
From ACT-ONE to Miranda, aTranslation ExperimentNathan Charles�, Howard Bowman+ and SimonThompson+�Department of Computer Science,The University of York,York, Y01 5DD, United KingdomEmail: nathan@minster.york.ac.uk+Computing Laboratory,University of Kent at Canterbury,Canterbury, Kent, CT2 7NF, United KingdomEmail: fH.Bowman,S.J.Thompsong@ukc.ac.ukAbstractIt is now almost universally acknowledged that the data language ACT-ONEassociated with the formal description technique LOTOS is inappropriatefor the purpose of OSI formal description. In response to this the LOTOSrestandardisation activity plans to replace ACT-ONE with a functional lan-guage. Thus, compatibility between ACT-ONE and the replacement datalanguage becomes an issue.In response to this, we present an experimental investigation of back-ward compatibility between ACT-ONE and the new LOTOS data language.Speci�cally, we investigate translating ACT-ONE data types into the func-tional language Miranda. Miranda has been chosen as it is a widely usedfunctional programming language and it is close in form to the anticipatednew data language.This work serves as a \veri�cation of concept" for translating ACT-ONEto the E-LOTOS data language. It identi�es the bounds on embedding ACT-ONE in a functional data language. In particular, it indicates what can betranslated and what cannot be translated.In addition, the paper reveals pertinent issues which can inform the E-LOTOS work. For example, which constructs are needed in E-LOTOS inorder to support the class of data type speci�cations typically made in the1

LOTOS setting? We conclude with a number of speci�c recommendationsfor the E-LOTOS data language.1 IntroductionThe OSI formal description technique LOTOS [13] combines a process al-gebraic language for describing \temporal ordering of actions" and a datadescription language: ACT-ONE, which is based on algebraic speci�cationof data types [8]. It is now almost universally acknowledged that ACT-ONEis an inappropriate data language for the purpose of OSI formal description.The
aws in ACT-ONE have been extensively documented; see, for example,[12] [19] [20]. Among the limitations we particularly note the following:� ACT-ONE data de�nitions are long-winded. Even inherently very sim-ple data types yield a verbose description.� Writing ACT-ONE de�nitions is laborious and di�cult. Each newtype has to be speci�ed equationally and there is no built-in supportfor types like records and unions.� Type de�nitions are not protected. Existing types (even those fromthe standard library) can be extended inconsistently, with the resultthat the meaning of the type is collapsed. That is, hitherto distinctelements of the type become identi�ed. This is exacerbated by the lackof a distinction between the constructors of elements of the type andgeneral functions de�ned over the type built by these constructors.� The algebraic style is not appreciated by industrial users. Speci�ersand tool builders that work in a declarative style are generally happierviewing de�nitions as rewrite systems. Although many ACT-ONEde�nitions can be read thus, such an interpretation is not always valid.� Equivalence between elements of types is undecidable. This hinders thedevelopment of reliable veri�cation tools.As a re
ection of these perceived
aws, one of the central objectives of theLOTOS restandardisation activity [16] is to replace ACT-ONE with a moreusable data language. Although the E-LOTOS work is still in progress, it isnow accepted that the replacement language will have a functional character.In fact, the language will be a derivative of the strict functional languageStandard ML (SML) [18]. A clear consequence of this restandardisation2

activity is that compatibility between ACT-ONE and the replacement datalanguage becomes an issue.Both compatibility directions are of interest, namely:� Forward Compatibility, meaning translating to ACT-ONE, enables thetools and techniques developed for ACT-ONE to be reused in thecontext of E-LOTOS.� Backward Compatibility, meaning translating from ACT-ONE, enablesexisting LOTOS speci�cations, including those in the library, to betransformed into E-LOTOS speci�cations.Thus, forward compatibility implies reuse of old tools, while backwardcompatibility implies reuse of old speci�cations.This paper focuses on the latter of these: backward compatibility. Theprimary reason for choosing this direction is that it is intellectually moreinteresting. This is because algebraic speci�cation languages, such as ACT-ONE, are broadly more expressive than their functional counterparts. Inparticular, speci�cations can be written in ACT-ONE that are not exe-cutable (the de�nition of sets is a classic example) and thus, can not beinterpreted in their full generality in a functional setting 1.With the broad aim of considering backward compatibility between ACT-ONE and the new LOTOS data language we have investigated translatingACT-ONE data types into the functional language Miranda 2. Miranda isa side-e�ect free lazy functional language which supports higher order func-tions and polymorphism and has been extensively used [27]. Our preferencefor Miranda in this translation experiment is largely pragmatic. Mirandais the in-house functional language at the University of Kent and is thelanguage most well understood by the authors. Furthermore, at the timeof starting our work, it was not clear which variety of functional languagewould be adopted by E-LOTOS and so Miranda was a reasonable choice.We believe the contribution of this experiment in translation is as follows:� As already stated, the E-LOTOS data language will be SML based.There are some important di�erences between SML and Miranda, notleast that the former is a strict language, while the latter is lazy. In a1On the other hand, modern functional programming languages, such as Miranda, arehigher order as they allow functions to be arguments or results of other functions, whilemost algebraic speci�cation languages are �rst order. It is a matter of debate whetherthis di�erence a�ects expressiveness signi�cantly: [10], [11]2Miranda is a trademark of Research Software Limited.3

strict language, all arguments to a function application are evaluatedprior to the application itself. In a lazy language, evaluation beginswith the application, and arguments are only evaluated if and when itis necessary. Moreover, in the case of structured arguments, such aslists, only those parts of the list required for computation to proceedwill be evaluated. However, in terms of classes of languages (imper-ative, logical, functional etc.) Miranda and SML are closely related.Thus, we anticipate that the reported research will serve as a \veri-�cation of concept" for translating ACT-ONE to the E-LOTOS datalanguage. In fact, the majority of our results are also applicable toSML.� The experiment identi�es the bounds on embedding ACT-ONE in afunctional data language. In particular, it indicates what can be trans-lated and what cannot be translated.� In addition, such an exercise in translation reveals pertinent issueswhich can inform the E-LOTOS work. For example, which constructsare needed in E-LOTOS in order to support the class of data typespeci�cations typically made in the LOTOS setting? One such re-quirement is the necessity to handle non-termination in the E-LOTOSdata language. We will return to this topic in section 5. In addition,we summarise our suggestions for the design of the language in section6.� A �nal bene�t is that the ACT-ONE to Miranda translation yieldsa mechanism for execution of ACT-ONE speci�cations, which clearlyhas relevance for tool construction.As we have already emphasized, in general terms ACT-ONE is moreexpressive than Miranda. Thus, a completely faithful translation is notfeasible. In fact, in many circumstances the resulting Miranda programcan be viewed as an \implementation" of the ACT-ONE speci�cation. Forexample, the embedding will impose a particular evaluation order, which,amongst other things will resolve non-determinism inherent in some ACT-ONE speci�cations. Thus, the spirit of our experiment is to consider howmuch of ACT-ONE can be faithfully captured through translation into anexecutable language.In addition, we wish our translation to generate meaningful and usableMiranda code. This particularly becomes an issue when considering how to4

translate ACT-ONE facilities to allow types to be extended and parame-terised. In both cases a solution could be devised which in-line expands alltypes, however, this would lead to an explosion in size of types and lose there-use inherent in the original ACT-ONE types.The structure of this paper is as follows. Section 2 presents backgroundmaterial. Both ACT-ONE and Miranda are brie
y introduced and then thebasic translation approach is described. Section 3 contains the main techni-cal body of the paper; the translation of a series of increasingly more sophisti-cated ACT-ONE data types is considered. We show how basic speci�cationsare translated; how translations of parts of speci�cations are combined; howparameterisation and actualisation are rendered and how renaming can beperformed. Also discussed are formal equations and the library mechanism.The full algorithm for library translation is given in the appendix. It isthrough these examples that the translation algorithm is illustrated.Section 4 discusses some techical limitations of the translation. Section 5gives a perspective on the translation. In particular, we examine the e�ect ofthe Haskell [26] type class mechanism on translating overloading; the e�ectof lazy evaluation on translating particular kinds of speci�cation and �nallywe look at the role of non-termination in ACT-ONE speci�cations.We conclude, in section 6, with some remarks on the translation anda number of speci�c suggestions about the design of the E-LOTOS datalanguage.2 Background and Basic ApproachThis section presents background material for the remainder of this paper.We give short introductions to ACT-ONE and Miranda in the next subsec-tion and then we describe the basic translation approach.2.1 Introductions to ACT-ONE and MirandaWe assume a certain level of familiarity with ACT-ONE and with a func-tional language. In particular, in order to understand the material in thispaper, knowledge of one of the modern functional languages, such as Haskellor SML, should be su�cient. Our discussion of Miranda in this subsectionand the examples to be found in the body of the paper should clarify thenotational di�erences between Miranda and other modern functional lan-guages.ACT-ONE is an algebraic speci�cation language whose fundamentals are5

fully described in [8]. A number of LOTOS oriented introductions to thelanguage have also been given and can be found in [1], [3], [6]. The semanticmodel for an ACT-ONE speci�cation is a many sorted algebra, data opera-tions being de�ned as functions over terms in the algebra. An initial algebrasemantics is employed.ACT-ONE sorts are de�ned by a signature and a set of equations. Forexample, the natural numbers can be de�ned as follows:type Nat numbers issorts natopns zero: -> natsucc: nat -> natplus: nat, nat -> nateqns forall x, y:natofsort natplus(x, zero) = x;plus(x, succ(y)) = succ(plus(x, y));endtypeThe sort names, here just `nat', and operations, here `zero', `succ' and`plus', together comprise the signature of the data type. The algebra ofthis data type contains terms constructed by composing the operations ofthe data type arbitrarily according to their input and output types. Theequations of the data type de�ne equality between terms generated from thesignature.In addition to basic algebraic de�nitions of the form above, ACT-ONEo�ers facilities to structure and re�ne speci�cations. Mechanisms are pro-vided for incrementally extending data types (also called combining speci�-cations), renaming data types, de�ning parameterised (generic) data types,actualizing parameterised data types and reusing data types de�ned in alibrary. The reader is referred to the literature [1], [3], [6] for details of thesefacilities. Section 3 of this paper will consider typical examples of each ofthese facilities.Miranda is a lazy functional language which enables both polymorphic andhigher order functions to be de�ned and employs lazy evaluation of expres-sions. The language contains a rich set of programming features, includingbuilt-in data types (numbers, characters, tuples, lists, etc.), algebraic andabstract data types and modules. Although this spectrum of features ishighly relevant to the de�nition of the E-LOTOS data language, we only6

in fact use a subset of these features in our translation. In particular, thetranslation interprets ACT-ONE de�nitions using Miranda Algebraic Types(MATs) (we will refer to these explicitly as Miranda Algebraic Types inorder to avoid confusion with the algebraic type concept as embodied inACT-ONE), functions over these types and modules. We consider theseconstructs in turn.Miranda Algebraic Types. As an illustration of Miranda algebraic types andfunctions over MATs, the following is the de�nition of a natural numberqueue in Miranda:queue ::= Create | Add nat queuefirst :: queue -> natfirst Create = 0first (Add x Create) = xfirst (Add x (Add y z)) = first (Add y z)remove :: queue -> queueremove Create = Createremove (Add x Create) = Createremove (Add x (Add y z)) = Add x (remove (Add y z))The description is divided into a MAT de�nition and the de�nition oftwo functions over the MAT: first and remove. The former of these de�nesa recursive data type, which means that elements of the type Queue caneither be of the form Create or (Add n q), where n::nat and q::queue.For example, a typical value of this type is: Add 5 (Add 6 Create) whichis a queue of two items, whose \�rst" element is 6. Create and Add areconstructors for the data type and are distinguished from other identi�ersby starting with a capital letter.Each function is de�ned by its type and equations, but, in contrast to thesituation with ACT-ONE, these equations have a clear evaluational inter-pretation. For example, the rules are always applied as rewrite rules fromtop to bottom, thus resolving any non-determinism arising from overlap-ping patterns. As an illustration of this, we could rewrite the above rulesfor first as follows:first :: queue -> natfirst Create = 0first (Add x Create) = xfirst (Add x w) = first w 7

Although, the last two rules now have overlapping patterns, the top tobottom order of application of rules prevents non-determinism from arising.In order to avoid confusion we will use the term operation to apply specif-ically to ACT-ONE operations, while the terms constructors and functionsare used in the Miranda context. Thus, we will not speak of operations inthe Miranda context.Modules. Miranda de�nitions are collected together in �les or scripts andthe module mechanism supports the inclusion of one script in another. Thee�ect of inclusion is to make the de�nitions in the included �le visible withinthe including �le.The directive specifying inclusion is exempli�ed by:%include "ant.m"The basic mechanism is extended in three ways.� On inclusion, de�nitions can be hidden (- dove) or `renamed' (wombat/fish),thus,%include "ant.m" wombat/fish -dove� A script can control exactly which de�nitions are exported, the defaultbeing only those in the script itself. For instance,%export + wombatspeci�es that together with the de�nitions in the �le (+), wombat willbe exported.� Modules can be parameterised by adding a %free declaration. %freeis followed by a signature containing type and function declarations;on inclusion, these parameters must be bound to actual types andvalues. Examples follow in section 3.Miranda modules are sensible units of program code, which can be in-terpreted independently of each other. Low level textual insertion (with nosyntactic or other restrictions) is provided by the directive:%insert "filename"For introductions to Miranda, we once again refer the reader to theliterature: [23], [22]. 8

2.2 The Basic TranslationThe translation mechanism is implemented as a suite of Miranda programs.First, an abstract syntax is given for ACT-ONE as a set of Miranda alge-braic types; this is a standard way to describe language syntax and closelyrelates to BNF. Since an abstract syntax is used, it is assumed that in or-der to resolve issues of precedence the ACT-ONE speci�cations are fullyparenthesised.The translator interprets ACT-ONE programs expressed in this abstractsyntax. The heart of the translation is a set of Miranda functions which mapseach ACT-ONE syntactic form into a portion of Miranda script. Thus, thetranslation has a denotational
avour, in which the denotation generated isa Miranda script. Implementation of the translation is fully described in [2].Implicit in the translation is the interpretation of ACT-ONE equationsas rewrite rules with a particular orientation. This immediately constrainsthe generality of the translation. In particular, ACT-ONE equations thatdo not adhere to such an orientation are not translated meaningfully.3 Examples of translationThe aim of this section is show how LOTOS data types (represented in ACT-ONE) can be translated into Miranda. The section begins with a translationof basic data types taken from [15], then progresses on to more interestingexamples found in [14]. A summary of the methods used is given at the endof the section.Miranda algebraic types and functions are used to represent the ACT-ONE data types. To form these algebraic types it is necessary to identify theconstructors of ACT-ONE types. One way to do this is to use a heuristic,such as treating all operators with no equations as constructors and the restas non-constructors. This would not be su�cient though because, as we willsee in Section 3.2 it is possible for constructors to have associated equations,so we would include operators that appear within patterns in the left handside of an equation as constructors as well. In cases where equations for anoperation are given in a di�erent type to that of its signature, this heuristicmay fail, identifying a non-constructor as a constructor. Garavel, [9], acceptsthat strategies exist to identify constructors, but for ease of implementationconcludes that the speci�er should identify the constructors themselves, byattaching a special comment. The speci�er should know what they intendto be the constructors so this does not place any limiting constraint.9

Given that ACT-ONE data types are abstract data types, it might be ex-pected that they would translate neatly into Miranda's abstract type mecha-nism abstype, unfortunately there are some incompatibilities between theirdi�erent interpretation of abstract data types. In LOTOS it is possible todistribute the operations associated to a sort across a number of data types,whereas in Miranda they must all appear in the same abstype de�nition.For this reason the ACT-ONE data types are translated into basic Mirandatypes; it would not be hard to convert the types into the abstype form.Our translation makes some initial assumptions about the data typesinput:1. The equations when used as rewrite rules are:(a) Con
uent [5](b) Terminating [5]2. All the constructors of a sort must be de�ned in the same data typeas the sort.3. The constructors of a sort must be de�ned explicitly. This is done usinga special comment (*! constructor *) immediately after the operationdeclaration. This is consistent with Garavel's suggestion mentionedearlier.4. There is no overloading of sorts and operations.5. None of the sorts or operations may be a Miranda reserved word.6. The equations are given in a pre�x form.These constraints limit the expressiveness of ACT-ONE. However 3, 4,5 and 6 are pragmatic constraints which do not a�ect the generality oftranslation, i.e. they are not really limiting ACT-ONE. In particular thefourth assumption is not restrictive since we assume that ACT-ONE datatypes have been transformed by replacing overloaded names with uniqueidenti�ers. A more general solution whereby the overloading is preservedthrough the translation will be discussed in Section 5 when we considerHaskell types classes.However, assumptions 1 and 2 do restrict the class of ACT-ONE datatypes that can be translated. The �rst assumption is necessary in order toenable the data types to be viewed as rewrite rules in a Miranda setting.The second assumption is not as fundamental as the �rst; it can be relaxed,10

although any translation of an example which falls in this category would bemessy and considerably more complex, requiring extensive rewriting of �les.These two assumptions are in fact constraints typically applied by currentLOTOS tools such as, LOLA [4] and SMILE [7], SDL tools such as, RASTA[17] and in the literature, [9].3.1 Basic non-parameterised speci�cationsThe �rst example of our translation is a speci�cation of natural numbers.type Nat numbers issorts natopns zero: -> nat (*! constructor *)succ: nat -> nat (*! constructor *)plus: nat, nat -> nateqns forall x, y:natofsort natplus(x, zero) = x;plus(x, succ(y)) = succ(plus(x, y));endtype`succ' and `zero' have been
agged as constructors. It is not hard to verifythis is consistent with the heuristic discussed at the start of this section, andindeed we can also observe that `plus' is a function de�ned over the sort `nat'.In Miranda these de�ned functions are modelled using Miranda functions.The signature of plus maps neatly to a function signature and the equationsto function de�nitions. Using these ideas the following translation is given:nat ::= Zero | Succ natplus :: nat -> nat -> natplus x Zero = xplus x (Succ y) = Succ (plus x y)The type of Succ and Zero has been extracted from the signature of theACT-ONE data type to produce a Miranda algebraic type, whereas plushas been constructed, as previously described, as a Miranda function.It is usual for Miranda functions to be written in curried form. A curriedfunction is a function that takes its arguments one at a time, so a functionof two arguments would have the type:11

t1 -> t2 -> tIn contrast the types of the corresponding uncurried form would be:(t1, t2) -> tIt is trivial to convert between the two notations. However in Miranda weuse curried functions as they allow partial function application, see [24, 22],hence its use in the translation despite the ACT-ONE equations being in anuncurried form.We see that the Miranda de�nitions di�er only syntactically from theACT-ONE de�nitions, demonstrating the directness of the translation; thisis true of most simple ACT-ONE data types.Although no example has been given that includes premisses with theequations it should be clear that a premiss translates into a Miranda styleif test (or guard) in which a list of premisses is treated as a conjunction.3.2 Non-free constructorsNormally di�erent constructor terms denote di�erent values, we now meetan example where this is not the case.type Switch issorts switchopns on:->switch (*! constructor *)not:switch->switch (*! constructor *)eqns forall x:switchofsort switchnot(not(x)) = x;endtypeThis can be translated into Miranda in the usual way except the equationis translated into a law:switch ::= On | Not switchNot (Not x) => xUnfortunately laws are an obsolete feature of Miranda and are likely tobe unsupported in later versions, so it is necessary to �nd an alternative.[23] provides a way of removing laws whilst keeping the overall meaning:12

1. Throughout the script (including the rhs of the laws) replace all right-hand-side occurrences of the lawful constructors by the associatedfunction names. Only the `left-hand-side' uses of the constructor, i.e.in pattern matching, are left alone.2. Turn each law into a function de�nition, by replacing the outermostoccurrence of the constructor on the lhs of the law by the associatedfunction name, and replacing each => by =. We must also add a lastcase to the function de�nition, stating that its result is equal to a callof its associated constructor on the same arguments if no earlier caseapplies.This is in fact the way the laws were implemented in Miranda. If weperform the algorithm on the above example, we produce the following code:switch ::= On | Not switchnot (Not x) = xnot = Not3.3 Combination of speci�cationsThis is a feature of LOTOS which allows data types to be formed from otherdata types, through inheritance. The second assumption at the beginning ofthe section disallows the introduction of constructors into a sort outside thetype the sort is de�ned in, thus when inheriting a sort we can only extendthe sort by adding extra non-constructor operations. For example we cancreate `Enriched nat':type Enriched nat is Nat numbersopns times:nat, nat -> nateqns forall x, y: natofsort nattimes(x, zero) = x;times(x, succ(y)) = plus(x, times(x, y));endtypewhere `Nat numbers' has already been de�ned. Thus this translates intothe following Miranda:times :: nat -> nat -> nattimes x Zero = xtimes x (Succ y) = plus x (times x y)13

Given that the above ACT-ONE type requires `Nat numbers' it is self-evident that the translation will require the translation of `Nat numbers'.One way to implement this in Miranda is to place `Nat numbers' in a module,which is implemented in Miranda as a �le. The �le would then be %includedat the beginning of the `Enriched nat' translation. It turns out that this useof modules is convenient for other parts of the translation and so in generaleach LOTOS type is translated into a module of its own. This could beexpected because as we have already suggested LOTOS types are very muchlike modules.`Enriched nat' extends the use of the sort `nat', we now look at an ex-ample that uses `nat' rather than extending it. A queue of natural numbersis an example of this:type Nat number queue is Nat numberssorts queueopns create:-> queue (*! constructor *)add: nat, queue -> queue (*! constructor *)�rst: queue -> natremove: queue -> queueeqns forall x, y: nat, z: queueofsort nat�rst(create) = zero;�rst(add(x, create)) = x;�rst(add(x, add(y, z))) = �rst(add(y, z));ofsort queueremove(create) = create;remove(add(x, create)) = create;remove(add(x, add(y, z))) = add(x, remove(add(y, z)));endtypeWe translate this directly into the following Miranda:queue ::= Create | Add nat queuefirst :: queue -> natfirst Create = Zerofirst (Add x Create) = xfirst (Add x (Add y z)) = first (Add y z)remove :: queue -> queue 14

remove Create = Createremove (Add x Create) = Createremove (Add x (Add y z)) = Add x (remove (Add y z))where the translation of `Nat numbers' is an imported module.3.4 Parameterisation of speci�cationsThis feature of LOTOS allows polymorphic data types to be de�ned, forexample a queue. The type of queue is parametrically polymorphic becauseits elements may take any type. The following ACT-ONE data type is onemethod to de�ne a queue in LOTOS:type Queue isformalsorts dataformalopns d0: -> datasorts queueopns create:-> queue (*! constructor *)add: data, queue -> queue (*! constructor *)�rst: queue -> dataremove: queue -> queueeqns forall x, y: data, z: queueofsort data�rst(create) = d0;�rst(add(x, create)) = x;�rst(add(x, add(y, z)) = �rst(add(y, z));ofsort queueremove(create) = create;remove(add(x, create)) = create;remove(add(x, add(y, z))) = add(x, remove(add(y, z)));endtypeThis type is similar to the `Nat number queue' but there are some im-portant distinctions which can be highlighted:1. The queue is now no longer of sort `nat' but of sort `data'. The type ofdata has yet to be established - this is achieved during actualization.2. `�rst(create)' is now equal to `d0', a constant which will be instantiatedduring actualization, rather than to `zero'.15

This has a number of similarities to Miranda parameterised modules(see [24], 27/4), with `data' and `d0' declared %free and their bindingsgiven at %include time. To take advantage of this, it is necessary to placethe translation below in a module (implemented by a �le), say, queue.m. Adirect translation is then produced:%free { data :: typed0 :: data}queue ::= Create | Add data queuefirst :: queue -> datafirst Create = d0first (Add x Create) = xfirst (Add x (Add y z)) = first (Add y z)remove :: queue -> queueremove Create = Createremove (Add x Create) = Createremove (Add x (Add y z)) = Add x (remove (Add y z))Again, as with the ACT-ONE type, the type and de�nition of d0 are notspeci�ed. The bindings for d0 and data will have to be provided later at%include time, which as the next sub-section suggests, is when the type isbeing actualized.In Section 5 we discuss an alternative method of translating such param-eterised data types using type classes.3.5 Actualisation of parameterised speci�cationsParameterised types are instantiated through actualization. For example,the following assigns natural numbers to the items in a queue to form aqueue of natural numbers:type Nat number queue isQueue actualizedby Nat numbers usingsortnames nat for dataopnnames zero for d0endtype 16

The mappings given are required to complement the translation of `Queue',providing the %free bindings for queue.m. This is done by placing the trans-lation:%include "nat_numbers.m"%include "queue.m" {data == nat; d0 = Zero;}in a �le nat number queue.m.Note that the sort of data is provided by using a type synonym whilstthe de�nition of d0 is expressed using de�nitional equality. More generally,it is always the case that sorts have bindings provided by type synonymsand operations by de�nitional equalities.The mechanism given here allows the possibility of actuals themselvesdepending on other formals.3.6 Renaming of speci�cationsAnother feature that LOTOS incorporates is the renaming of one data typeto form another. The example that follows generates a type `Numbers' whichis isomorphic to `Nat numbers':type Numbers isNat numbers renamedbysortnames numbers for natopnnames nought for zeroadd for plusendtypeMiranda provides no real renaming facility but it is possible to use thealiasing method provided in the modules system (see [24], 27/3). In thiscase we produce:%include "nat_numbers.m" numbers/nat Nought/Zero add/plusTo illustrate a more complex form of translation of a renamed data typewe turn to `Connection', an example given in the tutorial [15]:type Connection isQueue renamedbysortnames channel for queueobjects for data17

opnnames send for addreceive for �rstendtypeThis example is more subtle than Numbers. To import the `Queue' mod-ule it is necessary to provide the %free bindings but as they are not beingactualized in this data type we still require them to be %free, furthermoredata needs to be renamed. We achieve these objectives with the followingMiranda:%include "queue.m" {data==objects; d0=d0;}Send/Add receive/first channel/queue%free {objects::type;d0::objects;}This translation has the desired e�ect of renaming the components ofthe data type, whilst keeping the formal parameters %free. In general atype such as this is translated by �rst translating the non-formal sorts andoperations in the same way as `Numbers'. Then the %free bindings for theformal sorts and operations are provided by setting the formal name to itself,except where a renaming occurs in which case the new name is used. Theformal sorts and operations still need to be %free, so the %free declarationis copied from Queue.m, replacing the renamed formal sorts and operationsby their new names.3.7 Introduction of formal equationsThe example given below is the �rst to introduce formal equations:type Fboolean isformalsorts fboolformalopns true : -> fboolnot : fbool -> fboolformaleqns forall x: fboolofsort fboolnot(not(x)) = x;endtypeThis type requires careful consideration. Let us �rst consider the trans-lation of the above ACT-ONE type ignoring the equation; we would givethe following translation: 18

%free {fbool::type;true::fbool;not::fbool->fbool;}This is acceptable as it stands, but how do we translate the formalequation? An initial thought may be to treat it as a normal equation butthis is obviously wrong because not only has `not' been declared %free (andtherefore may have no associated de�nition in the current script) but whenactualized the function would have more than one de�nition for the samecase (one in the module and one in the formal module).In fact, formal equations should be considered as equations to be satis�edwhen actualized - a proof obligation - rather than as de�nitions of equations.For example the following formal equation de�nes that when multiply isactualized it is true that whatever order its parameters are in the result isuna�ected (i.e. multiply is commutative); it is not enough to specify whatmultiply is, after all, many mathematical operations including + and �would satisfy this constraint:formaleqns forall a, b: natofsort natmultiply(a, b) = multiply(b, a);This links well to predicate calculus where we may use the following torepresent the above equation:8x; y : nat:(multiply a b = multiply b a)A proof is then required that the above equation holds when the equationis actualized. Miranda does not have this powerful system built into it andalthough it is possible to model the theory in Miranda, for the purpose oftranslation it is more sensible to place the constraint in a comment andleave it to the speci�er to verify that the constraint holds when the type isactualized; this is similar to the way LOTOS deals with the formal equations- no proof is required during actualization. We do not use the built inMiranda commenting system to do this because we want the constraint tobe type checked. One way to do this is to write a function that tests theconstraint over all possible values in type. This function can be writtenusing a list comprehension (see [22] for an introduction). For the `Fboolean'example above we would add the following lines after the %free declaration:19

enum_fbool :: [fbool]test_not1 = and [not(not x) = x | x <- enum_fbool]Notice that only the type of enum bool is given, where we assume enum boolto be a list of all the possible values of type fbool. For the sake of type check-ing there is no need to give the de�nition of enum bool, however this can bedone during instantiation, although for in�nite types test not1 would benon-terminating if the constraint did hold.The next example, `Element', also has formal equations but this timethe equations have premisses:type Element is Fbooleanformalsorts elementformalopns e eq, e ne: element, element -> fboolformaleqns forall x, y: elementofsort elemente eq(x, y) = true => x = y;ofsort fboolx = y => e eq(x, y) = true;e ne(x, y) = not(e eq(x, y));endtypeThe formal equations can be expressed in predicate calculus as:8x; y : element:(e eq x y = true =) x = y) ^8x; y : element:(x = y =) e eq x y = true ^8x; y : element:(e ne x y = not(e eq x y))which, incidentally, is equivalent to:8x; y : element:(e eq x y = true () x = y) ^8x; y : element:(e ne x y = not(e eq x y))Again we use list comprehension to model the formal equations, but thistime we add constraints, so we would represent the equations in this exampleas follows:enum_element :: [element]test_e_eq1= and [e_eq x y = true |x <- enum_element, y <- enum_element, x=y]20

test_e_eq2= and [x=y | x <- enum_element;y <- enum_element; e_eq x y = true]test_e_ne1= and [e_ne x y = not (e_eq x y) |x <- enum_element; y <- enum_element]For `Element' to import `Fboolean' in the translation, the %free bindingsneed to be given. However, as the type is not being actualized at this point,it is not possible to instantiate the type, so a variant of the method givenwhen translating `Connection' (see Section 3.6) is used to give:%include "fboolean.m" {fbool==fbool; true=true; not=not;}%free {fbool :: type;true :: fbool;not :: fbool -> fbool;element :: type;e_eq :: element -> element -> fbool;e_ne :: element -> element -> fbool;}enum_element :: [element]test_e_eq1= and [e_eq x y = true |x <- enum_element, y <- enum_element, x=y]test_e_eq2= and [x=y | x <- enum_element;y <- enum_element; e_eq x y = true]test_e_ne1= and [e_ne x y = not (e_eq x y) |x <- enum_element; y <- enum_element]3.8 Actualising and renaming in the same data typeThe next type, `Hexstring', uses the LOTOS shortcut whereby it is possibleto actualize and rename a data type in the same type:type HexString is NonEmptyString actualizedby HexDigit usingsortnames hexdigit for element21

bbool for fboolhexstring for nonemptystringopnnames hex for stringbnot for notbtrue for truehex eq for e eqhex ne for e neendtypeThis data type renames `nonemptystring' and `string' whilst the remain-ing sorts and operations are actualized. This translates quite neatly into:%include "nonemptystring.m" {element==hexdigit; fbool==bbool;not=bnot; true=Btrue;e_eq=hex_eq; e_ne=hex_ne;}Hex/String hexstring/nonemptystring%include "hexdigit.m"%include "naturalnumber.m"%include "basicnaturalnumber.m"%include "boolean.m"Note that the last three inclusions arise from the translation of the earlierinclusions in hexdigit and nonemptystring.3.9 Libraries and modulesLOTOS allows the use of libraries to give access to pre-de�ned types. Forexample:library Queue, Nat Numberendlib. . .type Nat number queue is Queue, Nat Number. . .Miranda's module system eliminates the need for a library declaration.For example, ignoring the library declaration, the above skeleton would betranslated as:%include "nat_number_queue.m"%include "queue.m" 22

So far no general method has been given to import modules under all cir-cumstances. To rectify this we give an algorithm that can be implemented.The algorithm works in three stages (p-speci�caton, actualization andrenaming), bottom-up through the dependency graph of data types. It isfully described in the appendix.3.10 Summary of the translationWe �nish this section with a brief summary of how to translate an ACT-ONEdata type into Miranda using the methods discussed in this section.Basic non-parameterised typesTranslate the sorts into Miranda algebraic types with their constructorsextracted from the operations marked with (*! constructor *), the types ofthe constructors are also found here.Translate the equations into function de�nitions where the signatureof the function is extracted from the corresponding operations. In thecase where a constructor has an associated equation or equations, then themethod given in section 3.2 is used.All the types are translated into an individual module, which for conve-nience will be the name of the type appended with a .m.Combination of speci�cationsImport the translations of the types to be inherited and their dependen-cies, then translate the rest of the type in the same way as a basic non-parameterised data type.Parameterisations of speci�cationsImport the translations of the types to be inherited and their dependencies.The formal sorts and formal operations are translated into a %free decla-ration whilst the formal eqns are translated into a testing function, whichshould be interpreted as a constraint that has to be satis�ed when actualiz-ing the data type. The rest of the type will be translated in the same wayas the basic non-parameterised type.Actualisation of parameterised speci�cationsImport the translations of the types to be inherited and their dependencies,providing %free bindings for the translation of the type being actualized.23

These bindings are extracted from the bindings given in the ACT-ONE type.Where a binding exists for a type, function or constructor not declared %freethen the binding shall be used to create an alias (and hence rename it).Renaming of speci�cationsImport the translations of the types to be inherited and their dependencies,providing alias bindings for the translation of the type to be renamed. Thesebindings are extracted from the bindings given in the ACT-ONE type.Libraries and ModulesThe full details of this translation can be found in the appendix.4 Limitations of the translationThis section analyses two weaknesses of the translation presented in theprevious section.4.1 The problems of using the aliasing system to renamedata typesIn Section 3.6 we used the aliasing system in order to rename data types.This system does not strictly rename the components of the data type butinstead provides aliases for them, although only the alias can be used inthe current scope. In the majority of cases there are no problems with this,however where a type inherits another type twice, once with its contentsrenamed, this system fails. The type `both' is an example of this:type originalsorts colouropns purple:-> colourinverse: colour -> colourendtypetype new is original renamedbysortnames color for colouropnnames mauve for purpleopposite for inverseendtype 24

type both is original, new. . .endtypeUsing the methods discussed thus far, we would translate this as:original.mcolour ::= Purple | Inverse colournew.m%include "original.m" color/colour Mauve/PurpleOpposite/Inverseboth.m%include "new.m"%include "original.m"%include "original.m" color/colour Mauve/PurpleOpposite/InverseThe problem with this is that in Miranda it is not possible to importthe same script twice, even with all its contents renamed. In fact this is notentirely true, it is possible to do this if the script contained only functionsde�nitions, but considering we are mainly concerned with types, this willnot cover a large number of translations.We ask ourselves what limitations this has: in general, this will not a�ectthe majority of speci�cations, however, the renaming system is often usedto prevent the overloading of the same type inherited twice; this cannot betranslated into Miranda using the aliasing system. An alternative way totranslate examples that fall into this class would be to, rather than use anautomatic renaming facility, copy the script and textually rename the con-structors, types and functions. Of course this solution has severe drawbacks,such as the lose of the inheriting structure present in the ACT-ONE types.This problem highlights a limitation of the implementation of Mirandarather than a limitation of the translation. It is foreseeable that a di�erentimplementation may well incorporate an improved aliasing system, whichcould cope with importing the same script twice, once with the elementsrenamed. 25

4.2 The duplication present when inheriting %free statementsThe translation method given in the last section imports modules by us-ing the %include directive. In some cases where a script is imported thatcontains a %free declaration 3 it is necessary to copy the whole %free dec-laration from the imported script as well. This can lead to vast amountsof (almost redundant) copying, especially if formal sorts and operations areinherited over a number of types. In Section 2.1 we identi�ed that thereis another method for importing scripts in Miranda, by use of a %insertdirective. This can be used to reduce the amount of redundancy. To importa module containing a %free declaration into the current script all thatis required is one %insert directive, so for example, to import the scriptelement.m given in Section 3.7 we use:%insert "element.m"Note that there is no need to copy the %include statement from withinelement.m because this will be automatically inserted into the current scriptwith the rest of the contents of element.m.Unfortunately it is not possible to use the %insert method for everyexample. To see this we consider an example where the current script intro-duces new %free elements and also imports a script which contains a %freedeclaration. Miranda allows only one %free declaration per script so thisexample would not work. In fact, in such cases it is necessary to revert backto the %include method.An advantage of the %include method is that as Miranda uses separatecompilation of �les and stores object code for each �le, the speed of compi-lation of complete speci�cations is often reduced, especially in cases wherea minor change is made to one data type. Most of this is lost using the%insert method.In conclusion it would be sensible to adopt a heuristic that combines thetwo methods. The fact that there is no clean way to import �les without acertain amount of redundancy highlights a weakness in Miranda.5 A Perspective on the TranslationThe material in this section discusses some alternative approaches to thetranslation, and presents a perspective on ACT-ONE brought out by the3Speci�cally, when dummy bindings are used in the current script, see the appendixfor a de�nition of dummy bindings. 26

translation. This, in turn, has implications for the design of the data partof E-LOTOS, which we enumerate in the conclusions.5.1 Parametric speci�cations, polymorphism and overload-ingIn this section we discuss the di�erent ways in which overloaded names orparametric speci�cations can be translated into the functional languagesMiranda and Haskell.5.1.1 Polymorphism and overloadingBefore discussing the translation it is worth establishing some terminologyand introducing some general ideas. In particular we look at what is meantby `polymorphism'.Parametric polymorphism { the polymorphism of the Hindley-Milnertype system which underlies Miranda and other modern functional program-ming languages { is the feature by which a single de�nition can be used overdi�erent types. For instance in writing the de�nition of the length functionlength [] = 0length (a:x) = 1 + length xover lists the type of elements in the list is immaterial: we can applylength to a list of any arbitrary type, and we therefore say thatlength :: [*] -> numwhere * is a type variable. By this means the same code is associatedwith the identi�er length over a whole class of types: namely the list types.5.1.2 Overloading and type classesQuite distinct from polymorphism is a mechanism which allows the samename to be associated with di�erent de�nitions at di�erent types. In theliterature of object-oriented programming this is often known as polymor-phism. Here we use the terminology of the functional programming com-munity and call it overloading.Suppose that we overload plus so that it operates over both numbersand Booleans 27

plus :: num -> num -> numplus :: bool -> bool -> boolwhat then is its type? We cannot sayplus :: * -> * -> *since there is no de�nition of plus over most types (such as char). InHaskell notation (but using the Miranda syntax for type variables) we saythat plus :: (Arith *) => * -> * -> *so that plus has type * -> * -> * not for all types, but for all types* belonging to the type class Arith. A class is de�ned by a declaration,exempli�ed byclass Arith * whereplus :: * -> * -> *zero :: *The members of this class are exactly those types which are instancesof Arith. An instance declaration contains de�nitions of the functions andvalues named in the signature of the class declaration, so that for examplean instance making bool a member of Arith will take the form,instance Arith bool whereplus = (\/)zero = FalseThis mechanism is important because it allows us to give types to func-tions whose de�nitions use overloaded functions. For instance we can saysum [] = zerosum (a:x) = plus a (sum x)and the type of sum will beArith * => [*] -> *
28

that is it takes a list of items of type * to a * if * is in the type classArith. In particular it can be used over the type bool (and presumably alsonum).We believe that this powerful mechanism is of value in our translation,but also that this suggests a sound and e�ective way of describing the typesof overloaded operators in the data part of E-LOTOS, [16].Note that parametric polymorphism resembles overloading, but in astrong form: there is no type class context (such as Arith *) in the type ofa polymorphic function, and so no constraint on the type of the function.5.1.3 Translating parametric speci�cationsIn this section we consider the di�erent possible approaches to translationin the light of the material in Section 5.1.2. As a running example we takethe `Queue' of Section 3.4.As indicated in that section, we cannot give a polymorphic renderingof the `Queue' type, depending as it does both on the type `data' and thevalue `d0'. We can however translate a similar type which depends onlyupon `data'. This is given by replacing the �rst equations for first andremove by�rst(create) = error \�rst"remove(create) = error \remove"where the `error' function aborts execution. We can then write in Mi-randaqueue * ::= Create | Add * (queue *)withfirst :: queue * -> *remove :: queue * -> queue *The advantage of this approach is that first and remove (and indeedthe constructor functions Create and Add) have polymorphic type, thussupporting a strong form of overloading.How is the full type `Queue' rendered in a similar way? The answer is touse the type class mechanism of Section 5.1.2. These are a feature of Haskell29

(but can be simulated in Miranda4).`Queues' can be created over any type (`data') which contains an elementdesignated `d0'. We therefore de�neclass Data * whered0 :: *Now we have queue * de�ned above, and first and remove de�nedexactly as in Section 3.4 except that now their types arefirst :: Data * => queue * -> *remove :: Data * => queue * -> queue *This means that first and remove can be used over queues of any typein the class Data.What is the advantage of this over the translation of Section 3.4? Itallows full overloading, so that first and remove can be used over morethan one type in a given context. This contrasts with the earlier translationin which only a single instance of the parametrised module is allowed inany context; multiple instances have to be replaced by calls to renamedfunctions.To conclude this discussion we have shown how the overloading of LO-TOS can be accommodated in the type system of Haskell which is essentiallythe type system of Miranda (or indeed Standard ML) augmented with typeclasses. We would recommend the inclusion of a type class mechanism inthe re-designed data language of E-LOTOS, since it gives a clear and well-founded type to overloaded operators, in contrast to the current situationin ACT-ONE.4Using the higher-order nature of Miranda functions it is possible to simulate typeclasses in Miranda. Suppose we want to model the classclass Eg * wheref :: * -> [*] -> *g :: *A function h of type Eg * => is now modelled byh' :: (* -> [*] -> * , *) ->whose �rst argument is a pair of values whose types are those of f and g. This mechanismrequires that the particular f and g for the type in question are passed as parameters toapplications of h'. For instance we might writeh' (fNum,gNum) e1 ... enin place of h e1 ... en in a Haskell-style class system.The method described here is indeed that adopted in simple implementations of typeclasses. 30

5.2 Lazy evaluation and in�nite objectsIt has been envisaged that the new data language of LOTOS will be strict.Miranda, by contrast, is a lazy language and this has some positive bene�tsfor the translation of ACT-ONE speci�cations. Take as an example thespeci�cationtype in�nite is list, nat numbersopns ones:->list;one:->nat;eqns ofsort listones = cons(1, ones);ofsort natone = head(ones);endtypeHere we de�ne `one' in terms of `ones', an in�nite list. Speci�cally `one'is de�ned as `head(ones)' wherehead(cons(a,x)) = aIn the initial algebra for the type we haveone = head(ones) = head(cons(1, ones)) = 1and so the speci�cation is meaningful despite the fact that the ruleones = cons(1, ones)does not lead to a terminating rewrite rule. Under a strict translation`ones' and thus `one' will be unde�ned. Tools for LOTOS vary in theirtreatment of examples such as these: Smile gives no warning that this mightbe problematic, and `one' reduces to `succ(0)'; Topo core dumps in the samesituation.It is questionable whether such features of ACT-ONE are used in day-to-day speci�cations. We might suggest that E-LOTOS incorporate lazyevaluation, but if this were to happen there need to be stipulations placed onthe data passed between processes. In particular compound data items needto be fully evaluated before being communicated as otherwise unevaluatedexpressions of unbounded size can be passed from process to process.31

5.3 Totality and termination in data speci�cationsIn a functional programming language like Miranda it is quite possible tode�ne functions which are only partial over their domains. For instancehead (a:x) = a (1)is unde�ned on the empty list [], since the cases given in the patternmatch are not exhaustive. Another example is provided byfac 0 = 1 (2)fac n = n * fac (n+1)which when applied to any positive argument will give no result.The non-termination of (1) is intended and indeed is benign, since thecase(s) in which the function fails to terminate are decidible, that is theycan be tested for at run-time. One can therefore complete the de�nition (1)to (3) in which an error is raised or an exception thrown in the empty listcase. head (a:x) = a (3)head [] = error ...The form of non-termination evident in (2) is in general not decidible(this is exactly Turing's halting problem, of course). We can force ourlanguage to avoid such situations by controlling the forms of de�nition sothat only recursive calls on structurally smaller arguments are permitted.Thus, only structural/primitive recursion is allowed 5 . Clearly (2) wouldbe disallowed in this case, but the correct de�nitionfac 0 = 1 (4)fac n = n * fac (n-1)is permitted since the recursive call is on the smaller (n-1). Such anapproach has various merits.First, and most importantly, it simpli�es the meaning of the language.In this situation we can rely on a function call giving one of two outcomes� a de�ned result is returned, or� an exception is raised.5This approach has also been advocated for general functional programs; see [25].32

In either case the outcome is evident after a �nite amount of time; itdoes not fall into a `black hole' as would fac 2 under de�nition (2) above.This form of divergence is problematic in describing the semantics of thelanguage: the system appears to deadlock, but not in the same way thatStop deadlocks. Divergence becomes particularly di�cult to treat in a timedversion of the language, where it becomes necessary to decide whether ex-pression evaluation is instantaneous or that it allows time to pass.Related to this semantic di�culty is the problem caused for simulationof the language. In the terminating case of the language we know thatexpression evaluation causes a de�ned outcome (as explained earlier); in thegeneral case there is a risk that a tool will fail to terminate while evaluatinga data value. Non-termination is also a problem for program veri�cation; ithas been shown that non-termination can add complexity to the veri�cationof functional programs [21], and so in the absence of non-termination wewould simplify reasoning about LOTOS speci�cations.From the language design point of view, one might argue philosophi-cally that functions over data in LOTOS or E-LOTOS should be simple,with complexities of behaviour only evident in the behavioural part of thelanguage.Finally, it appears that in the context of LOTOS this proposal is notrestrictive in practice. All the libraries we have examined use only structuralforms of recursion to de�ne the speci�ed functions.6 Conclusions6.1 Overview and SummaryThis paper has described an experiment in backward compatibility in thecontext of the LOTOS data typing language. We have described how totranslate data types written in ACT-ONE into the functional language Mi-randa. This language has similarities to the new data language being devel-oped in the E-LOTOS forum. We have shown that, given some constraintson the input ACT-ONE data types, translation is feasible. Furthermore,the more restrictive of these constraints (e.g. con
uence and termination)are in practice already imposed on the ACT-ONE data language; they are,for example, required in order for tools to be constructed.A technical limitation of our translation is that, as discussed in section4, our modelling of renaming is not fully general since we have implementedACT-ONE renaming using aliasing. However, this arises from the featuresof Miranda and is not a fundamental hindrance to general translation into33

functional languages. In particular, as discussed in section 5, this problemcan be resolved using type classes.One of the main bene�ts of performing such an experiment in transla-tion is that it informs the design of the new E-LOTOS data language. Weconclude this paper by, in the next subsection, summarising our recommen-dations in this direction.6.2 The design of E-LOTOSWe recommend the following:1. We would like the language to be total, as outlined in Section 5.3. Weunderstand that there is some demand from the user-community forpartiality, but we believe that it is of the benign form (see example(1) above). Speci�cations of this form can be seen as a shorthandform of an exception-raising version (as in (3) above) and so formingpart of a total language. This view is supported by the document[20], which is one of the most indepth discussions of the problems ofLOTOS data types. In particular, the partiality argued for by [20] iscompletely of the exception handling variety. Thus, we believe that fullrecursive de�nitions are unnecessary for LOTOS data speci�cations,and advocate the change for the advantage it brings in simpli�cation,simulation, tool support and veri�cation.2. We believe that making the language polymorphic, with type classes asdescribed in Section 5.1.2, allows the overloading required in the datalanguage to be presented in a straightforward but well-founded form.Each item de�ned gets a most-general type; if it involves overloadingthere will be one or more constraints over the variables appearing inthe type. There is an additional bene�t that polymorphism allowsthe re-use of the same code (rather than simply the same name) overdi�erent types. In the libraries of Miranda and other languages it isplain that most of the list manipulating functions are polymorphic,and so re-usable over the whole class of list types.In designing a language it is possible to choose to model a particularfeature in more than one way. In the case of parametric and overloadedfunctions it can be argued that the module system can provided thesame functionality. We would agree with this, but also note that themost-general types given to overloaded functions can only be describedusing a polymorphic system with type classes, and not simply by meansof modules. 34

3. Building upon polymorphism one can suggest that higher-order func-tions are added to the language. These are functions whose argumentsor results are themselves functions and they add another dimension ofre-use, so that we can for instance de�ne a single operation to applya function to every member of a list. Again in the case of Mirandaand other languages it is evident that higher-order functions are inwidespread use in de�ning reusable libraries of general functions. Itis reasonable to suggest adding higher-order functions as a constructof the language since the facilities they provide can be given using amodule system only in an indirect and inelegant way.4. Another important feature of Miranda which facilitates veri�cationis the presence of full-precision integers rather than �xed-size repre-sentations of them. The advantages of these include their accuracy,and their correspondence to the usual algebraic data type de�nitionof natural numbers.References[1] T. Bolognesi and E. Brinksma. Introduction to the ISO Speci�cation LanguageLOTOS. Computer Networks and ISDN Systems, 14(1):25{59, 1988.[2] N. Charles. Translating LOTOS Data Types into Miranda. Final year project,University of Kent, June 1996.[3] J. de Meer, R. Roth, and S. Vuong. Introduction to algebraic speci�cationsbased on the language ACT ONE. Computer Networks and ISDN Systems,23:363{392, 1992.[4] Departamento De Ingenieria Telematica, Universidad Politecnica de Madrid.LOtos LAboratory, February 1995.[5] N. Dershowitz and J.-P. Jouannaud. Rewrite systes. In J. van Leeuwen, editor,Handbook of Theoretical Computer Science, Volume B, Formal Methods andSemantics. MIT Press/Elsevier, 1990.[6] K.J. Turner (editor). Using Formal Description Techniques, An Introductionto Estelle, LOTOS and SDL. Wiley, 1993.[7] H. Eertink. Executing lotos speci�cations: the smile tool. In T. Bolognesi,J. van de Lagemaat, and C. Vissers, editors, LOTOSphere: Software Develop-ment with LOTOS. Kluwer Academic Publishers, 1995.[8] H. Ehrig and B. Mahr. Fundamentals of Algebraic Speci�cation 1, Equationsand Initial Semantics. EATCS, Monographs on Theoretical Computer Science.Springer-Verlag, 1985. 35

[9] H. Garavel. Compilation of LOTOS abstract data types. In S. T. Vuong,editor, Formal Description Techniques, II : proceedings of the IFIP TC/WG6.1 Second International Conference on Formal Description Techniques forDistributed Systems and Communication Protocols, FORTE '89, Vancouver,Canada, 5-8 December 1989, pages 147{162. Elsevier Science Publishers, 1989.[10] J.A. Goguen. Higher-order functions considered unnecessary for higher-orderprogramming. In D.A. Turner, editor, Research Topics in Functional Pro-gramming, University of Texas at Austin Year of Programming Series, pages309{351. Addison-Wesley, 1990.[11] R.J.M. Hughes. Why functional programming matters. In D.A. Turner, editor,Research Topics in Functional Programming, University of Texas at AustinYear of Programming Series. Addison-Wesley, 1990.[12] ISO. Towards a Proposal for Datatypes in E-LOTOS. Output Document ofISO/IEC JTC1/SC21/WG7/1.21.20.2.3, Ottawa Meeting, July 1995.[13] ISO 8807. LOTOS: A Formal Description Technique based on the TemporalOrdering of Observational Behaviour, July 1987.[14] ISO 8807, Annex A. Standard library of data types, 1989.[15] ISO 8807, Annex C. A Tutorial on LOTOS, 1989.[16] ISO/IEC JTC1/SC21/WG7 N1053. Revised Working Draft on Enhancementsto LOTOS (V3), March 1996.[17] N.N. Mansurov, A.S. Ragozin, A.V. Chernov, and I.V. Mansurov. Tool sup-port for algebraic speci�cations of data in sdl-92. In R. Gotzhein and J. Bred-ereke, editors, FORTE/PSTV 96, Formal Description Techniques, IX/ Proto-col Speci�cation Testing and Veri�cation XVI, Kaiserslautern, Germany, 8-11October 1996, pages 61{76. Chapman and Hall, 1996.[18] R. Milner, J. Parrow, and D. Walker. The De�nition of Standard ML. MITPress, 1990.[19] H.B. Munster. Comments on the LOTOS standard. Technical Report DITC52/91, National Physical Laboratory, Teddington, Middlesex, UK, September1991.[20] H.B. Munster. LOTOS speci�cation of the MAA standard, with an evaluationof LOTOS. Technical Report DITC 191/91, National Physical Laboratory,Teddington, Middlesex, UK, September 1991.[21] S.J. Thompson. A logic for Miranda. Formal Aspects of Computing, 1:339{365,1989.[22] S.J. Thompson. Miranda, The Craft of Functional Programming. AddisonWesley, 1995. 36

[23] D. A. Turner. Miranda: A non-strict functional language with polymorphictypes. In Proceedings of IFIP Conference on Functional Programming Lan-guages and Computer Architecture, Nancy, France, volume 201 of LectureNotes in Computer Science, pages 1{16, September 1989.[24] D. A. Turner. Miranda Online Manual Pages, 1989.[25] D. A. Turner. Elementary strong functional programming. In Proceedings ofFirst International Symposium, FPLE'95, Functional Programming Languagesin Education, volume 1022 of Lecture Notes in Computer Science, pages 1{14,December 1995.[26] WWW. Haskell 1.3, A Non-strict Purely Functional Language. World WideWeb page http://haskell.cs.yale.edu/haskell-report/haskell-report.html.[27] WWW. Real World Applications of Functional Programming. WWW pagehttp://www.dcs.gla.ac.uk/fp/realworld/.Appendix - An Algorithm to Import ModulesThis algorithm can be seen as a denotational semantics from ACT-ONE toMiranda, which we present using the usual syntax for denotational seman-tics, as the function:[[]] : A �! Mwhere A is the set of all ACT-ONE data types and M is the set of allMiranda programs. Thus [[child]] is the translation of the ACT-ONE datatype `child', which we would place in child.m. It is necessary to de�ne [[]]using structures such as, [[child]]. Although this is recursive, ACT-ONE datatypes cannot be cyclic (i.e. a type can not inherit itself), so the de�nitionof [[]] will also not be cyclic. Since the dependencies are non-cyclic we can(and do) perform the translation `bottom-up': �rst we translate the �lesdepending on nothing else, then the �les depending on those �les, and soon. The algorithm is presented as follows:De�nition: A dummy binding of identi�ers i,j,... is made when i,j,... aregiven as values in the actualisation of a module with parameters when thatmodule is %included and then subsequently in the including script the iden-ti�ers i,j,... are declared %free. An instance of this is given by the bindingof d0 in the �nal example of Section 3.6.1. p-speci�cation 37

type current is child1, child2, . . . , childn. . .endtype(a) %include each [[childi]] providing dummy %free bindings foridenti�ers declared %free in [[childi]].(b) Copy the %include statements (including any bindings) fromeach [[childi]] and remove exact duplicates (i.e. %include state-ments with identical �les, %free bindings and alias bindings).(c) Copy the %free statements from each of the [[childi]], combin-ing them into one %free declaration, removing duplicate entries.Note this %free declaration may be extended further if the cur-rent type has formal parts.2. actualizationtype current is formal childactualizedby actual child1, actual child2, . . . , actual childm[actualization mappings]endtype(a) %include [[formal child]], provide its %free bindings, using theactualization mappings, as described in Section 3.5.(b) Copy the %include statements in [[formal child]], updating any(%free and alias) bindings with new names given in the actual-ization mappings. The bindings are updated as follows:� For each %free binding which has a corresponding entry inthe actualization mapping replace the right hand side of thebinding by the new name given in the mapping.� For each alias binding which has a corresponding entry inthe actualization mapping replace the left hand side of thebinding by the new name given in the mapping.(c) Goto step 1., treating the actual children as the children.(d) Now for each sort and operation that has a actualization mappingbut not handled in 2(a) or 2(b) �nd the script the operation wasoriginally translated into (this is done by searching through allthe �les that have been %included) and place an alias bindingafter its corresponding %include declaration.38

3. renamingtype current is childrenamedby[rename mappings]endtype(a) First we deal with the %include statement, the renaming of%free identi�ers and the renaming of identi�ers that already havean alias binding.i. %include [[child]] providing dummy %free bindings for iden-ti�ers declared %free in [[child]] and where any of the iden-ti�ers have a rename mapping, use the new name as thedummy.ii. Copy all the %include statements in [[child]], including theirbindings (both alias and %free), renaming where a renamemapping exists. The renaming is performed as follows:� For each %free binding which has a corresponding entryin the rename mapping replace the right hand side of thebinding by the new name given in the mapping.� For each alias binding which has a corresponding entryin the rename mapping replace the left hand side of thebinding by the new name given in the mapping.iii. Copy the %free statement from [[child]], renaming the dummyidenti�ers wherever a corresponding rename mapping exists.(b) Next we deal with the new alias bindings.i. For each sort and operation that has a rename mapping andthat has not been handled in 3(a)(i) or 3(a)(ii), �nd the scriptthe operation was originally translated into (this is done bysearching through all the �les that have been %included)and place an alias binding after its corresponding %includedeclaration. In the case that an operation was translated intoboth a constructor and a function it is necessary to providealias bindings for both of them.
39

