From ACT-ONE to Miranda, a
Translation Experiment

Nathan Charles*, Howard Bowman™ and Simon
Thompson™

*Department of Computer Science,
The University of York,
York, Y01 5DD, United Kingdom
Email: nathan@minster.york.ac.uk

*Computing Laboratory,
University of Kent at Canterbury,
Canterbury, Kent, CT2 7NF, United Kingdom
Email: {H.Bowman,S.J.Thompson}@ukc.ac.uk

Abstract

It is now almost universally acknowledged that the data language ACT-ONE
associated with the formal description technique LOTOS is inappropriate
for the purpose of OSI formal description. In response to this the LOTOS
restandardisation activity plans to replace ACT-ONE with a functional lan-
guage. Thus, compatibility between ACT-ONE and the replacement data
language becomes an issue.

In response to this, we present an experimental investigation of back-
ward compatibility between ACT-ONE and the new LOTOS data language.
Specifically, we investigate translating ACT-ONE data types into the func-
tional language Miranda. Miranda has been chosen as it is a widely used
functional programming language and it is close in form to the anticipated
new data language.

This work serves as a “verification of concept” for translating ACT-ONE
to the E-LOTOS data language. It identifies the bounds on embedding ACT-
ONE in a functional data language. In particular, it indicates what can be
translated and what cannot be translated.

In addition, the paper reveals pertinent issues which can inform the E-
LOTOS work. For example, which constructs are needed in E-LOTOS in
order to support the class of data type specifications typically made in the

LOTOS setting? We conclude with a number of specific recommendations
for the E-LOTOS data language.

1 Introduction

The OSI formal description technique LOTOS [13] combines a process al-
gebraic language for describing “temporal ordering of actions” and a data
description language: ACT-ONE, which is based on algebraic specification
of data types [8]. It is now almost universally acknowledged that ACT-ONE
is an inappropriate data language for the purpose of OSI formal description.
The flaws in ACT-ONE have been extensively documented; see, for example,
[12] [19] [20]. Among the limitations we particularly note the following:

e ACT-ONE data definitions are long-winded. Even inherently very sim-
ple data types yield a verbose description.

e Writing ACT-ONE definitions is laborious and difficult. Each new
type has to be specified equationally and there is no built-in support
for types like records and unions.

e Type definitions are not protected. Existing types (even those from
the standard library) can be extended inconsistently, with the result
that the meaning of the type is collapsed. That is, hitherto distinct
elements of the type become identified. This is exacerbated by the lack
of a distinction between the constructors of elements of the type and
general functions defined over the type built by these constructors.

e The algebraic style is not appreciated by industrial users. Specifiers
and tool builders that work in a declarative style are generally happier
viewing definitions as rewrite systems. Although many ACT-ONE
definitions can be read thus, such an interpretation is not always valid.

e Equivalence between elements of types is undecidable. This hinders the
development of reliable verification tools.

As areflection of these perceived flaws, one of the central objectives of the
LOTOS restandardisation activity [16] is to replace ACT-ONE with a more
usable data language. Although the E-LOTOS work is still in progress, it is
now accepted that the replacement language will have a functional character.
In fact, the language will be a derivative of the strict functional language
Standard ML (SML) [18]. A clear consequence of this restandardisation

activity is that compatibility between ACT-ONE and the replacement data
language becomes an issue.
Both compatibility directions are of interest, namely:

e Forward Compatibility, meaning translating to ACT-ONE, enables the
tools and techniques developed for ACT-ONE to be reused in the
context of E-LOTOS.

e Backward Compatibility, meaning translating from ACT-ONE, enables
existing LOTOS specifications, including those in the library, to be
transformed into E-LOTOS specifications.

Thus, forward compatibility implies reuse of old tools, while backward
compatibility implies reuse of old specifications.

This paper focuses on the latter of these: backward compatibility. The
primary reason for choosing this direction is that it is intellectually more
interesting. This is because algebraic specification languages, such as ACT-
ONE, are broadly more expressive than their functional counterparts. In
particular, specifications can be written in ACT-ONE that are not exe-
cutable (the definition of sets is a classic example) and thus, can not be
interpreted in their full generality in a functional setting !.

With the broad aim of considering backward compatibility between ACT-
ONE and the new LOTOS data language we have investigated translating
ACT-ONE data types into the functional language Miranda 2. Miranda is
a side-effect free lazy functional language which supports higher order func-
tions and polymorphism and has been extensively used [27]. Our preference
for Miranda in this translation experiment is largely pragmatic. Miranda
is the in-house functional language at the University of Kent and is the
language most well understood by the authors. Furthermore, at the time
of starting our work, it was not clear which variety of functional language
would be adopted by E-LOTOS and so Miranda was a reasonable choice.

We believe the contribution of this experiment in translation is as follows:

e As already stated, the E-LOTOS data language will be SML based.
There are some important differences between SML and Miranda, not
least that the former is a strict language, while the latter is lazy. In a

!On the other hand, modern functional programming languages, such as Miranda, are
higher order as they allow functions to be arguments or results of other functions, while
most algebraic specification languages are first order. It is a matter of debate whether
this difference affects expressiveness significantly: [10], [11]

*Miranda is a trademark of Research Software Limited.

strict language, all arguments to a function application are evaluated
prior to the application itself. In a lazy language, evaluation begins
with the application, and arguments are only evaluated if and when it
is necessary. Moreover, in the case of structured arguments, such as
lists, only those parts of the list required for computation to proceed
will be evaluated. However, in terms of classes of languages (imper-
ative, logical, functional etc.) Miranda and SML are closely related.
Thus, we anticipate that the reported research will serve as a “veri-
fication of concept” for translating ACT-ONE to the E-LOTOS data
language. In fact, the majority of our results are also applicable to
SML.

e The experiment identifies the bounds on embedding ACT-ONE in a
functional data language. In particular, it indicates what can be trans-
lated and what cannot be translated.

e In addition, such an exercise in translation reveals pertinent issues
which can inform the E-LOTOS work. For example, which constructs
are needed in E-LOTOS in order to support the class of data type
specifications typically made in the LOTOS setting? One such re-
quirement is the necessity to handle non-termination in the E-LOTOS
data language. We will return to this topic in section 5. In addition,
we summarise our suggestions for the design of the language in section
6.

e A final benefit is that the ACT-ONE to Miranda translation yields
a mechanism for execution of ACT-ONE specifications, which clearly
has relevance for tool construction.

As we have already emphasized, in general terms ACT-ONE is more
expressive than Miranda. Thus, a completely faithful translation is not
feasible. In fact, in many circumstances the resulting Miranda program
can be viewed as an “implementation” of the ACT-ONE specification. For
example, the embedding will impose a particular evaluation order, which,
amongst other things will resolve non-determinism inherent in some ACT-
ONE specifications. Thus, the spirit of our experiment is to consider how
much of ACT-ONE can be faithfully captured through translation into an
executable language.

In addition, we wish our translation to generate meaningful and usable
Miranda code. This particularly becomes an issue when considering how to

translate ACT-ONE facilities to allow types to be extended and parame-
terised. In both cases a solution could be devised which in-line expands all
types, however, this would lead to an explosion in size of types and lose the
re-use inherent in the original ACT-ONE types.

The structure of this paper is as follows. Section 2 presents background
material. Both ACT-ONE and Miranda are briefly introduced and then the
basic translation approach is described. Section 3 contains the main techni-
cal body of the paper; the translation of a series of increasingly more sophisti-
cated ACT-ONE data types is considered. We show how basic specifications
are translated; how translations of parts of specifications are combined; how
parameterisation and actualisation are rendered and how renaming can be
performed. Also discussed are formal equations and the library mechanism.
The full algorithm for library translation is given in the appendix. It is
through these examples that the translation algorithm is illustrated.

Section 4 discusses some techical limitations of the translation. Section 5
gives a perspective on the translation. In particular, we examine the effect of
the Haskell [26] type class mechanism on translating overloading; the effect
of lazy evaluation on translating particular kinds of specification and finally
we look at the role of non-termination in ACT-ONE specifications.

We conclude, in section 6, with some remarks on the translation and
a number of specific suggestions about the design of the E-LOTOS data
language.

2 Background and Basic Approach

This section presents background material for the remainder of this paper.
We give short introductions to ACT-ONE and Miranda in the next subsec-
tion and then we describe the basic translation approach.

2.1 Introductions to ACT-ONE and Miranda

We assume a certain level of familiarity with ACT-ONE and with a func-
tional language. In particular, in order to understand the material in this
paper, knowledge of one of the modern functional languages, such as Haskell
or SML, should be sufficient. Our discussion of Miranda in this subsection
and the examples to be found in the body of the paper should clarify the
notational differences between Miranda and other modern functional lan-
guages.

ACT-ONE is an algebraic specification language whose fundamentals are

fully described in [8]. A number of LOTOS oriented introductions to the
language have also been given and can be found in [1], [3], [6]. The semantic
model for an ACT-ONE specification is a many sorted algebra, data opera-
tions being defined as functions over terms in the algebra. An initial algebra
semantics is employed.

ACT-ONE sorts are defined by a signature and a set of equations. For
example, the natural numbers can be defined as follows:

type Nat_numbers is
sorts nat
opns zero: -> nat
succ: nat -> nat
plus: nat, nat -> nat
eqns forall x, y:nat
ofsort nat
plus(x, zero) = x;
plus(x, succ(y)) = succ(plus(x, y));
endtype

The sort names, here just ‘nat’, and operations, here ‘zero’, ‘succ’ and
‘plus’, together comprise the signature of the data type. The algebra of
this data type contains terms constructed by composing the operations of
the data type arbitrarily according to their input and output types. The
equations of the data type define equality between terms generated from the
signature.

In addition to basic algebraic definitions of the form above, ACT-ONE
offers facilities to structure and refine specifications. Mechanisms are pro-
vided for incrementally eztending data types (also called combining specifi-
cations), renaming data types, defining parameterised (generic) data types,
actualizing parameterised data types and reusing data types defined in a
library. The reader is referred to the literature [1], [3], [6] for details of these
facilities. Section 3 of this paper will consider typical examples of each of
these facilities.

Miranda is a lazy functional language which enables both polymorphic and
higher order functions to be defined and employs lazy evaluation of expres-
sions. The language contains a rich set of programming features, including
built-in data types (numbers, characters, tuples, lists, etc.), algebraic and
abstract data types and modules. Although this spectrum of features is
highly relevant to the definition of the E-LOTOS data language, we only

in fact use a subset of these features in our translation. In particular, the
translation interprets ACT-ONE definitions using Miranda Algebraic Types
(MATs) (we will refer to these explicitly as Miranda Algebraic Types in
order to avoid confusion with the algebraic type concept as embodied in
ACT-ONE), functions over these types and modules. We consider these
constructs in turn.

Miranda Algebraic Types. As an illustration of Miranda algebraic types and
functions over MATs, the following is the definition of a natural number
queue in Miranda:

queue ::= Create | Add nat queue

first :: queue -> nat

first Create = 0

first (Add x Create) = x

first (Add x (Add y z)) = first (Add y =z)

remove :: queue —> queue

remove Create = Create

remove (Add x Create) = Create

remove (Add x (Add y z)) = Add x (remove (Add y z))

The description is divided into a MAT definition and the definition of
two functions over the MAT: first and remove. The former of these defines
a recursive data type, which means that elements of the type Queue can
either be of the form Create or (Add n q), where n::nat and q: :queue.
For example, a typical value of this type is: Add 5 (Add 6 Create) which
is a queue of two items, whose “first” element is 6. Create and Add are
constructors for the data type and are distinguished from other identifiers
by starting with a capital letter.

Each function is defined by its type and equations, but, in contrast to the
situation with ACT-ONE, these equations have a clear evaluational inter-
pretation. For example, the rules are always applied as rewrite rules from
top to bottom, thus resolving any non-determinism arising from overlap-
ping patterns. As an illustration of this, we could rewrite the above rules
for first as follows:

first :: queue -> nat
first Create = 0

first (Add x Create) = x
first (Add x w) = first w

Although, the last two rules now have overlapping patterns, the top to
bottom order of application of rules prevents non-determinism from arising.

In order to avoid confusion we will use the term operation to apply specif-
ically to ACT-ONE operations, while the terms constructors and functions
are used in the Miranda context. Thus, we will not speak of operations in
the Miranda context.

Modules. Miranda definitions are collected together in files or scripts and
the module mechanism supports the inclusion of one script in another. The
effect of inclusion is to make the definitions in the included file visible within
the including file.

The directive specifying inclusion is exemplified by:

%include "ant.m"
The basic mechanism is extended in three ways.

e On inclusion, definitions can be hidden (- dove) or ‘renamed’ (wombat/fish),
thus,

%include "ant.m" wombat/fish -dove

e A script can control exactly which definitions are exported, the default
being only those in the script itself. For instance,

hexport + wombat

specifies that together with the definitions in the file (+), wombat will
be exported.

e Modules can be parameterised by adding a %free declaration. %free
is followed by a signature containing type and function declarations;
on inclusion, these parameters must be bound to actual types and
values. Examples follow in section 3.

Miranda modules are sensible units of program code, which can be in-
terpreted independently of each other. Low level textual insertion (with no
syntactic or other restrictions) is provided by the directive:

%insert "filename"

For introductions to Miranda, we once again refer the reader to the
literature: [23], [22].

2.2 The Basic Translation

The translation mechanism is implemented as a suite of Miranda programs.
First, an abstract syntax is given for ACT-ONE as a set of Miranda alge-
braic types; this is a standard way to describe language syntax and closely
relates to BNF. Since an abstract syntax is used, it is assumed that in or-
der to resolve issues of precedence the ACT-ONE specifications are fully
parenthesised.

The translator interprets ACT-ONE programs expressed in this abstract
syntax. The heart of the translation is a set of Miranda functions which maps
each ACT-ONE syntactic form into a portion of Miranda script. Thus, the
translation has a denotational flavour, in which the denotation generated is
a Miranda script. Implementation of the translation is fully described in [2].

Implicit in the translation is the interpretation of ACT-ONE equations
as rewrite rules with a particular orientation. This immediately constrains
the generality of the translation. In particular, ACT-ONE equations that
do not adhere to such an orientation are not translated meaningfully.

3 Examples of translation

The aim of this section is show how LOTOS data types (represented in ACT-
ONE) can be translated into Miranda. The section begins with a translation
of basic data types taken from [15], then progresses on to more interesting
examples found in [14]. A summary of the methods used is given at the end
of the section.

Miranda algebraic types and functions are used to represent the ACT-
ONE data types. To form these algebraic types it is necessary to identify the
constructors of ACT-ONE types. One way to do this is to use a heuristic,
such as treating all operators with no equations as constructors and the rest
as non-constructors. This would not be sufficient though because, as we will
see in Section 3.2 it is possible for constructors to have associated equations,
so we would include operators that appear within patterns in the left hand
side of an equation as constructors as well. In cases where equations for an
operation are given in a different type to that of its signature, this heuristic
may fail, identifying a non-constructor as a constructor. Garavel, [9], accepts
that strategies exist to identify constructors, but for ease of implementation
concludes that the specifier should identify the constructors themselves, by
attaching a special comment. The specifier should know what they intend
to be the constructors so this does not place any limiting constraint.

Given that ACT-ONE data types are abstract data types, it might be ex-
pected that they would translate neatly into Miranda’s abstract type mecha-
nism abstype, unfortunately there are some incompatibilities between their
different interpretation of abstract data types. In LOTOS it is possible to
distribute the operations associated to a sort across a number of data types,
whereas in Miranda they must all appear in the same abstype definition.
For this reason the ACT-ONE data types are translated into basic Miranda
types; it would not be hard to convert the types into the abstype form.

Our translation makes some initial assumptions about the data types
input:

1. The equations when used as rewrite rules are:

(a) Confluent [5]
(b) Terminating [5]

2. All the constructors of a sort must be defined in the same data type
as the sort.

3. The constructors of a sort must be defined explicitly. This is done using
a special comment (*! constructor *) immediately after the operation
declaration. This is consistent with Garavel’s suggestion mentioned
earlier.

4. There is no overloading of sorts and operations.
5. Nomne of the sorts or operations may be a Miranda reserved word.

6. The equations are given in a prefix form.

These constraints limit the expressiveness of ACT-ONE. However 3, 4,
5 and 6 are pragmatic constraints which do not affect the generality of
translation, i.e. they are not really limiting ACT-ONE. In particular the
fourth assumption is not restrictive since we assume that ACT-ONE data
types have been transformed by replacing overloaded names with unique
identifiers. A more general solution whereby the overloading is preserved
through the translation will be discussed in Section 5 when we consider
Haskell types classes.

However, assumptions 1 and 2 do restrict the class of ACT-ONE data
types that can be translated. The first assumption is necessary in order to
enable the data types to be viewed as rewrite rules in a Miranda setting.
The second assumption is not as fundamental as the first; it can be relaxed,

10

although any translation of an example which falls in this category would be
messy and considerably more complex, requiring extensive rewriting of files.
These two assumptions are in fact constraints typically applied by current
LOTOS tools such as, LOLA [4] and SMILE [7], SDL tools such as, RASTA

[17] and in the literature, [9].

3.1 Basic non-parameterised specifications

The first example of our translation is a specification of natural numbers.

type Nat_numbers is

sorts nat
opns zero: -> nat (*! constructor *)
succ: nat -> nat (*! constructor *)

plus: nat, nat -> nat
eqns forall x, y:nat
ofsort nat
plus(x, zero) = x;
plus(x, succ(y)) = succ(plus(x, y));
endtype

‘succ’ and ‘zero’ have been flagged as constructors. It is not hard to verify
this is consistent with the heuristic discussed at the start of this section, and
indeed we can also observe that ‘plus’ is a function defined over the sort ‘nat’.
In Miranda these defined functions are modelled using Miranda functions.
The signature of plus maps neatly to a function signature and the equations
to function definitions. Using these ideas the following translation is given:

nat ::= Zero | Succ nat

plus :: nat -> nat -> nat
plus x Zero = x
plus x (Succ y) = Succ (plus x y)

The type of Succ and Zero has been extracted from the signature of the
ACT-ONE data type to produce a Miranda algebraic type, whereas plus
has been constructed, as previously described, as a Miranda function.

It is usual for Miranda functions to be written in curried form. A curried
function is a function that takes its arguments one at a time, so a function
of two arguments would have the type:

11

tl > t2 > t
In contrast the types of the corresponding uncurried form would be:
(t1, t2) >t

It is trivial to convert between the two notations. However in Miranda we
use curried functions as they allow partial function application, see [24, 22],
hence its use in the translation despite the ACT-ONE equations being in an
uncurried form.

We see that the Miranda definitions differ only syntactically from the
ACT-ONE definitions, demonstrating the directness of the translation; this
is true of most simple ACT-ONE data types.

Although no example has been given that includes premisses with the
equations it should be clear that a premiss translates into a Miranda style
if test (or guard) in which a list of premisses is treated as a conjunction.

3.2 Non-free constructors

Normally different constructor terms denote different values, we now meet
an example where this is not the case.

type Switch is
sorts switch
opns on:->switch (*! constructor *)
not:switch->switch (*! constructor *)
eqns forall x:switch
ofsort switch
not(not(x)) = x;
endtype

This can be translated into Miranda in the usual way except the equation
is translated into a law:

switch ::= On | Not switch
Not (Not x) => x
Unfortunately laws are an obsolete feature of Miranda and are likely to

be unsupported in later versions, so it is necessary to find an alternative.
[23] provides a way of removing laws whilst keeping the overall meaning:

12

1. Throughout the script (including the rhs of the laws) replace all right-
hand-side occurrences of the lawful constructors by the associated
function names. Ounly the ‘left-hand-side’ uses of the constructor, i.e.
in pattern matching, are left alone.

2. Turn each law into a function definition, by replacing the outermost
occurrence of the constructor on the lhs of the law by the associated
function name, and replacing each => by =. We must also add a last
case to the function definition, stating that its result is equal to a call
of its associated constructor on the same arguments if no earlier case
applies.

This is in fact the way the laws were implemented in Miranda. If we
perform the algorithm on the above example, we produce the following code:

switch ::= On | Not switch

not (Not x) = x
not = Not

3.3 Combination of specifications

This is a feature of LOTOS which allows data types to be formed from other
data types, through inheritance. The second assumption at the beginning of
the section disallows the introduction of constructors into a sort outside the
type the sort is defined in, thus when inheriting a sort we can only extend
the sort by adding extra non-constructor operations. For example we can
create ‘Enriched_nat’:

type Enriched_nat is Nat_numbers
opns times:nat, nat -> nat
eqns forall x, y: nat
ofsort nat
times(x, zero) = x;
times(x, succ(y)) = plus(x, times(x, y));
endtype

where ‘Nat_numbers’ has already been defined. Thus this translates into
the following Miranda:

times :: nat -> nat -> nat
times x Zero = Xx
times x (Succ y) = plus x (times x y)

13

Given that the above ACT-ONE type requires ‘Nat_numbers’ it is self-
evident that the translation will require the translation of ‘Nat_numbers’.
One way to implement this in Miranda is to place ‘Nat_numbers’ in a module,
which is implemented in Miranda as a file. The file would then be %included
at the beginning of the ‘Enriched_nat’ translation. It turns out that this use
of modules is convenient for other parts of the translation and so in general
each LOTOS type is translated into a module of its own. This could be
expected because as we have already suggested LOTOS types are very much
like modules.

‘Enriched_nat’ extends the use of the sort ‘nat’, we now look at an ex-
ample that uses ‘nat’ rather than extending it. A queue of natural numbers
is an example of this:

type Nat_number_queue is Nat_numbers
sorts queue
opns create:-> queue (*! constructor *)
add: nat, queue -> queue (*! constructor *)
first: queue -> nat
remove: queue -> queue
eqns forall x, y: nat, z: queue
ofsort nat
first(create) = zero;
first(add(x, create)) = x;
first(add(x, add(y, z))) = first(add(y, 2));
ofsort queue
remove(create) = create;
remove(add(x, create)) = create;
remove(add(x, add(y, z))) = add(x, remove(add(y, z)));
endtype

We translate this directly into the following Miranda:

queue ::= Create | Add nat queue

first :: queue —> nat

first Create = Zero

first (Add x Create) = x

first (Add x (Add y z)) = first (Add y z)

remove :: queue -> queue

14

remove Create = Create
remove (Add x Create) = Create
remove (Add x (Add y z)) = Add x (remove (Add y z))

where the translation of ‘Nat_numbers’ is an imported module.

3.4 Parameterisation of specifications

This feature of LOTOS allows polymorphic data types to be defined, for
example a queue. The type of queue is parametrically polymorphic because
its elements may take any type. The following ACT-ONE data type is one
method to define a queue in LOTOS:

type Queue is
formalsorts data
formalopns d0: -> data
sorts queue
opns create:-> queue (*! constructor *)
add: data, queue -> queue (*! constructor *)
first: queue -> data
remove: queue -> queue
eqns forall x, y: data, z: queue
ofsort data
first(create) = dO;
first(add(x, create)) = x;
first(add(x, add(y, z)) = first(add(y, 2));
ofsort queue
remove(create) = create;
remove(add(x, create)) = create;
remove(add(x, add(y, z))) = add(x, remove(add(y, z)));
endtype

This type is similar to the ‘Nat_number_queue’ but there are some im-
portant distinctions which can be highlighted:

1. The queue is now no longer of sort ‘nat’ but of sort ‘data’. The type of
data has yet to be established - this is achieved during actualization.

2. ‘first(create)’ is now equal to ‘d0’, a constant which will be instantiated
during actualization, rather than to ‘zero’.

15

This has a number of similarities to Miranda parameterised modules
(see [24], 27/4), with ‘data’ and ‘d0’ declared %free and their bindings
given at %include time. To take advantage of this, it is necessary to place
the translation below in a module (implemented by a file), say, queue.m. A
direct translation is then produced:

hfree { data :: type

d0 :: data
}
queue ::= Create | Add data queue
first :: queue -> data

first Create = dO
first (Add x Create) = x
first (Add x (Add y z)) = first (Add y z)

remove :: queue -> queue

remove Create = Create

remove (Add x Create) = Create

remove (Add x (Add y z)) = Add x (remove (Add y z))

Again, as with the ACT-ONE type, the type and definition of d0 are not
specified. The bindings for d0 and data will have to be provided later at
%include time, which as the next sub-section suggests, is when the type is
being actualized.

In Section 5 we discuss an alternative method of translating such param-
eterised data types using type classes.

3.5 Actualisation of parameterised specifications

Parameterised types are instantiated through actualization. For example,
the following assigns natural numbers to the items in a queue to form a
queue of natural numbers:

type Nat_number_queue is
Queue actualizedby Nat_numbers using
sortnames nat for data
opnnames zero for d0

endtype

16

The mappings given are required to complement the translation of ‘Queue’,
providing the %free bindings for queue.m. This is done by placing the trans-
lation:

%include "nat_numbers.m"
%include "queue.m" {data == nat; dO = Zero;}

in a file nat_number_queue.m.

Note that the sort of data is provided by using a type synonym whilst
the definition of d0 is expressed using definitional equality. More generally,
it is always the case that sorts have bindings provided by type synonyms
and operations by definitional equalities.

The mechanism given here allows the possibility of actuals themselves
depending on other formals.

3.6 Renaming of specifications

Another feature that LOTOS incorporates is the renaming of one data type
to form another. The example that follows generates a type ‘Numbers’ which
is isomorphic to ‘Nat_numbers’:

type Numbers is
Nat_numbers renamedby
sortnames numbers for nat
opnnames nought for zero
add for plus
endtype

Miranda provides no real renaming facility but it is possible to use the
aliasing method provided in the modules system (see [24], 27/3). In this
case we produce:

hinclude "nat_numbers.m" numbers/nat Nought/Zero add/plus

To illustrate a more complex form of translation of a renamed data type
we turn to ‘Connection’, an example given in the tutorial [15]:

type Connection is
Queue renamedby
sortnames channel for queue
objects for data

17

opnnames send for add
receive for first
endtype

This example is more subtle than Numbers. To import the ‘Queue’ mod-
ule it is necessary to provide the %free bindings but as they are not being
actualized in this data type we still require them to be %free, furthermore
data needs to be renamed. We achieve these objectives with the following
Miranda:

hinclude "queue.m" {data==objects; d0=d0;}
Send/Add receive/first channel/queue
hfree {
objects::type;
dO: :objects;
}

This translation has the desired effect of renaming the components of
the data type, whilst keeping the formal parameters %free. In general a
type such as this is translated by first translating the non-formal sorts and
operations in the same way as ‘Numbers’. Then the %free bindings for the
formal sorts and operations are provided by setting the formal name to itself,
except where a renaming occurs in which case the new name is used. The
formal sorts and operations still need to be %free, so the %free declaration
is copied from Queue.m, replacing the renamed formal sorts and operations
by their new names.

3.7 Introduction of formal equations
The example given below is the first to introduce formal equations:

type Fboolean is
formalsorts fbool
formalopns true : -> fbool
not : fbool -> fbool
formaleqns forall x: fbool
ofsort fbool
not(not(x)) = x;
endtype

This type requires careful consideration. Let us first consider the trans-
lation of the above ACT-ONE type ignoring the equation; we would give
the following translation:

18

hfree {

fbool: :type;

true: :fbool;

not: :fbool->fbool;
}

This is acceptable as it stands, but how do we translate the formal
equation? An initial thought may be to treat it as a normal equation but
this is obviously wrong because not only has ‘not’ been declared %free (and
therefore may have no associated definition in the current script) but when
actualized the function would have more than one definition for the same
case (one in the module and one in the formal module).

In fact, formal equations should be considered as equations to be satisfied
when actualized - a proof obligation - rather than as definitions of equations.
For example the following formal equation defines that when multiply is
actualized it is true that whatever order its parameters are in the result is
unaffected (i.e. multiply is commutative); it is not enough to specify what
multiply is, after all, many mathematical operations including + and X
would satisfy this constraint:

formaleqns forall a, b: nat
ofsort nat
multiply(a, b) = multiply(b, a);

This links well to predicate calculus where we may use the following to
represent the above equation:

V,y : nat.(multiply ¢ b = multiply b a)

A proofis then required that the above equation holds when the equation
is actualized. Miranda does not have this powerful system built into it and
although it is possible to model the theory in Miranda, for the purpose of
translation it is more sensible to place the constraint in a comment and
leave it to the specifier to verify that the constraint holds when the type is
actualized; this is similar to the way LOTOS deals with the formal equations
- no proof is required during actualization. We do not use the built in
Miranda commenting system to do this because we want the constraint to
be type checked. One way to do this is to write a function that tests the
constraint over all possible values in type. This function can be written
using a list comprehension (see [22] for an introduction). For the ‘Fboolean’
example above we would add the following lines after the %free declaration:

19

enum_fbool :: [fbool]
test_notl = and [not(not x) = x | x <- enum_fbool]

Notice that only the type of enum bool is given, where we assume enum bool
to be a list of all the possible values of type fbool. For the sake of type check-
ing there is no need to give the definition of enum_bool, however this can be
done during instantiation, although for infinite types test notl would be
non-terminating if the constraint did hold.

The next example, ‘Element’, also has formal equations but this time
the equations have premisses:

type Element is Fboolean
formalsorts element
formalopns e_eq, e_ne: element, element -> fbool
formaleqns forall x, y: element
ofsort element
e_eq(x, y) = true => x = y;
ofsort fbool
x =y => eeq(x, y) = true;
e-ne(x, y) = not(e_eq(x, y));
endtype

The formal equations can be expressed in predicate calculus as:

Vz,y : element.(e.eqx y = true = =z =y) A
Vz,y : element.(r =y = eeqx y = true A\

Vz,y : element.(e_ne z y = not(e_eq z y))
which, incidentally, is equivalent to:

Vz,y : element.(e_.eq x y = true <= z =1y) A

Vz,y : element.(e_ne y = not(e_eq z y))

Again we use list comprehension to model the formal equations, but this
time we add constraints, so we would represent the equations in this example
as follows:

enum_element :: [element]
test_e_eql
= and [e_eq x y = true |
x <- enum_element, y <- enum_element, x=y]

20

test_e_eq2
= and [x=y | x <- enum_element;
y <- enum_element; e_eq x y = true]
test_e_nel
= and [e_ne x y = not (e_eq x y) |
X <- enum_element; y <- enum_element]

For ‘Element’ to import ‘Fboolean’ in the translation, the %free bindings
need to be given. However, as the type is not being actualized at this point,
it is not possible to instantiate the type, so a variant of the method given
when translating ‘Connection’ (see Section 3.6) is used to give:

%include "fboolean.m" {fbool==fbool; true=true; not=not;}

hfree {
fbool :: type;
true :: fbool;
not :: fbool -> fbool;
element :: type;

e_eq :: element -> element -> fbool;

e_ne :: element -> element -> fbool;
}
enum_element :: [element]
test_e_eql

= and [e_eq x y = true |
X <- enum_element, y <- enum_element, x=y]

test_e_eq2

= and [x=y | x <- enum_element;
y <- enum_element; e_eq x y = true]
test_e_nel
= and [e_ne x y = not (e_eq x y) |
x <- enum_element; y <- enum_element]

3.8 Actualising and renaming in the same data type

The next type, ‘Hexstring’, uses the LOTOS shortcut whereby it is possible
to actualize and rename a data type in the same type:

type HexString is NonEmptyString actualizedby HexDigit using
sortnames hexdigit for element

21

bbool for fbool

hexstring for nonemptystring
opnnames hex for string

bnot for not

btrue for true

hex_eq for e_eq

hex_ne for e_ne

endtype

This data type renames ‘nonemptystring’ and ‘string’ whilst the remain-
ing sorts and operations are actualized. This translates quite neatly into:

%include

%include
%include
%include
%include

"nonemptystring.m" {element==hexdigit; fbool==bbool;
not=bnot; true=Btrue;
e_eg=hex_eq; e_ne=hex_ne;}
Hex/String hexstring/nonemptystring

"hexdigit.m"

"naturalnumber.m"

"basicnaturalnumber.m"

"boolean.m"

Note that the last three inclusions arise from the translation of the earlier
inclusions in hexdigit and nonemptystring.

3.9 Libraries and modules

LOTOS allows the use of libraries to give access to pre-defined types. For

example:

library Queue, Nat_Number
endlib

type Nat_number_queue is Queue, Nat_Number

Miranda’s module system eliminates the need for a library declaration.
For example, ignoring the library declaration, the above skeleton would be
translated as:

hinclude "nat_number_queue.m"
%include "queue.m"

22

So far no general method has been given to import modules under all cir-
cumstances. To rectify this we give an algorithm that can be implemented.
The algorithm works in three stages (p-specificaton, actualization and
renaming), bottom-up through the dependency graph of data types. It is
fully described in the appendix.

3.10 Summary of the translation

We finish this section with a brief summary of how to translate an ACT-ONE
data type into Miranda using the methods discussed in this section.

Basic non-parameterised types

Translate the sorts into Miranda algebraic types with their constructors
extracted from the operations marked with (*! constructor *), the types of
the constructors are also found here.

Translate the equations into function definitions where the signature
of the function is extracted from the corresponding operations. In the
case where a constructor has an associated equation or equations, then the
method given in section 3.2 is used.

All the types are translated into an individual module, which for conve-
nience will be the name of the type appended with a .m.

Combination of specifications

Import the translations of the types to be inherited and their dependen-
cies, then translate the rest of the type in the same way as a basic non-
parameterised data type.

Parameterisations of specifications

Import the translations of the types to be inherited and their dependencies.
The formal sorts and formal operations are translated into a %free decla-
ration whilst the formal eqns are translated into a testing function, which
should be interpreted as a constraint that has to be satisfied when actualiz-
ing the data type. The rest of the type will be translated in the same way
as the basic non-parameterised type.

Actualisation of parameterised specifications

Import the translations of the types to be inherited and their dependencies,
providing %free bindings for the translation of the type being actualized.

23

These bindings are extracted from the bindings given in the ACT-ONE type.
Where a binding exists for a type, function or constructor not declared %free
then the binding shall be used to create an alias (and hence rename it).

Renaming of specifications

Import the translations of the types to be inherited and their dependencies,
providing alias bindings for the translation of the type to be renamed. These
bindings are extracted from the bindings given in the ACT-ONE type.

Libraries and Modules

The full details of this translation can be found in the appendix.

4 Limitations of the translation

This section analyses two weaknesses of the translation presented in the
previous section.

4.1 The problems of using the aliasing system to rename
data types

In Section 3.6 we used the aliasing system in order to rename data types.
This system does not strictly rename the components of the data type but
instead provides aliases for them, although only the alias can be used in
the current scope. In the majority of cases there are no problems with this,
however where a type inherits another type twice, once with its contents
renamed, this system fails. The type ‘both’ is an example of this:

type original
sorts colour
opns purple:-> colour
inverse: colour -> colour
endtype

type new is original renamedby
sortnames color for colour
opnnames mauve for purple
opposite for inverse
endtype

24

type both is original, new
endt};r.)é
Using the methods discussed thus far, we would translate this as:
original.m
colour ::= Purple | Inverse colour
new.m

%include "original.m" color/colour Mauve/Purple
g P
Opposite/Inverse

both.m

hinclude "new.m"

hinclude "original.m"

hinclude "original.m" color/colour Mauve/Purple
Opposite/Inverse

The problem with this is that in Miranda it is not possible to import
the same script twice, even with all its contents renamed. In fact this is not
entirely true, it is possible to do this if the script contained only functions
definitions, but considering we are mainly concerned with types, this will
not cover a large number of translations.

We ask ourselves what limitations this has: in general, this will not affect
the majority of specifications, however, the renaming system is often used
to prevent the overloading of the same type inherited twice; this cannot be
translated into Miranda using the aliasing system. An alternative way to
translate examples that fall into this class would be to, rather than use an
automatic renaming facility, copy the script and textually rename the con-
structors, types and functions. Of course this solution has severe drawbacks,
such as the lose of the inheriting structure present in the ACT-ONE types.

This problem highlights a limitation of the implementation of Miranda
rather than a limitation of the translation. It is foreseeable that a different
implementation may well incorporate an improved aliasing system, which
could cope with importing the same script twice, once with the elements
renamed.

25

4.2 The duplication present when inheriting %free statements

The translation method given in the last section imports modules by us-
ing the %include directive. In some cases where a script is imported that
contains a %free declaration 3 it is necessary to copy the whole %free dec-
laration from the imported script as well. This can lead to vast amounts
of (almost redundant) copying, especially if formal sorts and operations are
inherited over a number of types. In Section 2.1 we identified that there
is another method for importing scripts in Miranda, by use of a %insert
directive. This can be used to reduce the amount of redundancy. To import
a module containing a %free declaration into the current script all that
is required is one %insert directive, so for example, to import the script
element.m given in Section 3.7 we use:

%insert "element.m"

Note that there is no need to copy the %include statement from within
element.m because this will be automatically inserted into the current script
with the rest of the contents of element.m.

Unfortunately it is not possible to use the %insert method for every
example. To see this we consider an example where the current script intro-
duces new %free elements and also imports a script which contains a %free
declaration. Miranda allows only one %free declaration per script so this
example would not work. In fact, in such cases it is necessary to revert back
to the %include method.

An advantage of the %include method is that as Miranda uses separate
compilation of files and stores object code for each file, the speed of compi-
lation of complete specifications is often reduced, especially in cases where
a minor change is made to one data type. Most of this is lost using the
%insert method.

In conclusion it would be sensible to adopt a heuristic that combines the
two methods. The fact that there is no clean way to import files without a
certain amount of redundancy highlights a weakness in Miranda.

5 A Perspective on the Translation

The material in this section discusses some alternative approaches to the
translation, and presents a perspective on ACT-ONE brought out by the

3Specifically, when dummy bindings are used in the current script, see the appendix
for a definition of dummy bindings.

26

translation. This, in turn, has implications for the design of the data part
of E-LOTOS, which we enumerate in the conclusions.

5.1 Parametric specifications, polymorphism and overload-
ing

In this section we discuss the different ways in which overloaded names or
parametric specifications can be translated into the functional languages
Miranda and Haskell.

5.1.1 Polymorphism and overloading

Before discussing the translation it is worth establishing some terminology
and introducing some general ideas. In particular we look at what is meant
by ‘polymorphism’.

Parametric polymorphism — the polymorphism of the Hindley-Milner
type system which underlies Miranda and other modern functional program-
ming languages — is the feature by which a single definition can be used over
different types. For instance in writing the definition of the length function

length []
length (a:x)

0
1 + length x

over lists the type of elements in the list is immaterial: we can apply
length to a list of any arbitrary type, and we therefore say that

length :: [*] -> num

where * is a type variable. By this means the same code is associated
with the identifier 1ength over a whole class of types: namely the list types.

5.1.2 Overloading and type classes

Quite distinct from polymorphism is a mechanism which allows the same
name to be associated with different definitions at different types. In the
literature of object-oriented programming this is often known as polymor-
phism. Here we use the terminology of the functional programming com-
munity and call it overloading.

Suppose that we overload plus so that it operates over both numbers
and Booleans

27

plus :: num -> num -> num
plus :: bool -> bool -> bool

what then is its type? We cannot say
plus :: * => *x => %

since there is no definition of plus over most types (such as char). In
Haskell notation (but using the Miranda syntax for type variables) we say
that

plus :: (Arith *) => * —> * -> %

so that plus has type * -> * —=> * not for all types, but for all types
* belonging to the type class Arith. A class is defined by a declaration,
exemplified by

class Arith * where
plus :: * —=> % —-> %
Zero :: x

The members of this class are exactly those types which are instances
of Arith. An instance declaration contains definitions of the functions and
values named in the signature of the class declaration, so that for example
an instance making bool a member of Arith will take the form,

instance Arith bool where

plus = (\/)

zero = False

This mechanism is important because it allows us to give types to func-
tions whose definitions use overloaded functions. For instance we can say

sum []
sum (a:x)

zero
plus a (sum x)

and the type of sum will be

Arith * => [*x] -> x*

28

that is it takes a list of items of type * to a * if * is in the type class
Arith. In particular it can be used over the type bool (and presumably also
num).

We believe that this powerful mechanism is of value in our translation,
but also that this suggests a sound and effective way of describing the types
of overloaded operators in the data part of E-LOTOS, [16].

Note that parametric polymorphism resembles overloading, but in a
strong form: there is no type class context (such as Arith *) in the type of
a polymorphic function, and so no constraint on the type of the function.

5.1.3 Translating parametric specifications

In this section we consider the different possible approaches to translation
in the light of the material in Section 5.1.2. As a running example we take
the ‘Queue’ of Section 3.4.

As indicated in that section, we cannot give a polymorphic rendering
of the ‘Queue’ type, depending as it does both on the type ‘data’ and the
value ‘d0’. We can however translate a similar type which depends only
upon ‘data’. This is given by replacing the first equations for first and
remove by

first(create) = error “first”
remove(create) = error “remove”

where the ‘error’ function aborts execution. We can then write in Mi-
randa

queue * ::= Create | Add * (queue *)
with

first :: queue * -> *

remove :: queue * —> queue *

The advantage of this approach is that first and remove (and indeed
the constructor functions Create and Add) have polymorphic type, thus
supporting a strong form of overloading.

How is the full type ‘Queue’ rendered in a similar way? The answer is to
use the type class mechanism of Section 5.1.2. These are a feature of Haskell

29

(but can be simulated in Miranda?).
‘Queues’ can be created over any type (‘data’) which contains an element
designated ‘d0’. We therefore define

class Data * where
do :: x*

Now we have queue * defined above, and first and remove defined
exactly as in Section 3.4 except that now their types are

first :: Data * => queue * -> *
remove :: Data * => queue * -> queue *

This means that first and remove can be used over queues of any type
in the class Data.

What is the advantage of this over the translation of Section 3.47 It
allows full overloading, so that first and remove can be used over more
than one type in a given context. This contrasts with the earlier translation
in which only a single instance of the parametrised module is allowed in
any context; multiple instances have to be replaced by calls to renamed
functions.

To conclude this discussion we have shown how the overloading of LO-
TOS can be accommodated in the type system of Haskell which is essentially
the type system of Miranda (or indeed Standard ML) augmented with type
classes. We would recommend the inclusion of a type class mechanism in
the re-designed data language of E-LOTOS, since it gives a clear and well-
founded type to overloaded operators, in contrast to the current situation
in ACT-ONE.

“Using the higher-order nature of Miranda functions it is possible to simulate type
classes in Miranda. Suppose we want to model the class
class Eg * where

£ x> [*] -> *

g H *
A function h of type Eg * => is now modelled by
h? 0 (¢ => [*¥] -> % , x) => .,

whose first argument is a pair of values whose types are those of £ and g. This mechanism
requires that the particular £ and g for the type in question are passed as parameters to
applications of h’. For instance we might write
h’ (fNum,gNum) el ... en
in place of h el ... en in a Haskell-style class system.

The method described here is indeed that adopted in simple implementations of type
classes.

30

5.2 Lazy evaluation and infinite objects

It has been envisaged that the new data language of LOTOS will be strict.
Miranda, by contrast, is a lazy language and this has some positive benefits
for the translation of ACT-ONE specifications. Take as an example the
specification

type infinite is list, nat_numbers
opns ones:->list;
one:->nat;
eqns ofsort list
ones = cons(1, ones);
ofsort nat
one = head(ones);
endtype

Here we define ‘one’ in terms of ‘ones’, an infinite list. Specifically ‘one’
is defined as ‘head(ones)’ where

head(cons(a,x)) = a

In the initial algebra for the type we have
one = head(ones) = head(cons(1, ones)) = 1

and so the specification is meaningful despite the fact that the rule
ones = cons(1, ones)

does not lead to a terminating rewrite rule. Under a strict translation
‘ones’ and thus ‘one’ will be undefined. Tools for LOTOS vary in their
treatment of examples such as these: Smile gives no warning that this might
be problematic, and ‘one’ reduces to ‘succ(0)’; Topo core dumps in the same
situation.

It is questionable whether such features of ACT-ONE are used in day-
to-day specifications. We might suggest that E-LOTOS incorporate lazy
evaluation, but if this were to happen there need to be stipulations placed on
the data passed between processes. In particular compound data items need
to be fully evaluated before being communicated as otherwise unevaluated
expressions of unbounded size can be passed from process to process.

31

5.3 Totality and termination in data specifications

In a functional programming language like Miranda it is quite possible to
define functions which are only partial over their domains. For instance

head (a:x) = a ¢D)

is undefined on the empty list [1, since the cases given in the pattern
match are not exhaustive. Another example is provided by

fac O
fac n

1 (2)
n * fac (n+1)

which when applied to any positive argument will give no result.

The non-termination of (1) is intended and indeed is benign, since the
case(s) in which the function fails to terminate are decidible, that is they
can be tested for at run-time. One can therefore complete the definition (1)
to (3) in which an error is raised or an exception thrown in the empty list
case.

head (a:x) = a (3)
head [] = error ...

The form of non-termination evident in (2) is in general not decidible
(this is exactly Turing’s halting problem, of course). We can force our
language to avoid such situations by controlling the forms of definition so
that only recursive calls on structurally smaller arguments are permitted.
Thus, only structural/primitive recursion is allowed ® . Clearly (2) would
be disallowed in this case, but the correct definition

fac O
fac n

1 (4)
n * fac (n-1)

is permitted since the recursive call is on the smaller (n-1). Such an
approach has various merits.

First, and most importantly, it simplifies the meaning of the language.
In this situation we can rely on a function call giving one of two outcomes

e a defined result is returned, or

e an exception is raised.

>This approach has also been advocated for general functional programs; see [25].

32

In either case the outcome is evident after a finite amount of time; it
does not fall into a ‘black hole’ as would fac 2 under definition (2) above.
This form of divergence is problematic in describing the semantics of the
language: the system appears to deadlock, but not in the same way that
Stop deadlocks. Divergence becomes particularly difficult to treat in a timed
version of the language, where it becomes necessary to decide whether ex-
pression evaluation is instantaneous or that it allows time to pass.

Related to this semantic difficulty is the problem caused for simulation
of the language. In the terminating case of the language we know that
expression evaluation causes a defined outcome (as explained earlier); in the
general case there is a risk that a tool will fail to terminate while evaluating
a data value. Non-termination is also a problem for program verification; it
has been shown that non-termination can add complexity to the verification
of functional programs [21], and so in the absence of non-termination we
would simplify reasoning about LOTOS specifications.

From the language design point of view, one might argue philosophi-
cally that functions over data in LOTOS or E-LOTOS should be simple,
with complexities of behaviour only evident in the behavioural part of the
language.

Finally, it appears that in the context of LOTOS this proposal is not
restrictive in practice. All the libraries we have examined use only structural
forms of recursion to define the specified functions.

6 Conclusions

6.1 Overview and Summary

This paper has described an experiment in backward compatibility in the
context of the LOTOS data typing language. We have described how to
translate data types written in ACT-ONE into the functional language Mi-
randa. This language has similarities to the new data language being devel-
oped in the E-LOTOS forum. We have shown that, given some constraints
on the input ACT-ONE data types, translation is feasible. Furthermore,
the more restrictive of these constraints (e.g. confluence and termination)
are in practice already imposed on the ACT-ONE data language; they are,
for example, required in order for tools to be constructed.

A technical limitation of our translation is that, as discussed in section
4, our modelling of renaming is not fully general since we have implemented
ACT-ONE renaming using aliasing. However, this arises from the features
of Miranda and is not a fundamental hindrance to general translation into

33

functional languages. In particular, as discussed in section 5, this problem
can be resolved using type classes.

One of the main benefits of performing such an experiment in transla-
tion is that it informs the design of the new E-LOTOS data language. We
conclude this paper by, in the next subsection, summarising our recommen-
dations in this direction.

6.2 The design of E-LOTOS
We recommend the following;:

1. We would like the language to be total, as outlined in Section 5.3. We
understand that there is some demand from the user-community for
partiality, but we believe that it is of the benign form (see example
(1) above). Specifications of this form can be seen as a shorthand
form of an exception-raising version (as in (3) above) and so forming
part of a total language. This view is supported by the document
[20], which is one of the most indepth discussions of the problems of
LOTOS data types. In particular, the partiality argued for by [20] is
completely of the exception handling variety. Thus, we believe that full
recursive definitions are unnecessary for LOTOS data specifications,
and advocate the change for the advantage it brings in simplification,
simulation, tool support and verification.

2. We believe that making the language polymorphic, with type classes as
described in Section 5.1.2, allows the overloading required in the data
language to be presented in a straightforward but well-founded form.
Each item defined gets a most-general type; if it involves overloading
there will be one or more constraints over the variables appearing in
the type. There is an additional benefit that polymorphism allows
the re-use of the same code (rather than simply the same name) over
different types. In the libraries of Miranda and other languages it is
plain that most of the list manipulating functions are polymorphic,
and so re-usable over the whole class of list types.

In designing a language it is possible to choose to model a particular
feature in more than one way. In the case of parametric and overloaded
functions it can be argued that the module system can provided the
same functionality. We would agree with this, but also note that the
most-general types given to overloaded functions can only be described
using a polymorphic system with type classes, and not simply by means
of modules.

34

3. Building upon polymorphism one can suggest that higher-order func-

tions are added to the language. These are functions whose arguments
or results are themselves functions and they add another dimension of
re-use, so that we can for instance define a single operation to apply
a function to every member of a list. Again in the case of Miranda
and other languages it is evident that higher-order functions are in
widespread use in defining reusable libraries of general functions. It
is reasonable to suggest adding higher-order functions as a construct
of the language since the facilities they provide can be given using a
module system only in an indirect and inelegant way.

Another important feature of Miranda which facilitates verification
is the presence of full-precision integers rather than fixed-size repre-
sentations of them. The advantages of these include their accuracy,
and their correspondence to the usual algebraic data type definition
of natural numbers.

References

[1]
[2]

[3]

[4]

T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language
LOTOS. Computer Networks and ISDN Systems, 14(1):25-59, 1988.

N. Charles. Translating LOTOS Data Types into Miranda. Final year project,
University of Kent, June 1996.

J. de Meer, R. Roth, and S. Vuong. Introduction to algebraic specifications
based on the language ACT ONE. Computer Networks and ISDN Systems,
23:363-392, 1992.

Departamento De Ingenieria Telematica, Universidad Politecnica de Madrid.
LOtos LAboratory, February 1995.

N. Dershowitz and J.-P. Jouannaud. Rewrite systes. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, Volume B, Formal Methods and
Semantics. MIT Press/Elsevier, 1990.

K.J. Turner (editor). Using Formal Description Techniques, An Introduction
to Estelle, LOTOS and SDL. Wiley, 1993.

H. Eertink. Executing lotos specifications: the smile tool. In T. Bolognesi,
J. van de Lagemaat, and C. Vissers, editors, LOTOSphere: Software Develop-
ment with LOTOS. Kluwer Academic Publishers, 1995.

H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1, Equations
and Initial Semantics. EATCS, Monographs on Theoretical Computer Science.
Springer-Verlag, 1985.

35

[9]

[10]

[11]

[12]
[13]

[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

H. Garavel. Compilation of LOTOS abstract data types. In S. T. Vuong,
editor, Formal Description Techniques, II : proceedings of the IFIP TC/WG
6.1 Second International Conference on Formal Description Techniques for
Distributed Systems and Communication Protocols, FORTE ’89, Vancouver,
Canada, 5-8 December 1989, pages 147-162. Elsevier Science Publishers, 1989.

J.A. Goguen. Higher-order functions considered unnecessary for higher-order
programming. In D.A. Turner, editor, Research Topics in Functional Pro-
gramming, University of Texas at Austin Year of Programming Series, pages
309-351. Addison-Wesley, 1990.

R.J.M. Hughes. Why functional programming matters. In D.A. Turner, editor,
Research Topics in Functional Programming, University of Texas at Austin
Year of Programming Series. Addison-Wesley, 1990.

ISO. Towards a Proposal for Datatypes in E-LOTOS. Output Document of
ISO/IEC JTC1/SC21/WGT7/1.21.20.2.3, Ottawa Meeting, July 1995.

ISO 8807. LOTOS: A Formal Description Technique based on the Temporal
Ordering of Observational Behaviour, July 1987.

ISO 8807, Annex A. Standard library of data types, 1989.
ISO 8807, Annex C. A Tutorial on LOTOS, 1989.

ISO/IEC JTC1/SC21/WG7 N1053. Revised Working Draft on Enhancements
to LOTOS (V3), March 1996.

N.N. Mansurov, A.S. Ragozin, A.V. Chernov, and I.V. Mansurov. Tool sup-
port for algebraic specifications of data in sdl-92. In R. Gotzhein and J. Bred-
ereke, editors, FORTE/PSTV 96, Formal Description Techniques, IX/ Proto-
col Specification Testing and Verification X VI, Kaiserslautern, Germany, 8-11
October 1996, pages 61-76. Chapman and Hall, 1996.

R. Milner, J. Parrow, and D. Walker. The Definition of Standard ML. MIT
Press, 1990.

H.B. Munster. Comments on the LOTOS standard. Technical Report DITC
52/91, National Physical Laboratory, Teddington, Middlesex, UK, September
1991.

H.B. Munster. LOTOS specification of the MAA standard, with an evaluation
of LOTOS. Technical Report DITC 191/91, National Physical Laboratory,
Teddington, Middlesex, UK, September 1991.

S.J. Thompson. A logic for Miranda. Formal Aspects of Computing, 1:339-365,
1989.

S.J. Thompson. Miranda, The Craft of Functional Programming. Addison
Wesley, 1995.

36

[23] D. A. Turner. Miranda: A non-strict functional language with polymorphic
types. In Proceedings of IFIP Conference on Functional Programming Lan-
guages and Computer Architecture, Nancy, France, volume 201 of Lecture
Notes in Computer Science, pages 1-16, September 1989.

[24] D. A. Turner. Miranda Online Manual Pages, 1989.

[25] D. A. Turner. Elementary strong functional programming. In Proceedings of
First International Symposium, FPLE’95, Functional Programming Languages
in Education, volume 1022 of Lecture Notes in Computer Science, pages 1-14,
December 1995.

[26] WWW. Haskell 1.3, A Non-strict Purely Functional Language. World Wide
Web page http://haskell.cs.yale.edu/haskell-report /haskell-report.html.

[27] WWW. Real World Applications of Functional Programming. WWW page
http://www.dcs.gla.ac.uk/fp/realworld/.

Appendix - An Algorithm to Import Modules

This algorithm can be seen as a denotational semantics from ACT-ONE to
Miranda, which we present using the usual syntax for denotational seman-
tics, as the function:

[1:%a — ¥um

where 14 is the set of all ACT-ONE data types and 1,y is the set of all
Miranda programs. Thus [[child] is the translation of the ACT-ONE data
type ‘child’, which we would place in child.m. It is necessary to define []]
using structures such as, [child]]. Although this is recursive, ACT-ONE data
types cannot be cyclic (i.e. a type can not inherit itself), so the definition
of [] will also not be cyclic. Since the dependencies are non-cyclic we can
(and do) perform the translation ‘bottom-up’: first we translate the files
depending on nothing else, then the files depending on those files, and so
on. The algorithm is presented as follows:

Definition: A dummy binding of identifiers i,j,... is made when ij,... are
given as values in the actualisation of a module with parameters when that
module is %included and then subsequently in the including script the iden-
tifiers i,j,... are declared %free. An instance of this is given by the binding
of dO in the final example of Section 3.6.

1. p-specification

37

type current is childy, childy, ..., child,
endtype

(a) %include each [child;]] providing dummy %free bindings for
identifiers declared %free in [child; .

(b) Copy the %include statements (including any bindings) from
each [[child;]] and remove exact duplicates (i.e. %include state-
ments with identical files, %free bindings and alias bindings).

(c) Copy the %free statements from each of the [child;], combin-
ing them into one %free declaration, removing duplicate entries.
Note this %free declaration may be extended further if the cur-
rent type has formal parts.

2. actualization

type current is formal child
actualizedby actual_child;, actual_childs, ..., actual_child,,
[actualization mappings]

endtype

(a) %include [[formal _child]], provide its %free bindings, using the
actualization mappings, as described in Section 3.5.

(b) Copy the %include statements in [formal child]], updating any
(%free and alias) bindings with new names given in the actual-
ization mappings. The bindings are updated as follows:

e For each %free binding which has a corresponding entry in
the actualization mapping replace the right hand side of the
binding by the new name given in the mapping.

e For each alias binding which has a corresponding entry in
the actualization mapping replace the left hand side of the
binding by the new name given in the mapping.

(c) Goto step 1., treating the actual children as the children.

(d) Now for each sort and operation that has a actualization mapping
but not handled in 2(a) or 2(b) find the script the operation was
originally translated into (this is done by searching through all
the files that have been %included) and place an alias binding
after its corresponding %include declaration.

38

3. renaming

type current is child

renamedby
[rename mappings|

endtype

(a) First we deal with the %include statement, the renaming of
hfree identifiers and the renaming of identifiers that already have
an alias binding.

1.

ii.

iii.

%include [[child]] providing dummy %free bindings for iden-
tifiers declared %free in [[child]] and where any of the iden-
tifiers have a rename mapping, use the new name as the
dummy.

Copy all the %include statements in [child]], including their
bindings (both alias and %free), renaming where a rename
mapping exists. The renaming is performed as follows:

e For each %free binding which has a corresponding entry
in the rename mapping replace the right hand side of the
binding by the new name given in the mapping.

e For each alias binding which has a corresponding entry
in the rename mapping replace the left hand side of the
binding by the new name given in the mapping.

Copy the %free statement from [[child]], renaming the dummy
identifiers wherever a corresponding rename mapping exists.

(b) Next we deal with the new alias bindings.

i.

For each sort and operation that has a rename mapping and
that has not been handled in 3(a)(i) or 3(a)(ii), find the script
the operation was originally translated into (this is done by
searching through all the files that have been %included)
and place an alias binding after its corresponding %include
declaration. In the case that an operation was translated into
both a constructor and a function it is necessary to provide
alias bindings for both of them.

39

