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Abstract

Maude is an executable rewriting logic language specially well suited for the spec-
ification of object-oriented open and distributed systems. In this paper we explore
the possibility of using Maude as a formal notation for writing and reasoning about
RM-ODP enterprise specifications. Maude offers a simple, natural and accurate way
of modeling the enterprise viewpoint concepts, which provides interesting benefits
over previous modeling approaches, allows overcoming some of their limitations,
and offers good tool support.
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1 Introduction

Distributed systems are inherently complex, and their complete specifications
are so extensive that fully comprehending all their aspects is a difficult task.
To deal with this complexity, system specifications are usually decomposed
through a process of separation of concerns to produce a set of complemen-
tary specifications, each one dealing with a specific aspect of the system. Spe-
cification decomposition is a well-known concept that can be found in many
architectures for distributed systems. In particular, the Reference Model of
Open Distributed Processing (RM-ODP) framework [12] provides five generic
and complementary viewpoints on the system and its environment: enterprise,
information, computational, engineering and technology viewpoints. They en-
able different abstraction viewpoints, allowing participants to observe a system
from different suitable perspectives [16].

These viewpoints are sufficiently independent to simplify reasoning about the
complete specification of the system. The architecture defined by RM-ODP
tries to ensure the mutual consistency among the viewpoints, and the use of a
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common object model provides the glue that binds them all together. In addi-
tion, the use of the object paradigm provides abstraction and encapsulation,
two important properties for the specification and design of complex systems.

The enterprise viewpoint focuses on the purpose, scope and policies for the
system and its environment. It describes the business requirements and how to
meet them, but without having to worry about other system considerations,
such as particular details of its implementation, or the technology used to
implement the system.

Although the ODP reference model provides abstract languages for the rele-
vant concepts, it does not prescribe particular techniques to be used in the
individual viewpoints. The viewpoint languages defined in the reference model
are abstract languages in the sense that they define what concepts should be
supported, not how they should be represented. Several notations have been
proposed for the different viewpoints by different authors, which seem to agree
on the need to represent the semantics of the ODP viewpoints concepts in
a precise manner [2,5,12,16,25]. For example, formal description techniques
(FDTs) such as LOTOS and SDL have been proposed for the computational
viewpoint [12], and Z and Object-Z for the information and enterprise view-
points [27]. On a different arena, object-oriented modeling languages such as
UML or Fusion [8] have been also proposed for ODP information and enter-
prise modeling. Although they are not formal notations, they have been used
because of their appealing graphical syntax, and because they are part of fully
integrated development methodologies (see, e.g. [1,3,17]). However, their lack
of precise semantics represents an impediment for achieving any sort of formal
analysis of the systems.

In this paper we explore a new alternative for specifying the enterprise view-
point. We propose Maude [6], an executable rewriting logic language specially
well suited for the specification of object-oriented open and distributed sys-
tems [22]. As we shall see, this choice not only offers new benefits over the
previous approaches for formalizing ODP enterprise specifications (in particu-
lar over the Object-Z approach, probably the most widely accepted proposal),
but it also allows to overcome some of their limitations. We propose a sim-
ple and natural way of modeling the enterprise viewpoint concepts, where,
for example, roles are modeled as Maude classes, enterprise objects as Maude
objects, communities as Maude configurations, and the system behavior is
modeled by Maude rules, whose form is determined by the different kinds of
policies. We make special emphasis on the capability of Maude for avoiding
over-specification, allowing us to produce specifications faithful to the current
state of knowledge, and to the desired level of detail. This approach facilitates
a process of refinement in which we can uncover underspecified details at one
level, which are covered in successive iterations. The object-oriented nature
and simplicity of the Maude specifications make them easily understandable,
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helping involve stakeholders of diverse backgrounds in the system specification
process.

In addition to the nice properties of the Maude specifications obtained follow-
ing our approach, the use of Maude provides additional advantages. The fact
that rewriting logic specifications are executable, allows us to apply a flexi-
ble range of increasingly stronger formal analysis methods and tools, such as
run-time verification [11], model checking [10], or theorem proving [7]. Maude
offers a comprehensive toolkit for automating such kinds of formal analysis of
specifications. In this paper, we will discuss just the controlled execution of
the specifications.

The structure of this document is as follows. First, Sections 2 and 3 serve as
brief introductions to the ODP enterprise viewpoint and Maude, respectively.
Then, Section 4 presents our proposal, describing how to write enterprise spec-
ifications in Maude. Section 5 is dedicated to a small case study that illustrates
our approach. The execution of the Maude specification produced is discussed
in Section 6. Finally, Section 7 compares our work to other similar approaches
and Section 8 draws some conclusions and describes some future research ac-
tivities.

2 The Enterprise Viewpoint

An enterprise specification of an ODP system is an abstraction of the sys-
tem and a larger environment in which the ODP system exists, describing
those aspects that are relevant to specifying what the system is expected to
do in the context of its purpose, scope and policies [13]. An enterprise speci-
fication describes the behavior assumed by those who interact with the ODP
system, explicitly including those aspects of the environment that influence
its behavior—environmental constraints are captured as well as usage and
management rules.

A fundamental structuring concept for enterprise specifications is that of a
community. A community is a configuration of enterprise objects modeling
a collection of entities (e.g. human beings, information processing systems,
resources of various kinds, and collections of these) that are subject to some
implicit or explicit contract governing their collective behavior, and that has
been formed for a particular objective.

The scope of the system is defined in terms of its intended behavior, and this
is expressed in terms of roles, processes, policies, and their relationships. Roles
identify abstractions of the community behavior, and are fulfilled by enter-
prise objects in the community. Processes describe the community behavior
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by means of (partially ordered) sets of actions, which are related to achieving
some particular sub-objective within the community. Finally, policies are the
rules that constrain the behavior and membership of communities in order
to make them achieve their objectives. A policy can be expressed as an obli-
gation, an authorization, a permission, or a prohibition. Actions contrary to
rules are known as violations.

An enterprise specification also identifies those actions that involve account-
ability of a party, where a party represents a natural person or any other
entity considered to have some of the rights, powers and duties of a natural
person [13]. Authority or functions can be delegated. Principal parties are
responsible for the acts of any parties acting as their delegated agents, inclu-
ding their possible commitments, prescriptions, evaluations, declarations, and
further delegations.

In general, ODP systems are modeled in terms of objects. An object is a model
of an entity; it contains information and offers services. A system is therefore
composed of interacting objects. In the case of the enterprise viewpoint we
talk about enterprise objects, which model the entities defined in an enterprise
specification.

Summing up, an enterprise specification is composed of specifications of the
elements previously mentioned, i.e. the system’s communities (sets of enter-
prise objects), roles (identifiers of behavior), processes (sets of actions leading
to an objective), policies (rules that govern the behavior and membership of
communities to achieve an objective), and their relationships [13].

The first step towards building the enterprise specifications of a system is
to identify all those elements. Although the ODP Enterprise Language spe-
cification does not prescribe any particular method for that, we propose the
following tasks for producing such specifications:

(1) Identify the communities, the roles in such communities, and the rela-
tionships among those roles and among those communities.

(2) Identify the enterprise objects in each community, and how they fill the
roles.

(3) Identify the possible actions, and the participant objects in them. Objects
may participate as actors, artifacts (if they are just referenced in the
action), and resources (artifacts essential to the action that may become
unavailable or used up).

(4) Identify the policies that rule the actions (permissions, obligations, au-
thorizations, prohibitions), and the effects of the possible violations of
those policies.

(5) Identify the behavior that may change the structure or the members of
each community during its lifetime, and the policies that rule such a
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behavior.
(6) Identify the behavior that may change the rules that govern the system,

and the policies that rule such a behavior—changes in the structure,
behavior or policies of a community can occur only if the specification
includes the behavior that can cause those changes [13].

(7) Finally, identify the actions that involve accountability of a party.

Points 1 and 2 deal with the (static) structure of the system in terms of
communities, roles and their relationships. Point 3 defines the behavior of the
system in terms of the possible actions allowed, and point 4 defines the rules
that govern such a behavior. Points 5 and 6 define the rules that govern the
allowed changes in the structure and policies of the system during its lifetime.
Finally, point 7 defines the accountability rules. Of course, the order of these
activities needs not necessarily be linear.

3 Rewriting Logic and Maude

Maude [6] is a high-level language and a high-performance interpreter and
compiler that supports equational and rewriting logic specification and pro-
gramming of systems. Rewriting logic is parameterized by its underlying equa-
tional logic, which can be unsorted, many-sorted, order-sorted, or membership
equational logic. The underlying equational logic chosen for Maude is mem-
bership equational logic [21]. Thus, Maude integrates an equational style of
functional programming with rewriting logic computation. Rewriting logic is
a logic of change that can naturally deal with state and with highly non-
deterministic concurrent computations. In particular, it supports very well
concurrent object-oriented computation [22].

Rewriting logic [20] is a logic in which the state space of a distributed system
is specified as an algebraic data type in terms of an equational specification
(Σ,E ), where Σ is a signature of sorts (types) and operations, and E is a
set of (conditional) equational axioms. The dynamics of a system in rewriting
logic is then specified by rewrite rules of the form t → t ′, where t and t ′

are Σ-terms. These rules describe the local, concurrent transitions possible in
the system, i.e. when a part of the system state fits the pattern t then it can
change to a new local state fitting pattern t ′. The guards of conditional rules
act as blocking pre-conditions, in the sense that a conditional rule can only
be fired if the condition is satisfied.

In Maude, object-oriented systems are specified by object-oriented modules
in which classes and subclasses are declared. Each class is declared with the
syntax class C | a1:S1, ..., an:Sn , where C is the name of the class,
the ai are attribute identifiers, and the Si are the sorts of the corresponding
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attributes. Objects of a class C are then record-like structures of the form
< O : C | a1:v1, ..., an:vn >, where O is the name of the object, and the vi

are the current values of its attributes. Objects can interact in a number of
different ways, including message passing.

In a concurrent object-oriented system the concurrent state, which is called a
configuration, has the structure of a multiset made up of objects and messages
that evolves by concurrent rewriting using rules that describe the effects of
the communication events of objects and messages. The general form of such
rewrite rules is

crl [r ] : M1...Mm < O1 : C1 | atts1 > ... < On : Cn | attsn >
=> < Oi1 : C ′

i1
| atts ′i1 > ... < Oik : C ′

ik
| atts ′ik >

< Q1 : C ′′
1 | atts ′′1 > ... < Qp : C ′′

p | atts ′′p >
M ′

1...M
′
q

if Cond .

where r is the rule label, M1...Mm and M ′
1...M

′
q are messages, O1...On and

Q1...Qp are object identifiers, C1...Cn , C ′
i1
...C ′

ik
and C ′′

1 ...C ′′
p are classes, i1...ik

is a subset of 1...n, and Cond is a boolean condition (the rule’s ‘guard’). The
result of applying such a rule is that: (a) messages M1...Mm disappear, i.e.
they are consumed; (b) the state, and possibly the classes of objects Oi1 ...Oik

may change; (c) all the other objects Oj vanish; (d) new objects Q1...Qp are
created; and (e) new messages M ′

1...M
′
q are created, i.e. they are sent. Rule

guards can be omitted if not needed.

For instance, the following Maude definitions specify a class Account with
an attribute balance of sort integer, a message withdraw with an object
identifier and an integer as arguments, and a rule debit which specifies a
local transition of the system when there is an object A of class Account that
receives a withdraw message with an amount smaller or equal than the balance
of A. As a result of that rule, the message is consumed, and the balance of the
account is modified.

class Account | balance : Int .
msg withdraw : Oid Int -> Msg .
crl [debit] : withdraw(A, M) < A : Account | balance : Bal >

=> < A : Account | balance : Bal - M >
if M <= Bal .

When several objects or messages appear in the left-hand side of a rule, they
need to synchronize in order for such a rule to be fired. These rules are called
synchronous, while rules involving just one object and one message in their
left-hand sides are called asynchronous rules.
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Maude distinguishes two kinds of inheritance, namely class inheritance and
module inheritance. Class inheritance is directly supported by Maude’s order-
sorted type structure. A subclass declaration C < C’, indicating that C is
a subclass of C’, is a particular case of a subsort declaration C < C’, by
which all attributes, messages, and rules of the superclasses, as well as the
newly defined attributes, messages and rules of the subclass characterize its
structure and behavior. ODP’s notion of subtyping—A is a subtype of B if
every <X> that satisfies A also satisfies B—corresponds to Maude’s class
inheritance. On the other hand, the ODP’s notion of inheritance, that allows
the suppression and modification of the attributes and methods of the base
class [12, 2-9.21] corresponds to Maude’s module inheritance. Throughout the
paper, by inheritance we will mean Maude’s notion of class inheritance, i.e.
ODP’s subtyping. Multiple inheritance is supported in Maude [6].

4 Writing Enterprise Specifications in Maude

In this section we present our proposal for modeling in Maude all the con-
cepts described in Section 2, which constitute the enterprise specification of a
system.

4.1 Structural Concepts

Each role will be modeled by a Maude class, whose members are the objects
exhibiting a behavior compatible with the one identified by the role. The
name of the class modeling a role is the same as the role name, and the class
attributes describe the properties that characterize the objects fulfilling such
a role. The fact that a role A specializes other role B is modeled by class A

inheriting from class B.

Enterprise objects will be modeled by Maude objects. In Maude, each object
belongs to a class, which may be changed during its lifetime. The class of an
object is obtained by composing all the Maude classes that model the different
roles that the object fulfills, which may be realized in Maude by multiple class
inheritance.

A community is a composition of enterprise objects, and therefore it can be
naturally modeled by Maude’s configurations. However, a community may also
be expressed as a composite object when considered at a more abstract level of
detail and, dually, an enterprise object may itself be refined as a community
at a more concrete level. Thus, when abstracted as an enterprise object, a
community will be modeled by a Maude object (belonging to some class).
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4.2 Relationships among Roles

A relationship among roles establishes a semantic connection among them.
The concept of role relationship is not explicitly defined in the Enterprise
Language Standard, although the ISO General Relationship Model may be
useful here.

Roles can be related in different ways, including generalizations (which are
defined by role subtyping relationships), dependencies (such as usage and
other kinds of interactions), compositions (e.g. “is part of” relationships and
aggregations), and associations (such as conceptual relationships among roles
that involve a connection).

In order to model relationships, we will distinguish between generalizations,
and the rest of the ways in which roles can be related. First, generalizations
can be modeled in Maude by using inheritance, as mentioned earlier. Now, for
modeling the rest of the relationships (usage and other dependencies, different
kinds of associations, etc.) we propose using a Maude class with the name of
the relationship as its name, and whose attributes are the identifiers of the
participants and such a relationship’s attributes. Instances of a relationship
are therefore objects of the class that models the relationship.

The particular case of binary relationships without attributes can be modeled
in a simpler way. We model this kind of relationships by using an additional
attribute in each of the classes modeling the roles involved in the relationship.
These attributes will hold the identifier(s) of the object(s) at the other end
of the relationship. In case of directed binary relationships without attributes
(e.g. simple composition or dependency relationships) it is enough to store the
identifiers of the managed objects as attributes of the managing objects.

4.3 Behavioral Concepts

Actions will be modeled by rewrite rules. The left-hand side and guard of
a rewrite rule expresses the conditions that must be satisfied by a particular
subsystem for a rule to be triggered on it, that is, what has to happen for an
action to take place. Its right-hand side represents the effect of such an action
on such a subsystem.

A process is a collection of steps taking place in a prescribed manner, and
leading to an objective [13]. The collective behavior of a community may
be reported as a set of processes. Maude’s internal strategies are a natural
and general form of controlling the evolution of the systems specified (see
Section 6).
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4.4 Policies

Policies (both membership and behavioral) determine the form of the rewrite
rules, stating the conditions for the action to happen (either by restricting the
pattern of the left-hand side of the rule, or by explicitly stating a condition
with an if guard). The way to model the different policies that govern the
behavior of a system will depend on the kind of policy:

− Permissions allow state transitions. Therefore, a permission will be mod-
eled by a rule whose left-hand side and guard determine the scenario of
the permitted action(s) and their participants, and whose right-hand side
describes the effects of such action(s).

− To model obligations we need to differentiate between internal and exter-
nal ones. By internal obligations we mean those actions that the system
is forced to undertake as part of its intended behavior (i.e. its scope [13]).
These will be modeled as normal rules that determine the behavior of the
system, perhaps restricting any other behavior with appropriate guards.
However, it is difficult to impose obligations on actions that are due to ex-
ternal agents of the system (e.g. a customer that does not return a hired
car). In this case we shall implicitly permit the obliged actions, but in-
troducing as well the appropriate rules for allowing the observation of the
possible violations of such obligations. Those watchdog rules will determine
the appropriate corrective (penalty or incentive) actions.

− Authorizations will be modeled as permissions, explicitly permitting the
corresponding actions. But, as for obligations, watchdog rules need to be
defined for determining the system’s behavior in case a violation of the
authorization occurs.

− Prohibitions can be treated in two different ways, depending on its nature.
The first way is to express them as conditional statements, using the rules’
left-hand sides and guards for explicitly banning such actions. In this way,
the system will automatically prevent the prohibited action to happen. For
actions whose occurrence escapes from the control of the system, the second
way to deal with prohibitions is by using watchdog rules again, which de-
tect the occurrence of the prohibited action and determine the appropriate
behavior of the system in that case, if possible.

Note that an action may be modeled by more than one rewrite rule, and be
controlled by different policies. Therefore, a policy may be modeled by more
than one rule, each of which may itself model more than one policy. Likewise,
a policy or a collection of policies may apply to more than one action, which
can be modeled in Maude by individually applying those policies to each of
the rules modeling such actions, or by characterizing the actions and then
applying the policies to such a characterization.
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An interesting issue worth pointing out here is the use of rules for modeling
both actions and policies. Of course, there are other alternatives for specifying
business systems and business rules using Maude. For instance, we could have
modeled ODP actions by Maude messages, and ODP policies by Maude rules.
In general, object-oriented modeling approaches may be perceived to require
using message-oriented communication models, while the enterprise viewpoint
(and RM-ODP in general) does not require so. In our approach both ODP ac-
tions and policies are modeled by Maude rules, with guards that determine
when the rules are enabled. We think that this is a more abstract and general
approach than using messages. First, it allows to deal with each kind of pol-
icy in a different way, to define the so-called watchdog rules that determine
the behavior of the system upon the occurrence of a policy violation, and to
use Maude’s strategies for controlling the execution of the system (see Sec-
tion 6). And second, Maude messages naturally correspond to ODP messages,
that model interactions between objects—but in the computational viewpoint,
where they naturally belong (in ODP, messages are a computational viewpoint
concept).

In addition, it ought to be emphasized how the use of Maude’s configurations
(multiset of objects whose collective behavior is determined by the rewrite
rules) allows a natural representation of the collective state and collective
behavior of a system (that is, state and behavior not owned by a specific
object), in contrast to other (object-oriented) modeling approaches in which
each action needs to be assigned to just one actor, and where there is no
explicit representation of the collective state.

4.5 Rules for Changing the Structure and Policies of a Community

RM-ODP considers the possibility of changes in the structure and behavior of
a community. The kind of changes cover the introduction of new policy rules,
new roles into the communities, and changes in the existing rules.

In general, the reflective capabilities of rewriting logic and Maude could have
been considered for specifying change. However, it does not seem to be neces-
sary, since the ODP Enterprise Language Standard clearly states that changes
in the structure or behavior of a community can occur only if an enterprise
specification includes behavior that can cause such changes [13].

This can be seen as a strong assumption in some situations, since the behavior
of the environment of an open system is generally unpredictable. However, in
an enterprise specification the possible kinds of changes allowed for a system
need to be considered when building the system’s specifications, and the be-
havior that can cause the changes need to be specified in advance. Possibly,

10



this is to avoid that the scope of a system could drift into unspecified or un-
wanted behaviors. In any case, the requirement of having to specify the kinds
of changes allowed and their enabling behaviors simplifies their specification
in Maude, since they can be treated as possible (structural, behavioural, or
policy) alternatives. The occurrence of a behavior that causes such a change
will enable the new structure, behavior, or rules.

5 A Case Study

In order to illustrate our proposal we will specify in Maude a simple example,
a rental car store named VStore. The regulations (i.e. business rules) of the
system, especially those that rule the rental processes, are as follows:

(1) Cars are rented for a specific number of days, after which they should be
returned to the store.

(2) A car can be rented only if it is available.
(3) No credit is allowed. Customers must pay cash.
(4) Customers must make a deposit of the estimated rental charges at pick-up

time.
(5) Rental charges depend on the car class. VStore stores define three cate-

gories: economy, mid-size, and full-size cars.
(6) When a rented car is returned, the deposit is used to pay the rental

charges, which are calculated in accordance to the conditions at pick-up
time.

(7) If a car is returned before the due date, the customer is charged only for
the number of days the car has been used. In this case, the rest of the
deposit is reimbursed to the customer at return time.

(8) Customers who return a rented car after its due date are charged for all
the days the car has been used, with an additional 20% for each day after
the due date.

(9) Failure to return the car on time or to pay a debt may result in the
suspension of renting facilities.

(10) VStore staff members can also rent cars.
(11) Staff members and regular customers benefit from special discounts in all

rentals.
(12) A customer qualifies as “regular” by VStore when the accumulated amount

of money paid to the company by the customer is above certain threshold.

Although not explicitly mentioned as such, these business rules define the
permissions, obligations and prohibitions for the people, systems and artifacts
fulfilling roles in the virtual store community.
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We have left many details in the textual description of the system above in-
tentionally unspecified. Our purpose is to illustrate that sometimes we cannot,
or simply do not want, to make explicit certain details. Our (formal) specifica-
tion must of course conform to this description, giving the specification of the
system at the same level of abstraction, thus leaving these details also unspec-
ified. Our point is that more than overspecifying, our aim should be detecting
and recognizing the missing details, but never hiding them. In fact, this is a
difficult task. Very often we make unintentional decisions based on what can
be seen as “common sense” to us, but which fail to be true in the business
context. Helping make explicit such kind of assumptions already supposes a
great benefit. Of course, the specification produced may be further refined
as many times as wished, making the corresponding decisions, until the right
level of detail is reached.

5.1 The Structure of the System

Let us begin with the static aspects of this community, i.e. its structure. From
the text above, we can identify three main roles, namely the store, customers,
and cars. There are three special kinds of customers (staff, casual customers,
and regular customers), and three kinds of cars (economy, mid size and full size
cars). A rental car community can be seen as composed by objects fulfilling
these roles.

Customers may rent cars. This relationship may be represented by a Rental

class which, in addition to references to the objects involved in the relationship,
have some additional attributes. The system also requires some control over
time, which we get with a class representing calendars that provide the current
date and simulate the passage of time.

The customer role is modeled by the Customer class, which has two attributes,
namely cash and debt, for keeping record, respectively, of the amount of cash
that the customer currently has, and his/her debt with VStore. Classes Staff,
CasualCust, and RegularCust are subclasses of Customer, and do not have
any additional attributes. Such classes may be defined by the following Maude
declarations:

class Customer | cash : Int, debt : Int .
classes Staff CasualCust RegularCust .
subclasses CasualCust RegularCust Staff < Customer .

The role car is modeled by class Car, whose attribute available indicates
whether the car is currently available or not. We model the different types
of cars for rent in VStore by three different subclasses, namely EconomyCar,
MidSizeCar, and FullSizeCar.
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Fig. 1. Structure of the VStore community.

class Car | available : Bool .
classes EconomyCar MidSizeCar FullSizeCar .
subclasses EconomyCar MidSizeCar FullSizeCar < Car .

As part of the VStore rental car store community we find a VStore store ob-
ject, which represents the community when considered as a composite object.
Class VStore models this role, whose attributes represent the information con-
cerning the general parameters of such stores: the rates applicable to each type
of car, the discounts for each type of customer renting each type of car, the
identifiers of the customers who are suspended, the amount of money above
which casual customers are qualified as regular, the record with the amount
of money spent in the store by each of the customers, and the daily penalty
for late return (20%). In addition, attributes customers, cars, rentals, and
calendar store the identifiers of the objects participating in the relationships
with the VStore composite object (see Figure 1 for a UML class diagram with
the structure of our example). Please note that those are directed binary rela-
tionships, and therefore we only store the identifiers of the subordinate objects
as attributes of the object that reference them.

class VStore | discounts : PFun(Tuple(Cid, Cid), Int),
payments : PFun(Oid, Int),
rates : PFun(Cid, Int),
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penalty : Int,
threshold : Int,
suspended : Set(Oid),
customers : Set(Oid),
cars : Set(Oid),
rentals : Set(Oid),
calendar : Oid .

The information on rates, discounts and money spent is modeled by attributes
of sort PFun of partial functions, associating the appropriate values to each
of the different actors involved. This sort has two main operators available: a
consult operator _[_], which takes a partial function and a domain element
and returns its image, or a default value if it has no associated image; and the
operator _[_->_], that modifies the value associated to the domain element
given as second argument in the partial function given as first argument with
the image element given as third argument.

The rates for the different cars are stored in the attribute rates, of sort
PFun(Cid, Int), that associates the per-day rate to be charged to a customer
for renting a given type of car. Thus, supposing that Rts is a variable of sort
PFun(Cid, Int), with value the partial function assigning the appropriate
rates to each type of car, we have that Rts[FullSizeCar] is the per-day rate
for renting a full size car. If we want to increase this rate in, say, 20%, we can
use the expression Rts[FullSizeCar -> Rts[FullSizeCar] * 120 / 100].
The discounts applied to each customer on each type of car and the amount of
the purchases of each customer are stored, respectively, in attributes payments
and discounts. The set of the identifiers of the customers who are suspended
is stored in an attribute suspended of sort Set(Oid). Also, notice the use of
the predefined sorts Oid and Cid for object identifiers and class identifiers,
respectively.

Please note that in this way we are modeling VStore communities as objects of
class VStore, which represent the communities when considered at this level
of detail. This specification will allow us, for instance, to easily ‘compose’
communities with different particular details (e.g. discounts may change from
one store to another), allowing them to easily co-exist. Moreover, there may
be objects fulfilling roles in different communities.

Each object of class Rental will establish a relationship between a customer
and a car, whose identifiers are kept in attributes customer and car, respec-
tively. In addition to these, the class Rental is also declared with attributes
deposit, pickUpDate, dueDate, rate, and discount to store, respectively,
the amount of money left as deposit by the customer, the date in which the
car is picked up by the customer, the date in which the car should be returned
to the store, and the rate and discount applied at pick-up time.
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class Rental | deposit : Int, discount : Int,
dueDate : Int, pickUpDate : Int,
rate : Int, customer : Oid,
car : Oid .

Given the simple use that we are going to make of dates, we can represent
them, for example, as integer numbers. Then, we may have a calendar object
that keeps the current date, which gets increased by a rewrite rule as follows.

class Calendar | date : Int .
rl [new-day] :

< O : Calendar | date : F > => < O : Calendar | date : F + 1 > .

We do not worry here about the frequency with which the date gets increased,
the possible synchronization problems in a distributed setting, nor with any
other issues related to the specification of time. See, for example, the works
by Kosiuczenko and Wirsing [15] or by Ölveczky and Meseguer [26] on the
specification of real-time systems in rewriting logic and Maude for a discussion
on these issues.

As suggested by different authors [1,3,17,27], the structure of the communities
can be specified using UML, as a first step towards formalizing it. We have
shown in Figure 1 the structure of the system in our example. The strong
correspondence between the UML model classes and the Maude classes allows
an easy translation between both models. This fact is very important, since
it allows the stakeholders of the system to use a more user-friendly graphical
notation like UML’s class diagrams to express the system’s structure, and then
translate it into Maude classes. Special care should be taken here, since the
semantics of UML is often weak and imprecise, as opposed to the semantics
of Maude.

5.2 Actions and Policies Governing the System’s Behavior

Five actions can be identified in the example: (1) a customer rents a car, (2) a
customer returns a rented car, (3) a customer is suspended for being late in
paying his/her debt or for being late in returning a rented car, (4) a customer
pays (part of) his/her debt, and (5) the qualification of a customer is changed
(from casual to regular). Each of the following subsections is devoted to one
of these five actions and to the policies that rule them.
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5.2.1 Action 1: Car Rental

In the first place, renting a car needs the customer not to be suspended, the car
to be available (i.e. not currently rented), and that the customer has enough
money to make the deposit. The enterprise policies conditioning the rental of
a car are the following:

(1) Any customer is permitted to rent a car if (s)he has enough cash to pay
the deposit and the car is available.

(2) Suspended customers are forbidden to rent cars.
(3) Staff members and regular customers are authorized to have a discount

in all car rentals, according to the virtual store discount list.
(4) Customers are obliged to make a deposit of the estimated rental charges.

The rental of a car by a customer is specified by the rule car-rental below,
which involves the customer renting the car, the car itself, the store, and a
calendar object supplying the current date. The rental can take place if the
customer is not suspended, that is, if its identifier is not in the set of identifiers
of suspended customers of the store, and if the customer has enough cash to
make the corresponding deposit. Notice that a customer could rent a car for
less time (s)he really is going to use it on purpose because either (s)he does
not have enough money for the deposit, or prefers making a smaller deposit.
According to the description of the system, the payment takes place when
returning the car, although with an extra charge for the days the car was not
reserved. The rate and discount to be applied are however those at pick-up
time, which need to be part of the rental information so that they can then be
used. To make explicit the fact that the rental is taking place in the context
of the store, an object of class VStore is involved in the rule.

crl [car-rental] :
< U : Customer | cash : M >
< I : Car | available : true > *** the car is available
< V : VStore | suspended : US, rates : Rts, discounts : Dscnts,

calendar : C, cars : I IS, customers : U SS,
rentals : RS >

< C : Calendar | date : Today >
=> < U : Customer | cash : M - Amnt >

< I : Car | available : false >
< V : VStore | rentals : A RS >
< C : Calendar | >
< A : Rental | pickUpDate : Today, dueDate : Today + NumDays,

deposit : Amnt, customer : U, car : I,
rate : Rt, discount : Dscnt >

if not U in US *** the customer is not suspended
/\ Rt := Rts[class(< I : Car | >)]
/\ Dscnt :=
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Dscnts[(class(< U : Customer | >), class(< I : Car | >))]
/\ Amnt := (Rt - Dscnt) * NumDays
/\ M >= Amnt . *** enough cash to make a deposit

In Maude, those attributes of an object that are not relevant for an axiom do
not need to be mentioned. Attributes not appearing in the right-hand side of
a rule will maintain their previous values unmodified. Note that the variables
A and NumDays appear in the right-hand side or condition of the rule but not
in its left-hand side. Note as well the use of attributes customer and car

in objects of class Rental, which make explicit that a rental relationship is
between the customer and the car specified by these attributes. Likewise for
attributes customers, cars, and calendar of object V of class VStore, which
indicate that the customer, car and calendar appearing on the rule should be
known to the store. After the action, the rental is added to the set of rentals
kept by the store.

Rules may be applied on objects of the classes specified in the rules or of any of
their subclasses. The function class takes an object as argument and returns
its actual class. Thus, if the Customer object to which the above rule applies
is, for instance, < ’john : RegularCust | ... >, then the class function
applied to it returns RegularCust, and not Customer.

Finally, note the use of matching equations of the form t := t’ in the con-
dition. Matching equations are interpreted as ordinary equations; however,
operationally the pattern term on the left t is matched against the normal
form of the subject term on the right t’. Hence, the variables in t not appear-
ing in the left-hand side of the rule get instantiated as a result of the matching.
The satisfaction of the conditions is attempted sequentially from left to right,
and thus variables that get instantiated in matching equations can be used in
the rest of the condition or in the right-hand side. In the rule above it is used
as a let or where section in conventional functional languages.

5.2.2 Action 2: Car Return

The enterprise policies conditioning the return of a car that can be extracted
from the description are the following:

(1) Customers are obliged to return the rented cars within their specified rent
period.

(2) Customers are obliged to pay the charges corresponding to the number
of days they have used the car.

(3) Customers are obliged to pay a 20% extra for the days they have kept
the car after the due date.

(4) The store is obliged to reimburse the part of the deposit exceeding the
due charges when returning a car before the due date.
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A customer returning a car late cannot be forced to pay the total amount
of money due at return time. Perhaps (s)he does not have such an amount
of money at that time. In fact, the description just says that the customer
must pay, but not when. If we impose that having enough money for paying
the rental fee is a condition for returning a car, we may be overspecifying
the system by forcing customers to keep cars more time than they would do
otherwise.

The return of a rented car is specified by the rules below. The first rule handles
the case in which the car is returned on date, that is, the current date is smaller
or equal than the due date, and therefore the deposit is greater or equal than
the amount due. Notice that the rate and discount to be used in the calculation
of the amount due are those at pick-up time, which are stored as attributes of
the Rental object.

crl [on-date-car-return] :
< U : Customer | cash : M >
< I : Car | >
< A : Rental | customer : U, car : I, rate : Rt, discount : Dscnt,

pickUpDate : Ppdt, dueDate : Ddt, deposit : Dpst >
< V : VStore | payments : Pmnts, cars : I IS, customers : U SS,

calendar : C, rentals : A RS >
< C : Calendar | date : Today >
=> < U : Customer | cash : M + Dpst - Amnt >

< I : Car | available : true >
< V : VStore | payments : if Pmnts[U] == null

*** no record for this customer
then Pmnts[U -> Amnt]
else Pmnts[U -> Pmnts[U] + Amnt]
fi,

rentals : RS >
< C : Calendar | >

if (Today <= Ddt) /\ Amnt := (Rt - Dscnt) * (Today - Ppdt) .

In this case the deposit is greater than the amount due, and therefore part of
this deposit needs to be reimbursed. Note also that the VStore object keeps
record of the amount of money spent by each customer in the store, and thus
it must be updated accordingly. We can see how the Rental object disappears
in the right-hand side of the rules, it is removed from the set of rentals known
by the store, and the availability of the car is restored.

The second rule deals with the case in which the car is returned late. The
amount to be paid is calculated at drop-off time, but the rate and discount to
be used, those at pick-up time, may have changed when returning the car.

crl [late-car-return] :
< U : Customer | debt : M >
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< I : Car | >
< A : Rental | customer : U, car : I, rate : Rt, discount : Dscnt,

pickUpDate : Ppdt, dueDate : Ddt, deposit : Dpst >
< V : VStore | payments : Pmnts, penalty : Pnlt, rentals : A RS,

cars : I IS, customers : U SS, calendar : C >
< C : Calendar | date : Today >
=> < U : Customer | debt : M + Amnt - Dpst >

< I : Car | available : true >
< V : VStore | payments : if Pmnts[U] == null

then Pmnts[U -> Dpst]
else Pmnts[U -> Pmnts[U] + Dpst]
fi,

rentals: RS >
< C : Calendar | >

if Ddt < Today *** the car is returned late
/\ Amnt := (Rt - Dscnt) * (Ddt - Ppdt)

+ (Rt - Dscnt) * (Today - Ddt) * (100 + Pnlt) / 100 .

In this case the customer’s debt is increased by the part of the amount due
not covered by the deposit.

5.2.3 Action 3: Debt Payment

The description of the system says nothing about when or how customers
should pay their debts. They are obliged to do it however. We have included a
Maude rule with which customers may pay their due charges. Notice that the
amount of the debt paid is left unspecified in this rule, since it may be paid
either all at once or in several settlements.

crl [pay-debt] :
< V : VStore | payments : Pmnts, customers : U SS, calendar : C >
< U : Customer | debt : M, cash : N >
< C : Calendar | date : Today >
=> < V : VStore | payments : Pmnts[U -> Pnmts[U] + Amnt] >

< U : Customer | debt : M - Amnt, cash : N - Amnt >
< C : Calendar | >

if 0 < Amnt /\ Amnt <= N /\ Amnt <= M .

We are assuming that if there is a debt then there has been a previous payment,
and therefore that there is already a record for that customer.

5.2.4 Action 4: Customer Suspension

The enterprise policies conditioning the suspension of a customer that can be
extracted from the text are the following:
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(1) Customers are obliged to pay their debts.
(2) Customers are obliged to return rented cars on the due date.
(3) A violation of any of the previous rules may result in a suspension action

to the customer.

The text says that customers who are late in returning a rented car or in
paying their debts “may” be suspended. However, nothing is said about the
reasons for taking such a decision, or when they should be suspended, that is,
a customer could be suspended right after the car is returned without having
paid all the charges, after some days of grace, or never. In most cases there
will be a fixed criteria, as for example, suspending customers that are two
days late, or two months. However, since no indications are given in the text,
these details are left unspecified in the rules.

These policies can be faithfully modeled by the following two rewrite rules.
The first rule deals with the case in which a customer has a pending debt,
and the second one handles the case in which a customer is late in returning
a rented car.

crl [suspend-late-payers] :
< V : VStore | suspended : US, customers : U SS >
< U : Customer | debt : M >
=> < V : VStore | suspended : U US >

< U : Customer | >
if (not U in US) /\ M > 0 .

crl [suspend-late-returns] :
< V : VStore | suspended : US, cars : I IS,

customers : U SS, calendar : C >
< U : Customer | >
< I : Car | >
< A : Rental | customer : U, car : I, dueDate : F >
< C : Calendar | date : Today >
=> < V : VStore | suspended : U US >

< U : Customer | >
< I : Car | >
< A : Rental | >
< C : Calendar | >

if (not U in US) /\ F < Today .

5.2.5 Action 5: Qualification Change

The description of the system also explains that customers may be re-qualified
according to the amount of money they have spent at the store. We can extract
only one enterprise policy conditioning the change in the qualification of a
costumer from the text:
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(1) The store is obliged to re-qualify customers, from casual to regular, when
the amount of money they spent in the store is above the store’s threshold.

The upgrade of a customer can then be modeled with the following rule:

crl [upgrade-to-regular] :
< U : CasualCust | cash : M, debt : N >
< V : VStore | threshold : Thrshld, payments : Pmnts,

customers : U SS, calendar : C >
< C : Calendar | date : Today >
=> < U : RegularCust | cash : M, debt : N >

< V : VStore | >
< C : Calendar | >

if Pmnts[U] >= Thrshld .

In this rule an object of class CasualCust becomes of class RegularCust when
the accumulated amount of its purchases exceeds the store’s threshold. The
partial function stored in the attribute payments gives us the amount of money
spent by every customer. In Maude, objects changing their classes must show
all their attributes in the right-hand sides of the rules.

Note that nothing is said about whether a suspended customer or a customer
with a pending debt can be upgraded, and therefore this information is not
taken into account in the rule modeling the action. Again, the fact of writ-
ing the rules helps uncovering these unspecified situations, which need to be
properly addressed in successive refinements of the enterprise specifications.

5.3 Further Issues

It is important to notice that there are still many other details left unspecified
in the original system description. For example, nothing was said about the
restoration of the renting rights of a suspended customer, or the possible “de-
motion” of a regular customer to casual if, for example, (s)he stops spending
enough money in the store, and therefore no rules are given for those actions.
As we mentioned before, our intention was to produce a specification faithful
to the description given, and hence we have restricted ourselves to the details
provided. What we have tried to show here is how the specification process
followed has allowed us to: (a) uncover many underspecified details in the sys-
tem description; and (b) still produce faithful specifications, without incurring
in over-specification.

The specifications produced with such a level of detail could be then refined
with the information provided by the stakeholders of the system, trying to
solve the ambiguities and gaps detected in them. The object-oriented nature
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and simplicity of the Maude rules make them easily understandable, which
helps involving stakeholders of diverse backgrounds in the system specifica-
tion process. In addition, the object-oriented nature of Maude perfectly fits
with the object-oriented nature of ODP, facilitating the conceptual mapping
between these two “worlds”.

Notice also that communities modeled in this way are easily composable. It
is possible, for example, having several stores sharing cars and customers, or
cars being returned in stores different to the one they were rented in. We can
also compose communities of different nature very easily, and having objects
fulfilling different roles in different communities.

Finally, there is the issue of accountability. At this level of abstraction the
responsibilities for each of the actions have not been made explicit. Respon-
sibilities could be specified in different ways, for example, by having simple
comments on the rules, or metalevel functions returning any information on
the actions. However, our current thought is that, if required, such respon-
sibilities will become explicit in successive steps of refinement, in which the
rules specifying the actions can be decomposed into several (either consecu-
tive or concurrent) sub-actions. This is the way in which several Requirements
Engineering proposals work (such as KAOS [28]), in which actions are refined
until a responsible agent can be identified. Refinements are based on questions
such as what, how, why, and by whom. Thus, in our example it will be made
explicit at an appropriate (lower) level of abstraction the fact that it is the
customer who initiates the renting action, for instance.

6 Executing the Enterprise Specifications

Once the system specifications are written using this modeling approach, what
we get is a rewrite logic specification of the system, which can be used for
formally reasoning about it. The fact that, under reasonable assumptions,
rewriting logic specifications are executable, allows us to apply a flexible range
of increasingly stronger formal analysis methods, such as runtime verification,
model checking, narrowing analysis, or theorem proving. Each analysis method
has its own complexity, so we could start with the most efficient ones, and leave
the most complex methods for the analysis of systems that have already passed
all the previous “filters”.

Maude offers a comprehensive toolkit for the analysis of specifications, in-
cluding an inductive theorem prover; an LTL model checker; tools to check
the Church-Rosser property, coherence, and termination; Knuth-Bendix and
coherence completion tools; and a tool to specify, analyze and model check
real-time specifications [7]. In this Section we will concentrate on the con-
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trolled execution of the specifications.

Maude specifications as the one presented in this paper are rewrite theories
that do not need to be either Church-Rosser or terminating. That is, in prin-
ciple, the inference process could not terminate, or could go in many different
directions. Maude implements a default strategy for the execution of rewrite
systems [6], which may be enough in some cases. But it is with the possibil-
ity of specifying user-defined strategies with which Maude provides absolute
control over the rewriting inference process. Moreover, in most cases we will
not only want to follow one of the possible paths, but we would like to explore
different alternatives, or even considering all the possible ones.

In Maude, thanks to its reflective capabilities, strategies are made internal to
the logic, that is, strategies are defined by rewrite rules in a normal module
in Maude, and can be reasoned about as with rules in any other module. In
fact, there is great freedom for defining many different types of strategies, or
even many different strategy languages inside Maude. This can be done in a
completely user-definable way, so users are not limited by a fixed and closed
particular strategy language [6].

Let us illustrate some of the possibilities with a strategy for controlling the
execution of the rules modeling the VStore system, which give rise to non-
deterministic and non-terminating computations. A simple but interesting
strategy may be one that allows us to execute a given sequence of rules, that
is, to accomplish sequentially a series of actions from a particular initial state.

In this case, a strategy can be defined as a sequence of pairs (L, S ), where L is
the label of the rule to be applied and S is a partial substitution to be used in
the application of that rule. Notice that in order to specify a particular action,
it is not enough to give the name of the rule that models the action—given a
configuration of objects, a rule may be applied in different ways. For instance,
rule suspend-late-payers may be applied to different customers. To make
sure that the customer being suspended when applying that rule is ’john, we
need to state the partial substitution ’U <- john when applying such a rule.
Also, note that the strategies are to be defined at the metalevel: overlined
terms stand for the meta-representation of these terms.

Suppose then that we start with the following initial configuration of objects:

< O1 : VStore |
discounts : (((CasualCust, MidSizeCar), 0)

((CasualCust, FullSizeCar), 0)
((RegularCust, MidSizeCar), 20)
((RegularCust, FullSizeCar), 30)),

rates : ((MidSizeCar, 150) (FullSizeCar, 200)),
payments : mt, *** No payments
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suspended : mt, *** No suspended customers
threshold : 450, *** Store’s threshold
penalty : 20,
customers : ’C1 ’C2,
calendar : ’C,
cars : ’A1 ’A3 ’A5 >

< C1 : CasualCust | cash : 5000, debt : 0 >
< C2 : CasualCust | cash : 5000, debt : 0 >
< A1 : EconomyCar | available : true >
< A3 : MidSizeCar | available : true >
< A5 : FullSizeCar | available : true >
< C : Calendar | date : 0 >

This configuration consists of a VStore store O1, two clients C1 and C2, three
cars A1, A3 and A5, and a calendar object C. Let us call it VStoreConf. Now,
let VStoreStrat be the following sequence of pairs (rule label - substitution)
that define the strategy—by means of a sequence of actions in this case:

(’car-rental, *** client C1 rents the mid-
((’U <- C1); (’I <- A3); *** size car A3 for 2 days
(’NumDays <- 2); (’A <- ’a0)))

(’new-day, none) *** two days pass
(’new-day, none)
(’on-date-car-return, none) *** car A3 is returned
(’new-day, none)
(’car-rental, *** client C1 rents the full
((’U <- C1); (’I <- A5); *** size car A5 for 1 day
(’NumDays <- 1); (’A <- ’a1)))

(’new-day, none) *** two days pass
(’new-day, none)
(’late-car-return, none) *** car A3 is returned
(’new-day, none)
(’suspend-late-payers, none) *** client C1 is suspended
(’new-day, none)
(’upgrade-to-regular, none) *** client C1 is upgraded
(’new-day, none)
(’pay-debt, (’Amnt <- 100)) *** client C1 pays 100$

Comments on the right side explain the sequence of rules defining the strategy.
Basically, the execution trace specified consists of client C1 renting two cars,
one of which is returned on time and the other one late. After the second car
is returned, the client is suspended for being late in his payments. However,
this does not prevent him from being upgraded. The client then pays part of
his debt. Note how the passage of time is modeled by the application of the
rule new-day. Now, in order to execute the system specifications using such
a strategy, we just need to use a function (rewSeq) that takes a module, a
term, and the list of pairs that define the strategy, and applies the rules in
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the strategy sequentially, using their corresponding partial substitutions. The
actual way to rewrite the above initial configuration VStoreConf following the
strategy VStoreStrat is as follows.

rewrite rewSeq(V-STORE,VStoreConf ,VStoreStrat).

where V-STORE is the name of the module containing the specification of the
VStore system. The configuration resulting from the above rewrite is:

< O1 : VStore |
discounts : (((CasualCust, MidSizeCar), 0)

((CasualCust, FullSizeCar), 0)
((RegularCust, MidSizeCar), 20)
((RegularCust, FullSizeCar), 30)),

rates : ((MidSizeCar, 150) (FullSizeCar, 200)),
payments : (’C1, 600), *** C1 has paid 600
suspended : ’C1, *** C1 is suspended
threshold : 450,
penalty : 20,
customers : ’C1 ’C2,
calendar : ’C,
cars : ’A1 ’A3 ’A5 >

< C1 : RegularCust | cash : 4400, debt : 140 > *** 140$ debt
< C2 : CasualCust | cash : 5000, debt : 0 >
< A1 : EconomyCar | available : true >
< A3 : MidSizeCar | available : true >
< A5 : FullSizeCar | available : true >
< C : Calendar | date : 8 > *** eight days later

We can see in this configuration how eight days have passed, after which the
client C1 has been upgraded to regular—it is now an object of the RegularCust
class—and is suspended. The client C1 has paid a total of 600$ (2 × 150 +
200 + 100), and has still a debt of 140$ (200 + 20%(200) − 100).

This simple application of the rules may not have much interest by itself,
but shows how it can be used for building more interesting strategies. For
example, we may also find all possible one-step rewrites of a term using one
by one the rules in a module on this term. Once we have this, we may find all
possible computations for an initial state, or we may be interested in studying
the weaknesses of the system, etc. The full expansion tree of the execution
model of a system may also be built in that way, which is a possible approach
for model-checking the system. Reachability analysis can also be realized in
that way, exploring the execution tree of a system checking for given states.
However, the Maude model checker [10] offers far more possibilities that these
kinds of strategies for exploring the execution tree of a system, and with a
greater performance.
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7 Related Work

Formal description techniques are being extensively employed in ODP and
have proved valuable in supporting the precise definition of the reference model
concepts [5]. Among all those works, we will focus here on two kinds of propo-
sals: those that use rewriting logic for specifying some of the ODP viewpoints,
and those that specifically deal with the enterprise viewpoint.

In the first group, Najm and Stefani use rewriting logic to formalize the com-
putational model of RM-ODP [24,25]. In [24], a formal operational semantics
of the ODP computational model is presented, which is extended in [25] to
deal with reflection and Quality of Service (QoS) contracts using failures. Al-
though Najm does not consider executability issues for his specifications, their
formalization may be directly specified in Maude and then executed following
our proposal.

With regard to the proposals that try to formalize the enterprise viewpoint,
there is an interesting proposal for using Object-Z as a formal notation for
pinning down the precise semantics of enterprise specifications [27]. The work
by Steen and Derrick uses UML for describing the structure of the enterprise
specification, and combines it with a simple language using predicate logic for
specifying enterprise policies. A formal translation process (with forthcoming
tool support) is then defined to express the (informal) specifications obtained
into the formal object-oriented specification language Object-Z. As discussed
in Section 5.1, the use of UML seems to us a right choice for describing the
structure of the community despite its ambiguity and lack of formal under-
pinnings. However, the use of Object-Z for specifying the enterprise policies
presents some shortcomings from our point of view:

(1) In the Object-Z approach, actions are assigned to just one actor, and
included as operations in the actor’s definition class. How to deal with
actions in which there is more than a principal actor (e.g. in the case of
synchronous actions)? In our approach actions are rules, and therefore
first-class citizens.

(2) Analogously, Maude allows a natural representation of the collective state
and collective behavior of a system (that is, state and behavior not owned
by a specific object), which cannot be represented so easily in Object-Z.

(3) The treatment of policy violations is not homogeneous with the rest of the
policies. Violations are not (and cannot be) specified within the Object-Z
framework, but at the meta-level (cf. [27]), which is not directly accessible
from the Object-Z specifications.

(4) The use of Object-Z forces most of the unspecified details in the “textual”
specifications to be (over)specified, since full specifications are needed.
This forces the specifiers to make too many assumptions, incurring into
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over-specifications in many cases.
(5) Another disadvantage of the use of Object-Z appears when modeling

enterprise roles by Object-Z classes, which is the natural way of doing
so in that approach. This has the initial advantages that information
about each role can be encapsulated, and that roles can be composed.
However, it has the disadvantage that roles are thereby associated with
fixed classes of objects, so that objects cannot change their roles during
their lifetime. In some applications, models which assume fixed roles may
be adequate; but in others there may be a need to represent objects
which fulfill different roles at different times, as it happens for instance in
dynamically configurable networks. Again, this is not an issue in Maude,
since the class of an object can be changed in a rule.

(6) Maude offers far more tool support than Object-Z does. Even if some an-
imation can be obtained with Object-Z, it does not reach the level that
can be obtained with Maude’s execution facilities and strategies. Addi-
tionally, tools for model checking, theorem proving, and other behavioral
analysis of specifications are available [6].

(7) Other notations (such as Z, LOTOS, or CSP) have been proposed for
other viewpoints. A common way of dealing with consistency between
specifications written in different notations is by translating them into
one single notation. For instance, in [4] the authors propose the transla-
tion of LOTOS into Object-Z. However, many important aspects of the
specification are usually lost in these translations, since the underlying
logic of Object-Z is not expressive enough. We think that Maude can
greatly help in this point, and is something that we want to explore fur-
ther. Rewriting logic is such that faithful translations from other FTDs
into Maude can be obtained [19,22].

An interesting line of work that may also be related to ours is the use of deontic
logic [23] for specifying systems, using the theory of norms and normative
systems to specify the policies that rule the behavior of a system. However,
the paradoxes of this logic and its complexity may hinder its practical utility,
as discussed in [14,27].

Finally, we would like to mention the Ponder declarative language for the spe-
cification of security and management policies of distributed systems. Being a
policy-based language, it allows the realization of many of the ODP enterprise
policy concepts [18], and it is “down to earth” and implementable. However,
Ponder does not cover all the enterprise viewpoint concepts (just policies),
and it is too low-level when compared to our approach. Nevertheless, both
approaches could be somehow complementary if bridges between the Maude
specifications and the Ponder language were defined, allowing the refinement
of the Maude rules into implementable Ponder instructions, or the other way
round, whenever this is possible.
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8 Concluding Remarks

Maude is an executable rewriting logic language specially well suited for the
specification of object-oriented open and distributed systems. In this paper,
we have explored the possibility of using Maude for specifying the enterprise
viewpoint, showing how to build enterprise specifications of systems using
Maude concepts and rules. With them we do not only obtain a high-level
enterprise description of the system, but also are in a position to formally
reason about the specifications produced and to quick-prototype them.

Different notations have been proposed for specifying the different viewpoints,
and some of them may be even used for specifying several or even all of them.
Rewriting logic and Maude have also been proposed for specifying the infor-
mation viewpoint [9] and the computational viewpoint [25], and we plan to
study their adequacy for being used in the specification of the others. However,
there is a general belief that no formal method applies well to all problem do-
mains. It is not only about being expressive enough, but on the fact that each
formalism is more appropriate than others for a particular viewpoint. One
may prefer, for example, Object-Z for the information viewpoint and LOTOS
or SDL for the computational viewpoint.

In addition, once we make sure that the specifications of a particular viewpoint
satisfy certain properties, we need to address two additional issues, namely the
consistency checking and the composition of specifications of different view-
points. By establishing the consistency of different viewpoints we simply mean
that the specifications of the different viewpoints do not impose contradictory
requirements.

Checking the consistency of the specifications of different viewpoints is a dif-
ficult task, and it is even harder checking it if such viewpoints are specified in
different formalisms. Thus, we have two options: either we write all viewpoints
specifications in the same FTD, or use different formalisms for the different
viewpoints and then translate them into such an FTD. It has been shown that
rewriting logic has very good properties as a logical framework, in which rep-
resenting many different languages and logics, and as a semantic framework,
in which giving semantics to them [22]. Formalisms such as CCS, LOTOS,
SDL, and many others can be represented in rewriting logic, thus allowing
the possibility of bringing very different models under a common semantic
framework. Such a framework makes much easier to achieve the integration
and interoperation of different models and languages in a rigorous way. Thus,
Maude seems to be a promising option as a unifying framework for the speci-
fication of RM-ODP viewpoints in which consistency checks can be rigorously
studied.
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Another interesting topic of research is the use of the reflective capabilities
of rewriting logic and Maude for specifying and reasoning about different
system properties, such as QoS (as in Najm’s works) or reliability, or about
the dynamic reconfiguration of systems.

Finally, tool support is another essential issue. Maude’s intuitive style for spec-
ifying classes, objects, and rules greatly simplifies the understandability of the
specifications produced. Furthermore, the process shown here for writing the
Maude enterprise specifications of a system does not require users to have a
deep knowledge of rewriting logic. Thus, it is our belief that Maude specifica-
tions could provide a useful vehicle for allowing stakeholders of a system to
easily share and discuss about its purpose, scope, and policies, i.e. its enter-
prise specifications. Having said that, we feel that some graphical tool support
may also be needed for the adoption of our proposal. We have already men-
tioned that the strong correspondence between the UML model classes and
the Maude classes allows an easy translation between both models. In this
sense, we are currently investigating some kind of graphical representation
of Maude rules in UML. This would allow the stakeholders of the system to
use a more user-friendly graphical notation like UML to describe the system
structure and policies, and then translate them into the corresponding Maude
specifications. Future work include the provision of a more user-friendly inter-
face for these tasks. This is an ambitious goal, but we feel that without this
kind of tools the use of formal methods will never materialize, hindering the
important benefits that formal analysis of systems could bring to the software
development process of business systems.
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