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Abstract

This paper analyses and simulates a delta delta–sigma modulator, the cascade combination of a delta modulator and a
delta–sigma modulator. Using prediction, the delta modulator reduces the dynamic range of a signal prior to quantisation.
Using noise shaping, the delta–sigma modulator cancels the error of the delta modulator. Performance is evaluated with
input signals from a random noise process, composed of a high dynamic range narrow-band process and a low dynamic
range wide-band process. Integrator leakage in the delta modulator and DAC mismatch between the two modulators may
complicate implementation. The cascaded modulator outperforms conventional modulators of similar order when there is a
degree of correlation between consecutive samples of the input process. q 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The advantages of oversampled modulation for
Ž .analogue-to-digital ArD conversion are well

w xknown 1 . Firstly, sharp anti-aliasing is moved from
the analogue to the digital domain, in which imple-
mentation is simpler. Secondly, oversampling creates
a band of frequencies, above the Nyquist rate, into
which quantisation noise can be shaped. Subsequent
filtering and downsampling removes most of this
noise. Thirdly, an increase in modulator complexity
or oversampling ratio may be traded for an increase
in noise shaping.

Circuit designers face the problem of maximising
the performance of ArD conversion, while minimis-
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ing the modulator complexity and oversampling ra-
tio. Several architectures have been developed but
first- and second-order delta–sigma modulators re-
main popular because of their reliability and simplic-
ity. Higher order modulators often require multi-bit
quantisers for stability, which degrades their perfor-
mance and reduces their appeal. Single-bit first- and
second-order modulators have been cascaded to-
gether successfully to realise higher order perfor-
mance.

Fig. 1 introduces a cascaded delta delta–sigma
Ž .D2S modulator, where a delta–sigma modulator
converts the prediction error of a delta modulator.
The D2S modulator outperforms conventional modu-
lators, of similar complexity and oversampling ratio,
for correlated input processes. If the input to an

Ž .ArD converter ADC is correlated, then taking the
difference between the input and a first-order predic-
tion of the input reduces the dynamic range of the
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Ž .Fig. 1. A cascaded delta delta–sigma D2S modulator.

signal. Modulating this difference signal is less de-
manding than modulating the original input signal.

Section 2 describes the architecture of the D2S
modulator and provides an analysis of its perfor-
mance. Using simulation with a random noise pro-
cess, Section 3 evaluates the modulator with respect
to conventional modulators. Section 4 offers perspec-
tives on implementation.

2. Analysis

The lower half of Fig. 1 shows a delta modulator
Ž . w xwith input x t and output y n . Sampling thed

Ž .signal x t at a rate f that is many times theS

Nyquist rate 2 f decreases the time between consec-B
w x w xutive samples x n and x ny1 and increases their

w xcorrelation 3 . Thus, as the oversampling ratio m
w xincreases, the dynamic range of the difference x n

w xyx ny1 decreases compared to the dynamic range
w xof x n . Delta modulation essentially quantises this

difference.
Ž .The feedback signal y t in the delta modulatord

Ž .predicts the input x t . If the prediction is less than
the input, the ADC outputs a proportionate positive

Ž .integer, making the DrA converter DAC output a
positive signal to increase the prediction. If the
prediction is more than the input, the ADC outputs a
negative integer causing the DAC to output a nega-
tive signal to decrease the prediction. The digital

Ž .accumulator ACC is simply an uprdown counter
that increments or decrements the output word using
the integer updates from the ADC.

Whereas the integration in the feedback path of
the delta modulator is analogue, the integration
Ž .ACC in its output path is digital. Providing the
leakage in the analogue integrator is controlled or

w xcompensated, the digital output y n will approxi-d
Ž . w xmate the analogue prediction y t 4 .d

Fig. 1 also shows a first-order delta–sigma modu-
Ž . w xlator with input d t and output y n . Since over-ds

< <sampling creates a band f F f F f y f that isB S B

later removed by decimation, delta–sigma modula-
tion shapes the quantisation noise into this band. The
integrator in the delta–sigma modulator keeps the

Ž .average value of the input d t equal to the average
Ž .value of the feedback y t which forces most ofds
w xthe quantisation noise in y n to higher frequenciesds

w x4 .
First-order delta–sigma modulation usually in-

w xvolves two-level quantisation 1 although Fig. 1
Žshows an N-bit quantiser the cascade combination

. Ž .of ADC and DAC . The analogue signal y t tracksds
w xthe digital signal y n almost perfectly since DrAds

conversion introduces almost no error. Increasing the
number of quantisation levels, however, increases
the nonlinearity of the DAC and may cause har-

w xmonic distortion 4 . The choice of N is discussed
further in Section 3 below.

w xThe output y n of the D2S modulator is the sum
w x w xof y n and y n . Fig. 2 gives a linear discrete-timed ds
w xmodel 5 of the cascaded modulator, with an extra

delay in the delta modulator path for synchronisa-
tion. Quantisation is modelled by the addition of
white noise to the quantiser input and integration is

w xmodelled by accumulation 4 .

Fig. 2. Linear discrete-time model of D2S modulation.
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Using the model in Fig. 2, the transfer functions
of the delta modulator and the delta–sigma modula-
tor are:

Y z szy1 X z qzy1E z , 1Ž . Ž . Ž . Ž .d d

Y z szy1D z q 1yzy1 E z , 2Ž . Ž . Ž . Ž . Ž .ds ds

and the transfer function of the D2S modulator is:

Y z szy1 X z q 1yzy1 E z . 3Ž . Ž . Ž . Ž . Ž .ds

Ž .Only the noise E z of the delta–sigma modulatords

appears at the output of the D2S modulator and it is
shaped towards high frequencies. The delta–sigma

Ž .modulator cancels out the noise E z of the deltad

modulator.
Ž . Ž .Comparing Eqs. 2 and 3 , it is clear that the

formulation of in-band noise power s 2 for D2S´

modulation is identical to that of first-order delta–
w xsigma modulation, i.e. 1 :

p 2s 2 p 2 Q2
e ds2s s s , 4Ž .´ 3 33m 36m

2 w xwhere s is the power in the noise signal e n ande ds

Q is the step-size of the delta–sigma quantiser.ds
w xSince the quantisation error e n is assumed to beds

uniformly distributed from yQ r2 toqQ r2, s 2
ds ds e

equals Q2 r12. Although D2S modulation appears tods

have the same in-band noise power as first-order
delta–sigma modulation, there is a difference.

The step-size of a delta–sigma quantiser is chosen
so that the range of reference levels can accommo-
date the range of the input signal plus some circulat-

w xing noise 1 . Thus, denoting the maximum ampli-
tude of the input by a , the in-band noise power for
first-order delta–sigma modulation, where N is the
number of quantisation bits, is:

p 2a 2 2a
2s s since Q s , 5Ž .´ ds2 N3 N 2 y19m 2 y1Ž .

For D2S modulation, the input to the delta–sigma
Ž . Ž .modulator is d t not x t . Thus, Q does notds

depend on the dynamic range a of the input signal
Ž .x t but on the dynamic range of the prediction error
Ž . < <d t . If the maximum slew rate d xrd t of the input

is denoted d , and the sampling period is Ts

1r2mf , then the input may change by up to "dTB

each period. Assuming the prediction is able to
follow the input, the prediction error is bounded by
"dT and, for D2S modulation, the in-band noise is:

p 2d 2 2dT
2s s since Q s , 6Ž .´ ds2 N5 2 N 2 y136m f 2 y1Ž .B

For the prediction to follow the input, the range of
the reference levels in the delta quantiser must cover
ydT toqdT. Therefore, the step-size of the delta
quantiser is:

2dT
Q s sQ . 7Ž .d dsN2 y1

Such a choice for Q keeps the quantisation errord
w x w xe n within "Q r2 3 . A smaller Q may meand d d

that the prediction will not be able to follow the
input, causing a significant increase in noise when
the input changes too quickly. However, using a
larger Q may increase the granular noise since thed

prediction often alternates above and below the input
during periods of slow change. Optimal choice of Qd

therefore depends on the probability distribution of
slew rates for the input signals.

For comparison, the noise power formulae for
delta modulation alone and second-order delta–sigma

Ž . Ž .modulation are given in Eqs. 8 and 9 , respec-
w xtively 1 . If the dynamic range a of the input and

the number of quantisation bits N are kept constant,
the step-size Q of the quantiser in second-orderds

delta–sigma modulation must be larger than before
Ž .hence a smaller denominator to accommodate a

w xslight increase in circulating noise 1 :

s 2 d 2 2dTe2s s s Q s ,´ d2 Nž /3 2 Nm 2 y112m f 2 y1Ž .B

8Ž .

p 4s 2 p 4a 2 2ae2s s s Q s .´ ds5 2 Nž /5 N5m 2 y215m 2 y2Ž .
9Ž .

Doubling the oversampling ratio m in either
first-order delta–sigma or delta modulation decreases
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the noise power by a factor of eight and, hence,
Ž .increases the signal-to-noise ratio SNR by 9 dB.

Doubling m in either second-order delta–sigma or
D2S modulation decreases the noise power by a
factor of 32 and, hence, increases the SNR by 15 dB.
Whereas the dynamic range a of the input does not
limit the performance of delta modulation and D2S
modulation, the maximum slew rate d does. The
reverse is true for delta–sigma modulation.

3. Simulation

Delta, first- and second-order delta–sigma and
D2S modulation were simulated in Matlab. Test

Ž . Ž .signals x t were realisations of a process X t ,
shown in Fig. 3, composed of two white processes
Ž . Ž .A t and B t , both generated from uniformly dis-

tributed random numbers. A white process is uncor-
related and has a uniform power spectral density
Ž . w x Ž . < <PSD 3 . Process A t has a bandwidth f F fA

Ž .with a PSD equal to a and process B t has a
< <bandwidth f F f with a PSD equal to b. BecauseB

they are statistically independent, the PSD of the
sum of the two processes equals the sum of their

Ž .PSDs. The Nyquist rate of X t is 2 f , since f G f ,B B A
Ž .but X t is oversampled at f s2mf .S B

Three simulations were undertaken, varying the
oversampling ratio m, the bandwidth ratio f rfB A

Žand the power ratio af rbf the power ratio corre-A B
.sponds to the ratio of dynamic ranges . For each

Ž .configuration, 10 sample signals x t were generated
and the SNR was averaged over these realisations.
The D2S modulator was implemented with two one-

Ž . Ž .bit N equals one quantisers with Q equal to Q .d ds

Ž .Fig. 3. Power spectral density of a test process X t , constructed
for simulation purposes.

To keep the total bit-rate constant, the delta modula-
Žtor and delta–sigma modulators first and second-

. Žorder were implemented with two-bit N equals
.two quantisers.

Fig. 4 shows the SNR performance of the four
modulators vs. the oversampling ratio. For this simu-
lation, both the bandwidth and the power ratio are set

Ž .to a value of 64, meaning that process A t has eight
times the dynamic range within 1r64 times the

Ž . Ž .bandwidth of process B t . Process X t is then a
slowly varying signal of high dynamic range super-
imposed on a quickly varying signal of low dynamic
range. There is, therefore, sufficient correlation be-
tween consecutive samples for the predictive modu-

Ž .lators delta and D2S to outperform the other two.
As expected, Fig. 4 shows that SNR improves

with increasing m. The SNR of the first-order modu-
Ž .lators delta–sigma and delta increases by 9 dBroc-

Žtave, while the second-order modulators delta–sigma
.and D2S improve by 15 dBroctave, consistent with

the theory. Except at low oversampling ratios, D2S
modulation gives the best results. First-order modula-
tion is better than second, for low m values, because

Ž . Ž .the constants in Eqs. 5 and 8 are smaller than the
Ž . Ž .ones in Eqs. 9 and 6 , respectively.

For an oversampling ratio of 32 and a power ratio
of 64, Fig. 5 plots the SNR of the modulators vs. the
bandwidth ratio. The bandwidth ratio f rf corre-B A

sponds to the separation, in rate of variation, be-
Ž . Ž .tween the processes A t and B t . The leftmost

point, in Fig. 5, corresponds to a unit ratio, where fA
Ž .equals f . At this point, X t is the sum of twoB

white processes of equal bandwidth, but different
average power. Such a process is relatively uncorre-
lated so the delta–sigma modulators are slightly
better than the predictive modulators. However, the

Ž .whiteness of X t decreases quickly as the band-
width ratio increases, which increases correlation and
allows each predictive modulator to surpass the
delta–sigma modulator of similar order.

The performance of the delta–sigma modulators
is not affected much by the bandwidth ratio. Increas-
ing the ratio does not change the maximum ampli-

Ž . Ž .tude of X t since the dynamic range of A t and
Ž .B t are unaffected. However, the maximum slew

Ž .rate of X t decreases as f rf increases since theB A
Ž .rate of variation of A t , which accounts for most of

Ž .the power in X t , decreases. Thus, the SNR of
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Fig. 4. Modulator signal-to-noise ratio vs. the oversampling ratio of the test process.

predictive modulation increases with increasing
bandwidth ratio. However, the SNR eventually satu-

Ž .rates since A t behaves like a large DC signal with
Ža random amplitude for high bandwidth ratios i.e.

Fig. 5. Modulator signal-to-noise ratio vs. the bandwidth ratio of the test process.
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.above 16 , which limits the maximum slew rate of
Ž . Ž .X t to the maximum slew rate of B t .

As shown in Fig. 4, second-order surpasses first-
order modulation once m is sufficiently high. Each

Ž .second-order modulator delta–sigma and D2S is
Žbetter than its first-order counterpart delta–sigma

.and delta because of an increase in or, simply, the
use of noise shaping. This result is also evident in
Fig. 6, which charts the SNR performance of the
four modulators against the power ratio af rbf ofA B

the test process. The oversampling ratio was 32 for
this simulation and the bandwidth ratio was 64.

A unit power ratio, at the centre of Fig. 6, corre-
Ž . Ž .sponds to A t and B t having equal dynamic

range. D2S modulation is then slightly worse than
second-order delta–sigma modulation; however, delta
modulation is better than first-order delta–sigma

Ž .modulation. At the left end of the graph, A t has
Ž .one-tenth the dynamic range of B t . D2S modula-

tion is then worse than second-order delta–sigma
modulation, while delta modulation and first-order
delta–sigma modulation are similar. However, when
Ž . Ž .A t has a larger dynamic range than B t , each

predictive modulator is much better than the delta–
sigma modulator of similar order.

The performance of the delta–sigma modulators
does not really change with an increasing power

Ž .ratio since a change in the dynamic range of X t
affects both the signal power and noise power
equally, leaving the SNR results of the delta–sigma
modulators unchanged. However, the correlation in
Ž .X t increases with an increasing power ratio

af rbf since more power is allocated to the slowlyA B
Ž .varying component A t . As a result, the SNR re-

sults of predictive modulation improve with increas-
ing power ratio.

4. Implementation perspectives

There are principally two difficulties that may
arise when implementing this architecture: integrator
leakage and DAC mismatch. Leakage of the integra-
tor in the feedback path of the delta modulator will

w xcause errors as the output y n of the digital integra-d
Ž .tor will not match the output y t of the analogued

integrator. However, leakage of the integrator in the
feedforward path of the delta–sigma modulator is
not significant, as the feedback action will correct

Fig. 6. Modulator signal-to-noise ratio vs. the power ratio of the test process.
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the error. Leakage may be reduced by careful design
of the integrator.

A small constant current discharging the integra-
w xtor may cause leakage 2 . This leakage will add a

constant ramp to the output signal that may be
calibrated out on the digital side. Leakage may also
be resistive, where a percentage of the charge stored
on the integration capacitor is lost each sampling

w xperiod 2 . The error, for this leakage, will depend on
the absolute voltage across the integrator and is more
difficult to calibrate out. The simplest way to solve
leakage problems is to periodically reset the delta
modulator so that the analogue and digital integrators

w xare in equivalent states 2 . Given that leakage is
typically slow, resetting the modulator would have
little effect on overall performance.

A second difficulty arises if the output voltage
levels of the DACs, found in the delta and delta–
sigma feedback loops, do not match, as required by

Ž .Eq. 7 . Mismatched DACs can be modelled by a
gain in the feedback path of the delta modulator. A
mismatch will prevent the delta–sigma modulator

Ž .from cancelling the error E z of the delta modula-d

tor fully. This problem is not unique to the D2S
modulator, but is a problem of all cascaded modula-
tors, including the popular combination of two
delta–sigma modulators. The degree of matching
necessary to achieve a particular performance can be
readily modelled and a circuit must be built to match

w xwithin the required tolerances 1 .

5. Conclusion

This paper has investigated circuitry that im-
proves ArD conversion of oversampled signals for a
certain type of input. Although the cascaded delta

Ž .delta–sigma D2S modulator discussed here is simi-
lar to the oversampled modulator mentioned in

w xGaboury and Harjani 2 , the analysis and simulation
discussed here gives a more complete explanation of
the architecture and of the reasons for its perfor-
mance. If the main benefit of oversampled modula-
tion is that it permits a trade-off between several
parameters of ArD conversion, then this paper shows
how the D2S modulator trades generality for perfor-
mance.

Delta modulation uses prediction to reduce the
dynamic range of a signal before quantisation.
Delta–sigma modulation shapes the quantisation
noise spectrum so that less noise falls in the Nyquist
band. This paper has shown that prediction and noise
shaping may be usefully combined in a D2S modula-
tor, in which a delta–sigma modulator cancels out
the error of a delta modulator. Simulation results
agree with theoretical analysis in showing that D2S
modulation outperforms first- and second-order
delta–sigma modulation, and delta modulation, when
converting signals composed of a high dynamic range
narrow-band process and a low dynamic range
wide-band process.
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