
Ž .Computer Standards & Interfaces 19 1998 361–374

Common domain objects in the RM-ODP viewpoints

Guy Genilloud)

()Swiss Federal Institute of Technology of Lausanne EPFL EPFL-DI-LIT, CH-1015, Lausanne, Switzerland

Abstract

Ž .An important standardisation effort is in progress within the Object Management Group OMG regarding domain
computing facilities and common domain objects. In this paper, we investigate the very idea of common objects within the

Ž .Reference Model for Open Distributed Processing RM-ODP . We show that ‘common objects’ are in fact common object
templates, that different kinds of templates are needed for different viewpoint models, and that agreeing on common object
templates is particularly useful for information modelling. q 1998 Elsevier Science B.V. All rights reserved.

Ž .Keywords: Object modelling; Object-oriented software engineering; Open Distributed Processing ODP ; Viewpoint model; Common
domain objects; Common business objects; Standardisation

1. Introduction

Large companies in business domains such as
manufacturing, healthcare, insurance, and finance,
are currently addressing an important but daunting
task: the standardisation of domain computing facili-
ties that are specific to business domains, and the
definition of architectures within which these facili-
ties can be successfully developed and used. This
standardisation implies agreements about objects that
are common to a business domain, or even across
multiple business domains—we will refer to all these
objects as ‘common domain objects’.

Agreements must first be found at an abstract
Ž .independent of implementation and semantical
level, prior to an implementation level. Otherwise,
the use of common objects may result in an in-
creased level of confusion, rather than in the desired

) E-mail: guy.genilloud@di.epfl.ch

improvements in commonness, complexity and reuse.
However, in the absence of a reference implementa-
tion architecture and a common software engineering
process, there is considerable difficulty in agreeing
on just what an object is.

We argue that the Reference Model for Open
Ž .Distributed Processing RM-ODP is a suitable basis

for addressing the problems mentioned above. The
RM-ODP includes a rich set of modelling concepts
that are applicable to all of large distributed systems
w x16 . However, the RM-ODP is difficult to appre-
hend at first glance, and it is sometimes excessively

Žgeneral being terse and overly open is often the
price to pay for reaching international consensus, and

.for obeying ISO rules . As a result, its significance
and usefulness are only beginning to be perceived by
domain system designers.

We analyse in this paper the idea of common
domain objects within the framework provided by
the RM-ODP. Section 2 provides a general introduc-
tion to the RM-ODP, and concludes that common

0920-5489r98r$ - see front matter q 1998 Elsevier Science B.V. All rights reserved.
Ž .PII: S0920-5489 98 00023-3

()G. GenilloudrComputer Standards & Interfaces 19 1998 361–374362

domain objects can and should be considered for
different ODP viewpoints, the enterprise, informa-
tion and computational viewpoints being probably
the most important. In Section 3, we investigate the
information and the computational viewpoints in
more detail, and show that it is preferable to begin
by defining common domain objects in the informa-
tion viewpoint. We conclude with recommendations
for defining common domain objects.

2. Concepts and terminology for object-based
modelling

There is still a fair amount of fuzziness and
confusion around the concept of common domain
object. Part of the problem is linked to the use of
improper terms, as well as to insufficient qualifica-
tion of the context in which the terms are used.

v By use of improper terms, we refer to the fact
that the term ‘object’ is often used when the terms
‘object type’, ‘object class’, ‘object template’, or yet
‘interface’ would be more appropriate—e.g., people
use the term ‘common domain object’ when the term
‘common domain class’ would seem more appropri-
ate.

This problem is partially due to the fact that
Ždifferent computer science communities information

analysis, database, programming languages, operat-
.ing systems , and even subcommunities within those

communities, have developed their own perspective
of object orientation. These perspectives are incom-
plete, and can be inconsistent with one another.

Another problem is that the usual ‘object-oriented
terminology’ has drifted away from English. This
leads to clashes between the ‘object-oriented terms’
and the English terms, which remain necessary and
which are indeed used. For example, most languages
or methods define ‘class’ as ‘an object template from
which instances might be instantiated.’ This defini-
tion matches none of the uses of the word ‘class’ in
English. This problem alone may explain the reluc-
tance to speak of common business classes.

v By insufficient qualification of the context, we
mean that it is not clear in what kinds of models the
objects and related concepts are supposed to be used,
and for what purpose.

Software engineering tells us that several models,
at different levels of abstraction, are necessary to
address the complexity of building large systems: an
analysis model, a design model, an implementation
model, and perhaps still other models. Accordingly,
it is quite useful to qualify objects as ‘analysis
objects’ or ‘implementation objects’, because these
objects are not quite the same, as there need not be a
one to one correspondence between analysis objects
and implementation objects. However, this practice
refers to a software engineering process and to an
implementation architecture, and we have no univer-
sal agreement on such a process and architecture.

The RM-ODP responds to the first problem with a
w xFoundations document 15 : it includes a rich set of

modelling concepts, and it provides definitions that
are both precise and mutually consistent. Impor-
tantly, the definitions are applicable to all kinds of
object-based models, and they are independent of a
notation, software engineering process, or implemen-
tation.

The RM-ODP solves the second problem by
Ždefining a set of five viewpoint languages enter-

prise, information, computational, engineering and
.technology that are a sufficient basis for addressing

w xthe modelling of large distributed systems 16 . It is
important to note that ODP defines these languages
independently of any software engineering process:
the semantics of information and computational
models, for example, are explained without any di-
rect or indirect reference to an implementation.

2.1. The RM-ODP foundations

From the very beginning, ISO and ITU experts
agreed that object-orientation concepts would be used
heavily for specifying and building distributed sys-
tems. However, they immediately faced the problem

Žthat each of the different communities involved in-
formation analysis, database, programming lan-

.guages, operating systems has its own perspective
of object orientation.

To avoid misunderstandings, the RM-ODP Foun-
dations document provides a rigorous definition for
each of the concepts commonly encountered in ob-

w xject-oriented models 15 . These concepts have been
successfully refined to serve each of the five ODP
viewpoints, and new viewpoint-specific concepts are

()G. GenilloudrComputer Standards & Interfaces 19 1998 361–374 363

defined using the RM-ODP Foundations concepts.
The ODP Foundations thus represent the very invari-
ant that has been applied equally well to enterprise
modelling, information modelling, computational
modelling, etc.—because of their generality of appli-
cation and their precision, they capture the essence
of what it means for a model to be object-oriented.

The RM-ODP Foundations introduce a general
object-based model. This model comprises the fol-
lowing characteristics.

Ž .v An ODP system can be described modelled
w xas a collection of related, interacting objects 14 .

v Action is the most fundamental concept for
modelling systems—it models ‘something which
happens’. ODP actions may have a duration and may

Žoverlap in time allowing an action to model the
exchange of a multimedia stream, e.g., a composite

.television signal .
All actions are associated with at least one object:

internal actions are associated with a single object;
interactions are actions associated with several ob-
jects.

v Objects are the units of encapsulation, charac-
terized by their behaviour and their state. Encapsula-
tion means that changes in an object state can only
occur as a result of the internal actions or the interac-
tions of that object. Objects have an identity, which
means that each object is distinct from any other
object.

v A name is a term which, in a given naming
context, refers to an entity. In ODP, all names are
relative to some naming context, and objects gener-
ally ignore the names that denote them. Moreover,
there is no implication that all objects have a unique
name in some ‘well-known’ naming context—decid-
ing whether two names denote two different objects
or the same object can be difficult or even impossi-
ble. 1

v The behaÕiour of an object is a collection of
actions with a set of constraints on when they may

1 Fundamentally, object identity only implies that there exists a
reliable way to refer to objects in a model. For example, an object
can make reference to another object by associating a reliable
name with it, in a private naming context—this name will then
denote that very object until the referencing object performs
another naming action with it. This is analog to the notion of

w xreferential integrity in CORBA 3 .

occur. Examples of constraints include sequentiality,
non-determinism, concurrency or real-time con-
straints.

v An interface is an abstraction of the behaviour
of an object. It consists of a subset of the interactions
of that object together with a set of constraints on
when they may occur.

In contrast with other object models, an ODP
Žobject can have multiple interfaces the capsule of an
.ODP object is a set of interfaces . Like objects,

Žinterfaces can be instantiated and deleted some ob-
.jects have extendable capsules .

v A template specifies common features in suf-
Žficient detail to enable instantiations this concept is

usually called ‘class’ in the literature on object orien-
.tation . Thus, an object template is a specification of

the common features of a set of objects; an interface
template is a specification of the common features of
a set of interfaces; an action template is a specifica-
tion of the common features of a set of actions.

v A type is a predicate which classifies entities
Ž .objects, interfaces, actions, relations into categories
Ž .therefore enabling reasoning about those categories .
Entities can be typed with any predicate. Thus, an
object or an interface can satisfy more than one type,
and they can satisfy different types at different times.

The ODP notion of type addresses the true goals
of typing, the ability to talk about, reason about and
verify properties of things, and it is clearly indepen-
dent of implementation. Commonly, entities are stat-
ically typed on the basis of the templates of which
they are instances—a predicate, called a template
type, is associated with an object template or an
interface template. 2 However, it is possible to ex-
tend the benefits of typing to non-permanent proper-
ties of interest by explicitly defining ‘dynamic types’
Že.g., an hotel room may be ‘free’, ‘reserved’, or

. w x‘occupied’ 8 .
v An object class, in the ODP meaning, repre-

sents the set of objects that satisfy a given type.
Many object models do not clearly distinguish be-
tween a specification for an object and the set of

2 A template type characterises the template instantiations, usu-
ally by describing their suitability for some purpose. Objects and
interfaces need not be instantiations of a given template to be
instances of its template type.

()G. GenilloudrComputer Standards & Interfaces 19 1998 361–374364

objects that fit the specification. ODP makes the
distinction between template and class explicit.

A subclass is a subset of a class. A subtype is
therefore a predicate that defines a subclass. ODP
subtype and subclass hierarchies are thus completely
isomorphic.

v Abstraction is the process of suppressing irrel-
evant detail to establish a simplified model, or the

Žresult of that process. Composition, viewpoint Sec-
. Ž .tion 2.2 , and view Section 3.1.3 are three distinct

techniques of abstraction.
v Composition is the combination of two or

Ž .more entities objects, behaviours, actions yielding a
new entity of the same kind, at a different level of
abstraction. The characteristics of the new entity are
determined by the entities being combined and by
the way they are combined.

For example, two actions may be composed by
Ž .sequential composition, yielding a new composite

action at a different level of abstraction. Abstraction
is obtained in the sense that one needs only consider
the pre- and the post-conditions of the composite
action, and not those of its consisting actions.

The ODP Foundations define many other impor-
tant concepts, such as actiÕity, domain, epoch, fault,
policy, name, and role. We invite the reader to

w x w xconsult the standard documents 14 and 15 for the
definitions and a discussion on those concepts.

2.1.1. Discussion
An important characteristic of the ODP Founda-

tions object model is that it is very general and that it
makes a minimum number of assumptions. For in-
stance, objects can be of an arbitrary granularity
Že.g., they can be as large as the telephone network,

.or as small as an integer ; objects can exhibit arbi-
Ž .trary encapsulated behaviours, and have an arbi-

trary level of internal parallelism.
The reader should note that, according to the ODP

Foundations, encapsulation is a property specific to
Ž .objects, whereas inheritance template derivation and

Ž .classification typing and subtyping are not. Indeed,
template derivation and typing are applicable not
only to objects, but also to interfaces, actions, etc.

Encapsulation ensures that any change in the state
of an object can only occur as a result of an action of

Žthat object i.e., state changes are under an object’s

.control . It is then possible to define abstractions for
an object, for example invariants that characterize its
state. In some modelling techniques, an object’s
interfaces need not be specified explicitly. Encapsu-
lation is then provided by defining specific invariants
for the object, and by not letting these invariants be
overruled. 3

Finally, note that interactions between objects are
not limited to message passing. They may include,
for example, asynchronous and multiway syn-
chronous interactions. Asynchronous interactions are
perceived by objects at different times, as in the
sending and receiving of a letter. Synchronous inter-
actions provide a rendezvous mechanism between
objects: objects participate jointly in such an action,
and they may change their states simultaneously. A
synchronous interaction is ‘multiway’ when it in-
volves more than two objects.

An action may be atomic or non-atomic at a given
Ž .level of abstraction i.e., within a given model .

Atomic actions cannot be subdivided into other ac-
tions. Non-atomic actions are essentially a notational
convenience. This paper is essentially concerned
about atomic interactions between objects. There-
fore, all the actions that we discuss are atomic. In
particular, we will use the term ‘multiway interac-
tion’ to denote atomic multiway synchronous interac-
tions.

2.1.2. Compatibility with classical and generalized
object models

w xAs explained by Kilov and Ross 9 , there are two
broad categories of object models.

v Generalized object models do not distinguish a
w xrecipient from other request parameters 13 . In gen-

eralized models, a request is defined as an event
which identifies an operation and optional parame-
ters. For example, an AddToInventory
(part1, lot2, bin3) request does not give
special significance to either the part, the lot, or the
bin. These objects participate uniformly in the re-
quest.

3 Invariants may be applied not only to a single object, but also
to sets of objects. Obviously, encapsulation of a given object
enforces only the invariants that are confined to that object.

()G. GenilloudrComputer Standards & Interfaces 19 1998 361–374 365

v Classical or messaging object models do dis-
tinguish a recipient. In classical models, a request is
defined as an event which identifies an operation, a
recipient, and optional parameters. Either the part,
the lot, or the bin could be designed to be the
recipient of the AddToInventory request. The request
to a specific recipient is called a message. A com-
mon syntax places the recipient first: part1. Add
ToInventory (lot2, bin3).

The RM-ODP Foundations are compatible with
generalized object models in the sense that multiway
interactions correspond to ‘generalized requests.’
However, the concept of multiway interaction is that
of an action occurrence, not that of an action request.
A multiway interaction simply does not occur when
one of the objects involved is in a state that is
incompatible with it; a generalized request always
occurs, but it may return an error if its preconditions
are not satisfied. The generalized object model se-
mantics can be emulated in ODP by specifying a
choice between several multiway interactions.

The RM-ODP Foundations are compatible with
classical object models in the sense that interactions
can be constrained, as does the ODP computational

Ž .language see Section 3.2 .

2.2. The fiÕe ODP Õiewpoints

Distributed systems are complex systems, and
they usually involve a number of concerns, ranging

Žfrom business issues e.g., can the customer credit
.limit policy be overruled in some circumstances? to

Žtechnology issues e.g., does the Java language offer
sufficient performance for computing a particular

.function? . To deal with this complexity, the RM-
ODP applies the principle of separation of concerns,
and introduces five viewpoints. 4

v The enterprise Õiewpoint defines and explains
the objectives, the scope and the responsibilities of a
system. For this, it is necessary to understand the
overall objectives and responsibilities of the commu-

4 The RM-ODP Foundations define Õiewpoint as a form of
abstraction achieved using a selected set of architectural concepts
and structuring rules, in order to focus on particular concerns
within a system. The RM-ODP Architecture selects and defines
five viewpoints as a necessary and sufficient set for the needs of
ODP.

Ž .nities configurations of enterprise objects that are
using the system, and of other communities that have

Ža stake in it. Objectives and responsibilities and
.thus, behaviour are specified by a contract. The

system typically appears as one or several enterprise
objects playing a number of roles: its behaviour is
specified in terms of objectives and policies, and
interactions represent transfers or changes of respon-
sibility. Enterprise modelling is important for under-
standing and deciding the requirements placed on the
system, and for recording the motivation behind a
system specification.

v The information Õiewpoint focuses on the
semantics of the information that is held or ex-
changed by the system, and on the processing of that
information. The result is a system specification that
is easily comprehensible: ideally, the important prop-
erties of the system are stated explicitly in a declara-

Žtive way, rather than implemented say ‘what’, not
.‘how’ . In some sense, an information specification

is independent of how a system is built. However, it
is often necessary to revise an information specifica-
tion is that a distributed implementation is possible,
or so that legacy systems can be reused effectively.

v The computational Õiewpoint focuses on the
components of a distributed system. Computational
objects are loosely coupled components, with well-
defined interfaces, that can be built independently
and that can be distributed over a network. Distribu-
tion is only considered to the extent that computa-
tional objects are specified in a manner where they
can be distributed, rather than how they are dis-
tributed; it is not necessary to specify the location of
an object, nor whether it can migrate or not. Further-

Žmore, resource usage CPU, memory, communica-
.tion needs not be considered.

v The engineering Õiewpoint is concerned with
the way the system is physically distributed and
configured, taking into account the trade-off between
processing capacity, communications bandwidth,

Ž .transparency requirements e.g., fault tolerance , and
quality of service issues. For simplicity, semantic
concerns need not be considered in the engineering
viewpoint—the complex evaluation of business rules
Ž .the business logic , or other information processing
activities, can be abstracted out and substituted by
non-determinism and numeric estimates of resource
usage.

()G. GenilloudrComputer Standards & Interfaces 19 1998 361–374366

v Finally, the technology Õiewpoint specifies the
actual artefacts and technologies which make up the
system. It provides the link between the set of speci-
fications and the concrete implementation.

In summary, the adoption of a viewpoint is a
technique for making system models that emphasize
one particular concern, while ignoring other charac-
teristics that are temporarily irrelevant to that con-
cern.

2.2.1. Viewpoint models and system specification
In every viewpoint, the goal is to produce a

viewpoint specification, i.e., an object-based model
Ž .that represents a system and some of its environ-

ment. The full specification of the system is then the
collection of all the viewpoint specifications, i.e., the
system implementation must conform to all of those.

The RM-ODP defines five viewpoints, but this
does not imply that exactly five models are always
sufficient to specify and build a distributed system.
In fact, it is not always necessary to specify a system
in all the five viewpoints, or to make complete
specifications in every viewpoint. Practitioners some-
times construct only elements of a viewpoint specifi-
cation—they stop before completing a full object-
based model. For example, only the ‘static part’ of
the information specification is explicitly defined;
the dynamic part is to be deduced from other view-
point specifications. This practice is only possible in
simple cases, and outsiders may find it confusing as
they do not understand what has been specified in
the viewpoint. However, this way of working with
multiple viewpoints remains useful for complexity
management, i.e., for separating the concerns.

On the other hand, there is often an interest in
making more that one complete object-based model
within a viewpoint. For example, it can be useful to
make a computational model where a certain service

Žis provided by a single computational object to
.show how it will be used , and another model where

the same service is provided by a composition of
Žcomputational objects to show how it will be dis-

.tributed .

2.2.2. Viewpoint languages
The RM-ODP defines a viewpoint language for

each viewpoint, defining concepts and rules for spec-
ifying systems from the corresponding viewpoint.

The ODP viewpoint languages are all object-ori-
ented, and they each specialise the RM-ODP Foun-
dations by refining the fundamental concepts, by
introducing prescriptive rules, and by introducing

Žviewpoint-specific concepts defined in terms of the
.fundamental concepts . In short, each viewpoint lan-

guage supports the creation of object-based models
that address the concerns relevant to the correspond-
ing viewpoint.

It is important to note that the RM-ODP uses the
term ‘language’ in its broadest sense: ‘‘a set of
terms and the rules for the construction of statements
from the terms’’. The RM-ODP does not propose
any notation for supporting the viewpoint languages
—notations are the scope of specific ODP
standards. 5

2.2.3. Correspondences between ODP Õiewpoint
models

Different viewpoint specifications are not differ-
ent views or different abstractions of a same object-

Ž .based model. A complete viewpoint specification
defines, at some level of abstraction, a complete
object-based model, e.g., an information and a com-

Žputational specifications define two different but
.related object-based models. More to the point,

ODP objects need not be part of models in different
viewpoints. In fact, they cannot—the objects in an
ODP viewpoint model are only defined with respect
to that model. For this reason, objects in enterprise
models are called enterprise objects, objects in in-
formation models are called information objects, etc.

Strong correspondences are possible between
models in different viewpoints, but ODP defines few
rules regarding these correspondences. For example,
there need not be one-to-one relationships between
objects in the models. Unlike software engineering
processes, ODP avoids providing design heuristics
and specifying arbitrary consistency rules. As ob-
served by R.A. Tyndale-Biscoe, ‘‘the relationships

5 However, ISO and ITU are working on an amendment to the
RM-ODP Part 4, which will explain how to use existing formal

Ž .specification languages LOTOS, Z, SDL and Estelle for produc-
ing models in the ODP viewpoint. This work does not imply that
the RM-ODP mandates the use of formal description techniques
for ODP systems.

()G. GenilloudrComputer Standards & Interfaces 19 1998 361–374 367

Ž . Ž .correspondences between two different ODP
viewpoint specifications are driven by, and only by,
the fact that both specifications describe the same

Žreal world thing, the system the ODP specifications
are of the system—they describe a thing in the real

. w xworld that we call the system 12 .’’
Defining non-arbitrary correspondence rules be-

tween different viewpoint specifications is a very
difficult problem in general. However, specific cor-
respondences are easier to establish in practice, i.e.,
with respect to a specific system. Of course, speci-
fiers must record those correspondences whenever
they define or discover them. Correspondences be-
tween viewpoint models arise also naturally because,
in the words of R.A. Tyndale-Biscoe, ‘‘objects in

ŽODP viewpoint specifications are related to rather
.than describe other things in the real world that are

of interest in some way to the business being sup-
Žported and this is what ‘business objects’ are all

.about . Thus, an information object is related to
some class of thing in the real world about which the
system has to know something. And we may have
computational objects that are related to real world
things.’’

2.3. Common domain objects in the RM-ODP frame-
work

Following the ODP terminology, it seems more
appropriate to speak of ‘common object templates’
than of ‘common objects’. Indeed, the idea is not to
have different companies or different systems make
use of the very same object instances, but to increase
the commonalities between different object-based
models. This goal can be achieved by using common
object templates.

In fact, defining and agreeing about ‘common
object types’ becomes necessary as soon as common
object templates are defined. The main reason is that
objects do not exist in isolation—they are always
related to other objects. In such ‘object relations’,

Ž .whatever they are, it is the type or properties of the
object that is of interest, not all the characteristics of
its instantiation template. Considering the type, rather
than the template, is indeed essential for enabling
subtyping and substitutability.

Whether we want it or not, a template type is
associated with every template that we define and

use. Defining this type explicitly is much preferable. 6

This can be done in two ways: by well-defined
typing rules which map templates to template types,
or via an explicit and separate definition of types.
The first solution is the most attractive but it is not
sufficient by itself—objects may indeed have types
which have little to do with templates and instantia-

Žtion see for example the concept of dynamic type in
.Section 2.1 .

In summary, we observe: that the so-called ‘com-
mon objects’ are in fact common object templates or
common object types, that common object templates

Žcannot be defined in isolation rather, they need to be
.defined in related groups or sets , and that agreeing

on common types is probably more important than
agreeing on common templates. Nevertheless, in this
paper, we mainly discuss common domain object
templates rather than types, because these are the

Ž .‘objects’ that people look for and want to re use.
Moreover, it is probably easier to define and to agree
on common types if common templates are also
defined.

In this paper, we are specifically concerned with
the characterization of common domain object tem-
plates in the information and the computational
viewpoints. We do not discuss the engineering and
technology viewpoints any further because they are
not concerned with domain semantics. We recognize

Žthat defining common domain object templates or
.role templates is probably a pertinent idea for enter-

prise modelling, but we do not consider this topic in
this paper. A group of experts within ISO is cur-
rently refining the RM-ODP enterprise viewpoint
language—we await more results from this work
before completing our research in this viewpoint.

3. Common objects in the computational and the
information viewpoints

In the second part of this paper, we show that
common templates for information objects should be

6 Template types are not defined with respect to interface
templates in OMG IDL. As a result, the meaning of types and
subtypes in CORBA has been the subject of many discussions,
with no clear resolution. The current modus operandi is that
subtyping rules are defined indirectly via a CORBA communica-

Ž .tion protocol specification known as GIOP .

()G. GenilloudrComputer Standards & Interfaces 19 1998 361–374368

different from those for computational objects, and
that it is preferable to begin with definitions of
common information object templates. First, we de-
velop our introductions to the information and the
computational viewpoints, and we discuss the rela-
tion between them.

3.1. The ODP information Õiewpoint

Not much is said about information modelling in
the RM-ODP standard. This is quite right for a
reference model on distributed processing, but the
intent of information modelling is perhaps insuffi-
ciently defined: the statement that ‘‘an information
specification defines the semantics of information
and the semantics of information processing in an
ODP system’’ can be interpreted in different ways.

A useful interpretation can be obtained by noting
that ODP defines information as ‘‘the knowledge
that is exchangeable amongst users in a given uni-
verse of discourse.’’ In this context, information may
be seen as ‘‘the knowledge necessary to make use of

w xa system or part of the system’’ 2 . An information
model thus specifies what the totality of users must

Žknow about a system, to make a proper use of it see
.also Section 3.1.1 . Note that this implies an under-

standing of the information that is to be provided to
the system, and of the information that is obtained
from it. Note also that a user of a system may be a
person or another system—in the latter case, the
users of the information model are the people who
specify, design or implement that other system.

Simplicity and independence of implementation
are major concerns of information modelling, whilst
executability of models is not. Users need not be
aware of all the components of a system, of all the
possible states of these components, nor of all the
interactions between these components. They are
only interested in the system states that they can
perceive. Therefore, a goal of information modelling
is to produce a system specification that includes
only those states, or as few more as possible.

In summary, information modelling tends to spec-
ify a system by using a minimal number of concep-
tual states, and by using concepts that make sense to
the users of the system.

3.1.1. The information language modelling technique
In the information viewpoint, like in any other

viewpoint, a model consists of a configuration of
interacting objects. This configuration of objects, the
objects within it, and its overall behaviour, can be
specified in different ways, that we call modelling
techniques. Note that we do not address the issue of
notation: a same modelling technique can be sup-

Žported by different notations and notations are
.clearly outside the scope of the RM-ODP .

The RM-ODP information language is not very
prescriptive regarding the modelling technique that is
to be used in the information viewpoint. It simply
proposes a modelling technique analog to Z, or the

w xanalysis phases of Refs. 1,6 . It does this with only a
few rules and definitions, saying little more than the
following:
Ø Static schemas capture information structure

Ž .global state at some point in time.
Ø Dynamic schemas specify allowable state changes

in multiple information objects, using pre-condi-
tions and post-conditions.

Ø InÕariant schemas constrain the possible states
and state changes of the objects to which they
apply.

Ø A state change involving a set of objects can be
regarded as an interaction between those objects.
Not all of the objects involved in the interaction
need change state; some of the objects may be
involved in a read-only manner.
The above rules raise two important questions:

1. How should information models be expressed in
notations that do not provide either dynamic nor

Ž .invariant schemas e.g., LOTOS ?
2. How can dynamic schemas and invariant schemas

specify legible state changes in several objects,
when encapsulation is an essential property of

Ž .objects as noted in the ODP Foundations ?
An answer to both questions is that ‘multiway

interactions are allowed in information models.’
Multiway interactions are a powerful modelling con-
cept for two reasons. Firstly, a single multiway
interaction can consistently change the states of sev-
eral objects, which is often what is desired. And
secondly, a multiway interaction occurs and pro-
duces the right effects, or it simply does not occur at
all. Therefore, multiway interactions always leave
the system in a well-defined state.

()G. GenilloudrComputer Standards & Interfaces 19 1998 361–374 369

By themselves, multiway interactions allow infor-
mation models to be more abstract and simpler to
understand than classical object models, such as
computational, engineering, ‘design’ or ‘implementa-
tion’ models. However, the information language
allows for an even greater level of abstraction by not
requiring interactions to be listed explicitly; an infor-
mation object may participate in all interactions that
one can think of, except those that conflict with the
constraints of dynamic and invariant schemas. In
other words, information modelling proceeds by ex-

Ž .cluding invalid interactions adding constraints ,
rather than by listing valid interactions. Typically,

Žthis is done by specifying invariants invariant
.schemas that pertain to the states of several objects.

3.1.2. Interactions between the system and its enÕi-
ronment

To understand a system specification, it is neces-
sary to know the hypotheses made about its environ-

Žment otherwise, there are simply too many potential
.interactions and state changes to consider . This can

be done by specifying the interfaces of the system,
i.e., by specifying explicitly all the valid interactions
of the system and its environment. This approach is
consistent with the fact that a system is accessed via
specific interfaces, and that users need to know these
interfaces to make use of the system.

However, it is possible to abstract over the inter-
actions of the system by constraining the states of
the system with the states of its environment. This is
done using invariant and dynamic schemas that per-
tain both to information objects in the system, and
information objects in its environment. It can be
interesting to use this technique at a high level of
abstraction, or when providing a specific ‘informa-
tion view’ of the system.

If an information specification includes neither
the system interfaces nor information objects in the
system environment, then something is missing in
that viewpoint specification.

3.1.3. Multiple information Õiews of a system
As a distributed system has typically different

kinds of users, it can be interesting to specify several
Žinformation models, or information Õiews see Ref.

w x1 for a good example of using multiple views in
.specification . Different views may be defined for

different users, or even for the same user in different
contexts.

Within information views, some interactions be-
tween the system and its environment may be ab-
stracted as we explained above. For example, an
information view may tell a clerk that, as far as he or
she is concerned, a shipment’s location information
in the system always corresponds precisely to the
effective current location of the shipment; an invari-
ant schema constrains both the location objects in-
side and outside the system to have the same states
at all times. A different information view will spec-
ify the system interactions that update a shipment’s
location information. A more thorough example is

w xprovided in Ref. 4 , Section 4.5.1.

3.2. The ODP computational Õiewpoint

Unlike information objects, computational objects
cannot participate in multiway interactions. This re-
striction underlies an important difference between
information and computational modelling.

The fundamental idea of the computational view-
point is that computational objects identify loosely
coupled components and their interactions, such that
an implementation with an ‘engineering virtual ma-

Ž .chine’ e.g., CORBA is possible without much in-
terpretation. For this very reason, the computational
language constrains the interactions in which objects
may participate to signals, operations, and flows.

v Signals are synchronous interactions between
two objects and they provide only one-way commu-
nication. As all synchronous interactions, they are
always perceived identically by both participants in
the interaction. Hence, there is no concept of partial
failure of a signal.

Importantly, computational objects cannot, in
general, communicate directly using signals. What
objects can do is to instantiate a so-called binding

Žobject between them a binding object is typically an
.abstraction of a communications protocol —signals

can then be exchanged with the binding object,
which propagates them with a delay to the other
objects.

v Operations are interactions analog to requests
in CORBA, or to messages in object-oriented lan-
guages. They involve at most two objects, and they
are classified in two types: announcements are oper-

()G. GenilloudrComputer Standards & Interfaces 19 1998 361–374370

ations for which no outcome is reported to the
invoker; interrogations are operations for which an

Ž .outcome termination is always reported to the in-
voker. This reported outcome may be the real termi-
nation of the operation, but it can also be an excep-
tion reporting an engineering infrastructure failure
Ž .e.g., a communication failure .

Operations are asynchronous in the sense that the
invocation and termination might be delivered some

Ž .time later if at all after they have been submitted.
In fact, operations might sometimes be synchronous
Ž .submission and delivery are one and the same event ,
but the assumption to be made is that they are
asynchronous. Note that we are not interested in

Žwhether an operation invocation is blocking the
.thread waits for the termination or non-blocking

Žthe thread executes other actions before attempting
.to receive the termination . This is an implementa-

tion issue.
v Flows are interactions modelling the con-

veyance of information from a producer object to a
consumer object. They are typically used for mod-
elling continuous interactions including the special
case of an analogue information flow. As for opera-
tions, the assumption to be made is that flows are
asynchronous.

Interactions in computational models are con-
strained because implementing multiway interactions
Ž .including signals in a distributed way is inefficient
or excessively difficult—allowing arbitrary interac-
tions would defeat the very purpose of the computa-
tional viewpoint. Restraining interactions is also a
way to preserve a clear separation between computa-
tional modelling and information modelling, as dis-
cussed in Section 3.1.1.

In fact, some ODP transparencies, such as the
transaction transparency, can relax the constraints
imposed by the computational language in specific
and controlled ways. We do not consider the impact
of the ODP transparencies in this paper.

3.3. Relations between computational models and
information models

It is often said in ODP tutorials that the ODP
viewpoints do not correspond to levels of abstrac-
tions. It is sometimes stated that a computational
model is not a refinement of an information model.

These statements are certainly not wrong, but they
need to be qualified.

3.3.1. DeÕelopment process
Above all, it must be emphasised that the ODP

viewpoints do not suggest a ‘waterfall’ development
process. Rather, ODP modelling, whilst usually initi-
ated in the enterprise viewpoint, is most successful if

Žseveral viewpoints are considered in parallel i.e., in
.an iterative way .

Consider, for example, the information, the com-
putational, and the engineering viewpoints. Analysts
strive for simplicity in information models—as a
result, they tend to make information models that are
too ‘ideal’ for an implementation to be possible,
given the constraints imposed by distribution, perfor-
mance objectives, and technology. Such feasibility
problems will be fully realised when working on the
computational and engineering models. When this
happens, the information model must be amended to
make it less constraining with respect to the imple-
mentation. This may be done in a direct way by

Ž .relaxing some integrity constraints invariants , or by
introducing extra information objects in the model.

Assume for example that the stocks of a distant
warehouse are modelled by a ‘stocks’ information
object, and that system operations are defined with
respect to that information object. This model may
be impossible to implement because precise and
timely information cannot be made available regard-
ing the warehouse stocks, or because too many
clients access the warehouse system concurrently.
The information model can be made more flexible
by the introduction of an extra information object,
say a ‘stocks estimator’ object; system operations are
then redefined in terms of the ‘stocks estimator’
object. The ‘stocks’ object remains in the model as it
is useful for explaining the semantics of the ‘stocks
estimator’ object. Note that such a change may affect
the enterprise model.

3.3.2. LeÕels of abstraction
A computational model is more concerned with

distribution and technology than an information
model. It appears, therefore, to be less abstract than
an information model. However, talking about levels
of abstraction can be deceptive because there exist
different kinds of abstractions. For example compu-

()G. GenilloudrComputer Standards & Interfaces 19 1998 361–374 371

tational models can be made more or less abstract, as
we explained. As another example, an enterprise
specification can be detailed about actions and ob-
jects in the system environment, whilst the other
viewpoint specifications typically abstract most as-
pects of the environment. Thus, the ODP concept of
viewpoint is not that of a level of abstraction.

However, abstraction can be understood, among
others, as the degree of dependence with respect to
the system implementation. In this sense, and in this
sense only, the ODP viewpoints can be related to
levels of abstraction; enterprise being the most ab-
stract and technology being the most concrete.

w xFranklin and Robinson 5 used this idea in a
thoughtful presentation at a recent workshop on ODP,
which was well-received.

3.3.3. Refinement of an information specification
There is no refinement relationship between the

information and the computational viewpoint, for at
least three reasons. First, as we have seen, the devel-
opment of a computational model may induce
amendments to an information model. Second, view-
points are not levels of abstraction. And third, an
information model is not meant to be a first attempt

Žat a computational model ideally, an information
.model is fully independent of distribution .

Nevertheless, a computational model and an in-
formation model can be linked by a refinement

w xrelation. Indeed, Herbert 7 , the ISO rapporteur for
the RM-ODP Architecture, wrote recently:

In some sense, the computational language could be
thought of as a terminating condition for refining an
information specification to the point where all be-
haviour have been localised to computational inter-
faces and expressed in terms of the actions in a

Ž .portability model viz. a programming language .

ŽIt is conceivable to apply refinement steps to i.e.,
.to modify an information specification until all the

constraints of the computational language are satis-
fied. When this is done, the refined information

Ž .specification can be considered relabelled as a
computational specification, and used as such.

Note that there is no obligation, nor even a sug-
gestion, to arrive at a computational specification by
applying refinement steps to an information specifi-
cation: the RM-ODP proposes no refinement pro-

cess, nor any refinement steps or rules. That the
behaviour of the system in the computational model
Ž .a configuration of computational objects be be-
haviourally compatible with the specification of the

Žsystem in the information model a configuration of
.information objects is what is required. In particu-

lar, all the system states in the information specifica-
tion must have a related state in the computational
specification.

3.3.4. Computational models used as information
models

All computational models satisfy the rules of the
information language. Any computational model may
thus be considered and may even be used as an
information model. Such a model is probably not the
simplest nor the most abstract information model
that can be made, but it represents a valid specifica-
tion of a system, and users can extract enough
knowledge from it to use the system.

Although in general we do not recommend this
practice, it sometimes makes sense to use a computa-
tional model as an information model. For example,
if there are just two components to consider, reveal-
ing the system components does not dramatically
increase the complexity of the model. Moreover,
revealing components in an information model can
be useful when they tend to enter in well-known
failure modes.

3.3.5. Specification of computational objects
The computational language does not constrain

the behaviour of computational objects: this be-
haviour may be specified by any means deemed

w xappropriate 10 . This is essential to enable computa-
tional objects to ‘encapsulate’ legacy systems, and
even human users.

The behaviour of a computational object can be
specified using the computational language alone,
but this is cumbersome because it lacks expressive
power. Another possibility is to consider the compu-
tational object as a system and to apply the view-
points recursively to it; its behaviour is then speci-
fied in an information viewpoint model.

If this approach is followed, then the relation
between the information specification and the com-
putational specification can be made more visible;
the information object templates used for specifying

()G. GenilloudrComputer Standards & Interfaces 19 1998 361–374372

the system can be reused in the specification of the
computational objects. An interesting example was
shown in the context of the LOTOS language, in a

w xdraft ISO technical report 11 .

3.4. Common object templates

From the Sections 3.3.3 and 3.3.4, we understand
that some object templates can be used in both
computational models and information models. Nev-
ertheless, information objects differ from computa-
tional objects in several ways:
1. Information objects are more conceptual because

they model entities of interest to users, while
computational objects represent units of imple-
mentation.

2. Information objects may be used in the specifica-
tion of computational objects, while the opposite
makes little sense.

3. Information objects can interact with each other
in ways which are impossible for computational
objects.
The second point above shows that it is preferable

to begin with defining common templates for infor-
mation domain objects. The third point indicates that
information objects can be composed more easily
and in many more ways than computational objects.
Thus, common templates for information objects
should be different from those for computational
objects.

3.4.1. Encapsulation and behaÕiour of information
objects

In the information viewpoint, encapsulation means
that the behavioural constraints expressed in an in-
formation object template cannot be overridden nor
violated—this is ‘enforced’ by the syntactical rules
of the modelling notation, or simply by its semantics.
Thus, an information object template consists of a
specification of the possible states and state changes

Žof an instance typically, this is done using an invari-
ant, or rules governing the transitions between those

.states , and operations need not be specified.
However, some operations may be specified: an

object template may specify one or several interfaces
explicitly, and still be an interesting information
object template. There is nothing wrong with empha-

sizing certain interactions, provided other interesting
and valid interactions are not excluded.

Even when no operations are specified for them,
information objects are not simply ‘lists of attributes.’
They do have a behaviour, that must be specified.
Data can be considered as special objects with no

Žconstraints in their states and state changes beyond
the constraints provided by the datatypes of their

.‘attributes’ . Clearly, common domain information
object templates should be defined as precisely as
possible—they should be more than data ‘templates.’

3.4.2. Encapsulation and behaÕiour of computational
objects

In the computational viewpoint, encapsulation of
an object means that all its interfaces are specified
explicitly—all accesses and modifications to the state
of an object are mediated by the interactions listed in
those interfaces. Thus, a computational object tem-
plate specifies all the operations, signals and flows of
its instances; it specifies also the behaviour that
occurs behind those interfaces.

The computational language does not constrain
the behaviour of computational objects beyond the

Žcontracts imposed by their interfaces e.g., an object
which invokes an interrogation must accept to re-
ceive the termination of that operation—it cannot

.‘forget’ to enquire about its results . One possibility
for specifying the behaviour of a computational ob-
ject is to use an information language, with all its
power. Thus, the computational object is treated as a
system, and we make an information specification
for it; moreover, we strive to use common informa-
tion object templates in this specification. If that
approach is chosen as we expect, computational
object templates will contain constraints, just as in-
formation object templates do. However, these con-
straints are not enforced by the computational lan-
guage; they are to be enforced by the implementation
of the computational object. 7

3.4.3. Reuse of common object templates
The information language specification technique

is not only very expressive, but it also makes infor-

7 An implementation can enforce these invariants precisely
because all the object interfaces are defined and enforced.

()G. GenilloudrComputer Standards & Interfaces 19 1998 361–374 373

Ž .mation object templates units of specification eas-
ily reusable. As we explained, information modelling
normally proceeds by excluding invalid interactions
Ž .adding constraints , rather than by listing valid in-
teractions. Clearly, an object is more reusable if it
can participate in more interactions.

For example, consider a multiway interaction that
is shared by a clerk object, an inventory object and a
customer shipment object; the occurrence of this
interaction models that a clerk decides to ship some
goods to a customer, that these goods are withdrawn
from the inventory, and that they are added to the
shipment. This multiway interaction occurs only if
the three objects are in a state which allows it to
happen.

Now, suppose that new requirements indicate that
a shipment implies an immediate payment. The model
can accommodate this change very easily by having
two more objects participate in a revised multiway
interaction: a customer account object and a vendor
account object. Constraints are added in the dynamic
and invariant schemas, but the templates of the clerk
object, the inventory object, and the customer ship-
ment object remain unchanged.

The above example illustrates the interest of in-
formation modelling for defining reusable common
domain objects, or more specifically, common infor-
mation domain object templates.

3.4.4. EÕent notifications
In the domain of telecommunications, eÕent noti-

Ž .fications sometimes incorrectly called eÕents are
interactions provided by an object for the benefit of
other objects: an object is willing to notify other
objects about actions occurring within itself; but
there is no expectation that any other object will act
on these notifications. This concept of event notifica-
tion is interesting for common object templates, be-
cause events can be defined independently of whether
other objects want to be notified of them—an object
needs not know which other objects are interested in
the events it emits.

In an information model, every change of state
can be considered an event: an object can learn about
a state change in another object, even though no
event notification is explicitly associated with that
change of state. By not defining event notifications
explicitly, reuse is facilitated. In fact, there can also

be an interest in defining an event notification if
Ž .something of interest an event happens in an ob-

ject, but results in no change of state.
The ODP computational language does not in-

clude explicitly an interaction concept of event noti-
fication. However, this concept can be introduced by
the definition of a notification service. Event notifi-
cations are then realised by operations. Because it
can be cumbersome to specify and implement the
operations for emitting and subscribing to event noti-
fications, a notation for object templates could intro-
duce an explicit concept of event. Tools would then
be used to generate the code for the notifications of
those events.

It is important to note that the concept of event
Žnotification is more powerful and therefore more

.useful in an information model than it is in a
computational model. In an information model, an
event notification may become a part of a multiway

Žinteraction notified objects change their state at the
.same time as the emitting object does . In a computa-

tional model, objects learn about events some time
after they have occurred; moreover, the ordering of
event notifications does not correspond to the tempo-
ral or causal ordering of the event occurrences. For
that reason, event notifications in an information
model should not necessarily be refined into event
notifications in a computational model.

4. Summary and conclusion

We used the Reference Model for Open Dis-
Ž .tributed Processing RM-ODP as a basis for investi-

gating the concept of common domain object. In the
ODP terminology, we found that ‘common objects’
are in fact common object templates, or common
object types. Common types are probably more im-
portant than common templates. Nevertheless, we
attached ourselves to the concept of common object
templates, because these are the ‘objects’ that people

Ž .look for and want to re use. Moreover, it is proba-
bly easier to define and to agree on common types if
common templates are defined as well.

We looked more closely at computational and
information object templates, because they are par-
ticularly relevant to the standardisation of computing
facilities. We showed that common templates for

()G. GenilloudrComputer Standards & Interfaces 19 1998 361–374374

information objects should be different from those
for computational objects. In particular, interfaces
and operations need not be specified for information
objects, whilst they are essential for computational
objects.

We also showed that it is preferable to begin with
definitions of common information object templates.
The latter are indeed more easily reusable, and they
can be used for defining computational object tem-
plates, whilst the opposite makes little sense. This
latter point means that agreeing on information ob-
jects might be considered as a prerequisite for agree-
ing on the semantics of computational objects, or in
other words, for reaching a common understanding
of components in domain facilities.

Acknowledgements

Jean-Bernard Stefani gave me some useful hints
to understand the RM-ODP information model. My
position and arguments in this paper were influenced
and improved by E-mail discussions with Andrew

Ž .Herbert, Haim Kilov and R. Alexander Sandy Tyn-
dale-Biscoe. Rolf Eberhardt and Marc Zweiacker, of
Swisscom, provided valuable advice and comments
to an earlier version of this paper.

References

w x1 D. D’Souza, A. Wills, Catalysis—practical rigor and refine-
ment: extending OMT, fusion, and objectory, http:rr
www.iconcomp.com r papersr catalysisr catalysis.frm.html,
1995.

w x2 H. Christensen, E. Colban, Information modelling concepts,
Technical Report, Telecommunications Information Net-

Ž .working Architecture Consortium TINA-C , April 1995.
w x3 OMG, The common object request broker: architecture and

Ž .specification 2.0 , Object Management Group, 1995.
w x4 G. Genilloud, Towards a distributed architecture for systems

management, PhD Thesis 1588, Computer Science, Swiss
Ž .Federal Institute of Technology of Lausanne EPFL , 1996.

w x5 D. Franklin, P. Robinson, Putting the OMG’s OMA on the
map using RM-ODP: how do and how should the OMA and

ODP relate?, Proceedings of the OMA-ODP Workshop,
ŽCambridge, UK, 1997 see also http:rrwww.omg.orgr

.omaodprOMAP.htm .
w x6 D. Coleman, P. Arnold, S. Bodoff, C. Dollin, et al., Object-

Oriented Development: The Fusion Method, Prentice-Hall,
Englewood Cliffs, NJ, 1994.

w x7 A. Herbert, private communication, Nov. 17, 1997.
w x8 W.H. Harrison, H. Kilov, H.L. Ossher, I. Simmonds, Techni-

cal note—from dynamic supertypes to subjects: a natural
way to specify and develop systems, IBM Systems Journal

Ž . Ž .35 2 1996 244–256.
w x9 H. Kilov, J. Ross, Information modeling: an object-oriented

approach, Prentice-Hall, Englewood Cliffs, NJ, 1994.
w x10 E. Najm, J.-B. Stefani, A formal semantics for the ODP

computational model, Computer Networks and ISDN Sys-
Ž . Ž .tems 27 8 1995 1305–1329.

w x11 ISOrIEC and ITU-T, Use of formal specification techniques
for ODP, ISO Technical Report, First Working Draft, 1992.

w x Ž .12 R. Tyndale-Biscoe, private communication , Jan. 9, 1998.
w x13 ANSI, The X3H7 object model features matrix, Technical

Report X3H7-93-007v10, http:rrinfo.gte.comrftprdocrac-
tivitiesrx3h7rby_modelrOODBTG.html, February 14,
1995.

w x14 ISOrIEC and ITU-T, Open distributed processing—basic
reference model: 1. Overview and guide to use, Standard
10746-1, Recommendation X.901, 1996.

w x15 ISOrIEC and ITU-T, Open distributed processing—basic
reference model: 2. Foundations, Standard 10746-2, Recom-
mendation X.902, 1995.

w x16 ISOrIEC and ITU-T, Open distributed processing—basic
reference model: 3. Architecture, Standard 10746-3, Recom-
mendation X.903, 1995.

Guy Genilloud holds a B.Sc. in Electri-
Ž .cal Engineering 1981 and a Ph.D. in
Ž .Computer Science 1996 from the Swiss

Federal Institute of Technology of Lau-
Ž .sanne EPFL , and an M.Sc. in Com-

Ž .puter Science 1987 from Queen’s Uni-
versity, Kingston, Ontario. He is cur-
rently a senior researcher in the Com-
puter Science department of EPFL,
where he has worked since 1987. He has
lead EPFL’s participation in several in-
dustrial research projects, in particular

Žthe European projects ISA Integrated
. ŽSystems Architecture for ODP, ESPRIT 2267 and SysMan Open

.Distributed Systems Management, ESPRIT 7026 . Guy Genilloud
has represented the Swiss PTT or Switzerland in several standard-
ization working groups, on the topics of electronic data inter-

Ž . Ž .change EDI and message handling systems X.400 MHS , and
Žon the Reference Model for Open Distributed Processing RM-

.ODP . His interests include software engineering and distributed
systems, object modelling, systems management, CORBA, fault-
tolerance and security.

