rule rests on three basic observations (For
proofs, see Çelen and Kariv (2001)). First, the Bayesian inference of any dm
is symmetric in the sense that upon observing the predecessor’s action the
probability assigned to a deviation (imitation) is independent of the actual
action taken, that is, for any n,

P (xn−1 = 0 | xn = 1) = P (xn−1 = 1 | xn = 0). (6)

Second, for each dm n both actions are ex ante equally probable,

P (xn = 1) =
1

2
. (7)

And, finally, the cutoff rule is symmetric,

θn + θn = 0. (8)

These observations help us to derive a closed form solution of θ̂n recursively.
Note that if dm n observes xn−1 = 1, she can determine the probabilities
that xn−2 = 1 or xn−2 = 0 conditional on this information. If xn−2 = 1
then the actual cutoff of dm (n− 1) is θn−1, which already inherits all the
information accumulated in the history. Moreover, the expected value of her
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signal θn−1 is computable conditional on θn−1 and xn−1 = 1. An analogous
argument also applies if xn−2 = 0. Thus, the law of motion for θn is given
by

θn = P (xn−2 = 1|xn−1 = 1)
©
θn−1 − E [θn−1 | xn−2 = 1]

ª
+ P (xn−2 = 0|xn−1 = 1)

©
θn−1 − E [θn−1 | xn−2 = 0]

ª
.

Using observations (6) and (7) it simplifies to

θn =
1− θn−1

2

·
θn−1 − 1 + θn−1

2

¸
+
1− θn−1

2

·
θn−1 −

1 + θn−1
2

¸
. (9)

Using (8), this leads to the following proposition.

Proposition 3 In E 0U , the cutoff dynamics follows the cutoff process

θ̂n =

 −1+θ̂
2
n−1
2 if xn−1 = 1

1+θ̂
2
n−1
2 if xn−1 = 0

(10)

where θ̂1 = 0.

The impossibility of an informational cascade in E 0U follows immediately
since, as in EU , | θ̂n |< 1 ∀n. However, as we illustrate in Figure 1, dm n’s
cutoff rule partitions the signal space into three subsets: [−1, θn), [θn, θn)
and [θn, 1]. For high-value signals θn ∈ [θn, 1] and low-value signals θn ∈
[−1, θn) dm n follows her private signal and takes action xn = 1 or xn = 0
respectively. In the intermediate subset [θn, θn), which we call the imitation
set, private signals are ignored in making a decision and dms imitate their
immediate predecessor’s action.

[Figure 1 here]

Furthermore, since {θn} ({θn}) is a decreasing (increasing) sequence
bounded by −1 (1) and must converge, imitation sets monotonically in-
crease in n regardless of the actual history of actions and converge to the
entire signal space in the limit. That is to say, the imitation set becomes
an attractor in the limit. Hence, over time, dms tend to rely more on the
information revealed by the predecessor’s action rather than their private
signal.

Note, however, that this does not imply convergence of the cutoff process
{θ̂n}. In fact, a simple analysis shows that the cutoff process (10) is not
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convergent3. Hence, a limit-cascade never arises since the cutoff process is
not stable near any of the fixed points −1 and 1. Further, since {θ̂n} is
not stable, it is obvious that convergence of actions in the standard herding
manner is impossible. This is to say that the divergence of cutoffs implies
divergence of actions.

As herd behavior is impossible, one might ask what the expected length
of a finite herd starting from some finite dm n, E[lNn ], is. Note that when a
deviation occurs, the cutoff process switches from a point close to one of the
fixed points to a point even closer to the other fixed point, therefore E[lNn ]
is increasing in n for an economy size N large enough. This can be shown
using direct calculations. Hence, along the line of dms, behavior is typified
by monotonically longer lasting finite herds. Furthermore, a comparison test
with Σn 1n shows that for any n, limN→∞ E[lNn ] = ∞. Thus, one aspect of
herding is preserved in E 0U : as N → ∞, the expected number of successors
who will imitate any dm tends to infinity.

4.3 Perfect versus imperfect information

To understand the dissimilarities between EU and E 0U , consider a finite herd
followed by a deviator. In both EU and E 0U , the deviator becomes a leader
to her successors. Yet, there is substantial difference. In EU , the deviator
can be identified since previous actions are publicly known. As a result,
her deviation reveals clear cut information regarding her private signal that
meagerly dominates the accumulated public information. Thus, her succes-
sor will be slightly in favor of joining the deviation. This is referred to by
Smith and Sørensen (2000) as the overturning principal.

On the other hand, in E 0U , one can not tell whether her predecessor is an
imitator or a deviator. Thus, a deviator’s action is her successor’s sole source
of information about the entire history of previous actions. Consequently,
one who immediately follows a deviator can be expected to replicate the
deviation. Moreover, most likely the deviation will turn out to be followed
by a longer lasting finite herd.

To illustrate, assume that a long finite herd of investment precedes some
dm n. Then, her cutoff is close to −1, for example θ̂n = −1 + ε for some
small ε > 0 in EU and θ̂n = −1+δ for some small δ > 0 in E 0U . Now, suppose
that dm n does not invest because she receives an extreme contrary signal,
say θn = −1. In EU , her deviation reveals clear-cut information that θn ∈
[−1,−1+ε), and thus, having observed the deviation, dm (n+1) overturns;

3Note that
Q∞

n=1
1−θ̄n
2

= 0 if and only if
P∞

n=1

¡
θ̄n + 1

¢
does not converge, by induc-

tion, it is not difficult to show that
¡
θ̄n + 1

¢ ≥ 1
n for all n.
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yet her cutoff is close to zero, specifically θ̂n+1 = ε
2 . In E 0U , by contrast, since

the deviation is not observed by dm (n+ 1), she overturns dramatically by
setting her cutoff even closer to 1, specifically θ̂n+1 = 1− δ + δ2

2 .
As to the welfare properties of the equilibria, the likelihoods of correct

decisions in EU and E 0U can not be found analytically since conditional on Θ,
θns are negatively correlated. However, simulations show certain directional
effects, which, to the extent that we can cover finite economy sizes, we con-
jecture that they are robust. In particular, in EU the process is concentrated
more often than in E 0U on the correct decision. And, in both EU and E 0U ,
the ex ante probability that dm n makes a correct decision increases in n
for a given N . Figure 2 summarizes simulations that were carried out for
economies EU and E 0U of size N = 10.

[Figure 2 here]

5 The general case

All of our results to this point relied on the assumption that the signal dis-
tribution is uniform. In what follows, we show that the results obtained so
far hold for any symmetric signal distribution. Since the perfect informa-
tion case is studied in a general setting by Smith and Sørensen (2000), we
concentrate on the imperfect information economy E 0F .

5.1 The symmetric case

We consider an imperfect information economy E 0F where F satisfies sym-
metry. Without loss of generality, assume that a = −1. Additionally, for
technical reasons we assume that there is no probability mass on any of the
cutoff points, which is a set of measure zero.

One can show that observations (6), (7) and (8) for the uniform case
hold for any F. Using observations (6) and (7), the law of motion for θn is
given by

θn+1 =
£
1− F (θn)

¤ £
θn −E+(θn)

¤
+ [1− F (θn)]

£
θn −E+(θn)

¤
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where E+(ξ) ≡ E [θ|θ ≥ ξ]. Using symmetry (8) and direct calculations,

θn+1 = θn − 2F (θn)θn −
Z 1

θn

θdF −
Z 1

θn

θdF

= θn − 2F (θn)θn + 2
Z θn

−1
θdF

≤ θn

and the inequality is strict as long as θn > −1. The same expression yields,

θn+1 = θn − 2F (θn)θn + 2
Z θn

−1
θdF (11)

≥ θn − 2F (θn)θn − 2F (θn)
≥ θn − (θn + 1)
= −1

as long as −1 ≤ θn ≤ 0 and the inequality is strict as long as θn > −1.
Hence, {θn} is a decreasing sequence bounded by −1 and must converge.

In fact, from (11) the relation θn+1 = ϕ(θn) is continuous on (−1,−1 + ε]
for some ε > 0, so ϕ(θ) < θ for any θ > −1 implies that θn & −1 as n→∞.
An analogous analysis yields ϕ(θ) > θ for any θ < 1 and θn % 1 as n→∞.

The impossibility of informational cascades follows immediately since
| θ̂n |< 1, ∀n. Furthermore, it can be readily noted that imitation sets
[θn, θn)monotonically increase in n and converge to an attractor in the limit.
We have already observed that when signals are uniformly distributed the
cutoff process {θ̂n} is not stable. We, now, extend this result to any F.
Proposition 4 In E 0F , {θ̂n} is unstable near -1 and 1.
Proof. Without loss of generality, we show that {θ̂n} unstable near −1,
i.e, for any k <∞, Q∞n=k(1− F (θn)) = 0. First, note that it holds trivially
whenever F (−1) 6= 0 since there is always a positive probability of deviation.
When F (−1) = 0, by (11)

θn+1 = θn − 2F (θn)θn + 2
Z θn

−1
θdF.

Let µn = 1 + θn, then

µn+1 = µn − 2F (θn)µn + 2
Z θn

−1
(1 + θ)dF

µn+1
µn

≥ 1− 2F (θn)
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Since
Q∞

n=k
µn+1
µn

= 0,
Q∞

n=k

¡
1− 2F (θn)

¢
= 0which implies that

P∞
n=k F (θn) =

∞, and thus Q∞n=k(1− F (θn)) = 0.
The next theorem summarizes the results on learning dynamics.

Theorem 1 (Learning) In E 0F , (i) Neither an informational cascade nor
a limit-cascade arises. (ii) The imitation set [θn, θn) is increasing in n and
is an attractor in the limit, i.e., [θn, θn) ⊃ [θn−1, θn−1), ∀n and [θn, θn) →
[−1, 1] as n→∞.

As to action dynamics, the impossibility of herd behavior follows im-
mediately from the instability of the cutoff process {θ̂n}. That is, since
a deviation occurs with probability 1, action convergence in the standard
herding manner is impossible.

Notwithstanding with the impossibility of herd behavior, when F has no
mass on the boundaries of the signal support, i.e, F (−1) = 0 the expected
length of a finite herd following any dm n, given by

E[lNn ] =
XN−n

k=1
k(1− F (θn+1)) · · · (1− F (θn+k))F (θn+k+1),

need not be bounded, as in the uniform case. However, we know of no
necessary condition on the primitive F that guarantees that limN→∞ E[lNn ] =
∞. The obvious difficulty is to determine the finiteness of a series whose
terms are merely described in a difference equation.

A simple easily checked sufficient condition is that θn converges fast
enough such that F (θn) converges at a rate faster than 1

n . The proof of this
result is not difficult and is omitted. It follows, with the help of induction,
from a comparison test for which the divergent sequence is

P
k F (θn+k).

On the other hand, when F has a mass on the boundaries, i.e, F (−1) 6=
0, the expected length of a finite herd following any dm n is bounded. To
see this suppose that F (−1) = δ > 0, then

limN→∞ E[lNn ] ≤ F (θn+2)
P∞

k=1 kδ
k

and the inequality follows since F (θn+2) ≥ F (θn+k) for all k ≥ 2 and δ ≥
1−F (θn+k) for all k ≥ 1. But since

P∞
k=1 kδ

k = δ
(1−δ)2 , limN→∞ E[lNn ] <∞.

The next theorem summarizes the results on action dynamics.

Theorem 2 (Behavior) In E 0F , (i) Herd behavior does not occur. (ii)
The expected length of a finite herd following any dm n, E[lNn ], need not
be bounded, i.e., limN→∞ E[lNn ] = ∞, when F (−1) = 0. When F (−1) 6= 0,
limN→∞ E[lNn ] <∞.
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5.2 The asymmetric case

Next we consider an imperfect information economy, E 0F , where private sig-
nals are distributed with F such that E[θ] = 0. Let pn ≡ P (xn = 1). Then,

pnθn+1 + (1− pn)θn+1 = 0

for every n and the state of the dynamic system can be represented by the
ordered pair (pn, θn+1). The law of motion for (pn, θn+1) is given by

pn+1 = pn(1− F (θn+1)) + (1− pn)(1− F (θn+1))

and

θn+2 =
pn(1− F (θn+1))[θn+1 −E+(θn+1)]

pn(1− F (θn+1)) + (1− pn)(1− F (θn+1))

+
(1− pn)(1− F (θn+1))[θn+1 −E+(θn+1)]

pn(1− F (θn+1)) + (1− pn)(1− F (θn+1))
.

Notice that,

pn+1θn+2 = pn(1− F (θn+1))[θn+1 −E+(θn+1)]

+(1− pn)(1− F (θn+1))[θn+1 −E+(θn+1)]

= pn(1− F (θn+1))[θn+1 −E+(θn+1)]

+(1− pn)(1− F (θn+1))

·
pnθn+1
1− pn

+E+(θn+1)

¸
= pnθn+1 + pnθn+1(F (θn+1)− 1− F (θn+1))

−pn
Z b

θn+1

θdF − (1− pn)

Z b

θn+1

θdF

≤ pnθn+1 + pnθn+1[F (θn+1)− 1− F (θn+1)]

+pnθn+1F (θn+1) + pnθn+1[1− F (θn+1)]

= pnθn+1.

The inequality follows because

−pn
Z b

θn+1

θdF = pn

Z θn+1

a
θdF ≤ pnθn+1F (θn+1)

and

−(1− pn)

Z b

θn+1

θdF ≤ −(1− pn)θn+1[1− F (θn+1)] = pnθn+1[1− F (θn+1)]
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and the inequality is strict as long as θn+1 > a or θn+1 < b. It is readily
noted that the sequence {pnθn+1} is bounded. To see this, note that if
{pnθn+1} is unbounded then {(1− pn)θn+1} is unbounded too and for some
finite n, θk > b, θk < a,∀k > n, which implies that pn+1θn+2 = pnθn+1, a
contradiction.

As to learning and actions dynamics, the boundedness of {pnθn+1} im-
plies that {θn} and {θn} must exit (a, b) in finite time or in the limit. If
this happens in finite time, an informational cascade arises, and if {θ̂n} is
stabilized asymptotically, a limit-cascade arises. An immediate corollary of
these convergence results is that

limn→∞ pn = limn→∞
θn+1

θn+1 − θn+1
=

b

b− a

which means, ex ante, that the limit dm chooses x = 1 with probability b
b−a

and x = 0 with probability −a
b−a .

Although we do not have a full characterization of the possibility of in-
formational cascades, we know that they may arise causing a herd on the
corresponding action. In Çelen and Kariv (2001), we provide a sufficient
condition for the impossibility of informational cascades, and give an exam-
ple where a cascade arises.

6 Concluding remarks

The perfect- and imperfect-information versions of the model share the con-
clusion that dms can, for a long time, make the same choice. The important
difference is that, whereas in the perfect-information model a herd is an ab-
sorbing state, in the imperfect-information model, there are continued, occa-
sional and sharp shifts in behavior. These results suggest that the imperfect
information premise illuminates socioeconomic behavior that typically ex-
hibits long-lasting but finite episodes of mass behavior. In particular, we
argue that the imperfect information premise provides a better theoretical
description of fads and fashions.

It is natural to ask about the robustness of the results when the num-
ber of most recent actions that a dm observes exceeds one. Our analysis
does not properly address this issue since for any observation of histories
larger than one the recursive structure of the cutoff dynamics is extremely
involved. However, some key insights are available. The cutoff rule becomes
richer since further inferences based on the frequency of past actions can
be obtained. More specifically, dms are then able to identify deviators and
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imitators, and the information revealed by a deviation can be incorporated
into their decision rule. Since the amount of information is increasing in the
number of predecessors observed, a successor of a deviator is still inclined
to follow the deviation but with less enthusiasm as this number increases.

Whether an increase in the number of predecessors observed would lead
to sharply different results is not clear, since all the decision rules would
have to be changed to reflect the new environment. Obviously, different in-
formation structures may lead to different outcomes. This remains a subject
for further research.
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Figure 1: The partition of the signal space 



Figure 2: The ax ante  probability of correct decision by turn
(perfect and imperfect information economies with N=10)
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