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Abstract

This paper presents an approach for localization using geometric features from a 360◦ laser range finder and a monocular
vision system. Its practicability under conditions of continuous localization during motion in real time (referred to as on-the-fly
localization) is investigated in large-scale experiments. The features are infinite horizontal lines for the laser and vertical lines
for the camera. They are extracted using physically well-grounded models for all sensors and passed to a Kalman filter for fusion
and position estimation. Positioning accuracy close to subcentimeter has been achieved with an environment model requiring
30 bytes/m2. Already with a moderate number of matched features, the vision information was found to further increase this
precision, particularly in the orientation. The results were obtained with a fully self-contained system where extensive tests with
an overall length of more than 6.4 km and 150,000 localization cycles have been conducted. The final testbed for this localization
system was the Computer 2000 event, an annual computer tradeshow in Lausanne, Switzerland, where during 4 days visitors
could give high-level navigation commands to the robot via a web interface. This gave us the opportunity to obtain results
on long-term reliability and verify the practicability of the approach under application-like conditions. Furthermore, general
aspects and limitations of multisensor on-the-fly localization are discussed. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Localization in unmodified environments belongs
to the basic skills of a mobile robot. Dead-reckoning
based techniques are impracticable since systematic
and non-systematic measurement errors grow without
bound over time. Therefore, additional techniques are
required to compensate these errors by periodically
sensing the environment. In many potential applica-
tions of mobile robots, the vehicle is operating in
structured or semi-structured surroundings. This prop-
erty can be exploited by modelling these structures as
geometric primitives and using them as reliably rec-
ognizable features for navigation. As it will be shown
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in this work, this approach leads to very compact
environment descriptions which allow for accurate
navigation with the limited computational resources
of fully autonomous systems. Furthermore, due to the
extraction step, which is essentially an abstraction
from the type and amount of raw data, information
from sensors of any kind can directly be integrated in
the same way, leading to versatile and easily extensi-
ble environment representations for navigation.

In this paper we take advantage of this representa-
tion by simultaneously employing geometric features
from different sensors with complementary properties.
We consider localization by means of infinite lines ex-
tracted from range data of a 360◦ laser scanner and
vertical lines extracted from images of an embarked
CCD camera. An extended Kalman filter (EKF) is used
for fusion and position estimation.
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Navigation in a step-by-step manner where local-
ization is performed only at standstill is unsatisfac-
tory for several reasons: The vehicle advances slowly
and has a non-continuous movement which is impor-
tant in certain applications like cleaning tasks. Also,
the position update rate is typically low with respect
to the distance travelled and on a aesthetical level the
robot behaves ‘unnaturally’. Therefore, continuous lo-
calization during motion in real-time — henceforth
referred to ason-the-fly localization— is desirable
but confronts the researcher with difficulties which are
present but only hidden at low speeds or step-by-step
navigation. This includes resolution and uncertainties
of time stamps the system can provide for sensory in-
puts and the need for compensating the distortion of
sensory data caused by the vehicle movement. Time
stamp quality imposes bounds on localization preci-
sion and feature matching rates whose influence is to
be studied when a localization method shall prove its
relevance for real-world applications.

Kalman filter localization with line segments from
range data has been done early [9,13]. Vertical edges
in combination with an EKF have been employed in
[6,15]. The combination of these features is used in
[16,18]. In [16], a laser sensor with an opening an-
gle of 60◦ providing both range and intensity images
was utilized, and in a recent work [18], the absolute
localization accuracy of laser, monocular and trinoc-
ular vision was examined. Similar precision has been
found for the three cases.

The Kalman filter acts as a position tracker whose
performance is dependent on how fast per time or dis-
tance travelled the true probability distributions devi-
ate from the idealized Gaussians. Since only a sin-
gle distribution is maintained, an incorrect matching
of the local map onto the global map can lead to ir-
reversible filter divergence. In such a case, the robot
has to be globally re-localized. Feature-based global
localization methods are for example [5,20]. On the
other hand, if the tracker operates fast enough and ob-
tains precise and discriminant sensory information, it
can reliably keep the robot localized because the de-
viation from the idealized statistical assumptions re-
mains bounded to an uncritical extent.

Other probabilistic localization techniques main-
tain a probability distribution over the space of pos-
sible robot positions in the map. They represent the
Markov localization paradigm and have been used

with purely topological maps and landmarks [17],
topologic–metric maps [21], and grid-based maps
with raw range data [10]. Since a distribution over
all possible robot poses is always maintained, these
approaches are inherently global and can re-localize
the robot after a lost situation or at start-up. For the
same reason, however, they need incomparable more
computational resources in terms of memory and cal-
culation power if a localization accuracy is required
similar to the one in this work (see e.g. [11] for an
experimental comparison).

Raw range data are employed also in [8] and
matched against an a priori map composed of line
segments by minimizing a least-square criterion.
Similar methods are used for scan matching where
the best alignment of the local and the global map
is sought, both maps being a set of sensed points
[12,14]. The robot pose is also represented as a single
Gaussian which makes scan matching a local method,
and a simplified Kalman filter is used to calculate
the posterior state. Compared to feature-based ap-
proaches, scan matching techniques usually operate
with memory-intensive maps since the environment
model consists in raw range data recorded from a set
of reference positions.

The contribution of this paper is threefold. First, we
present the multisensor setup, the features with their
extraction and error models. We conduct experiments
to determine the localization precision which is attain-
able with this approach. Second, in contrast to most of
the contributions in the domain of mobile robot local-
ization, this paper presents results from extensive ex-
periments where practicability is verified under condi-
tions which do not differ from those of typical applica-
tions. We further explore the feature-based paradigm
and, ultimately, try to answer the question whether a
robot localization system can be realized as a position
tracker for its integration into a navigation framework,
ready for its ‘blind use’ as a black-box. Finally, the
paper introduces infinite lines as features, opposed to
range-only information in [13], and segments of finite
length in [5,9,16,18].

In a first set of experiments under controlled condi-
tions, we examine the improvement in precision when
the vision information is added to the laser range
finder. Alike [16] the posterior uncertainty bounds
are considered which, under the assumption of real-
istic uncertainty models, permit inference about the
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first moments of the robot position. For this, through-
out this work, it was attempted to employ physically
well-grounded uncertainty models for odometry, the
laser range finder and the vision system. The sec-
ond experiment is the Computer 2000 event, an an-
nual computer tradeshow in Lausanne, where during
4 days visitors could give high-level navigation com-
mands to the robot via a web interface. With a system
up-time of 28 h, an overall travel distance of 5 km and
more than 140 000 localization cycles, long-term reli-
ability under application-like conditions was the main
concern.

2. Sensor modelling

2.1. Odometry

Non-systematic odometry errors occur in two
spaces: the joint space and the Cartesian space.
With a differential drive kinematics the joint space
is two-dimensional and includes the left and right
wheel. Effects of wheel slippage, uneven ground and
limited encoder resolution appear in this space. In
[7] a physically well-grounded model for these kind
of errors is presented starting from the uncertain in-
put u(k + 1) = [1dL , 1dR]T with 1dL , 1dR as the
distances travelled by each wheel, and the diagonal
input covariance matrix

U(k + 1) =
[

kL |1dL | 0
0 kR|1dR|

]
, (1)

which relies on the assumption of proportionally grow-
ing variances per1dL, 1dR travelled. The odometry
model for the first and second moment of the state
vectorx = (x, y, θ)T is then

x̂(k + 1|k) = f (x(k|k), u(k + 1)), (2)

P(k + 1|k) = ∇fxP (k|k)∇f T
x

+∇fuU(k + 1)∇f T
u , (3)

where f (·) uses a piecewise linear approximation,
P(k|k) is the state covariance matrix of the last step,
and∇fx and∇fu are the Jacobians off (·) with respect
to the uncertain vectorŝx(k|k) andu(k + 1), kL and
kR are constants with unit meter.

The Cartesian space is spanned by the vectorx en-
coding position and orientation of the vehicle. Effects
of external forces (mainly collisions) occur in this
space. Non-systematic Cartesian errors could be ad-
ditionally modelled in Eq. (3) by a 3× 3 covariance
matrixQ(k+1) being a function of the robot displace-
ment 1x, 1θ in the robot frame. Such a model has
been used in [6]. In any case it is difficult to identify
these models, i.e. to obtain rigorous values forkL, kR
and the coefficients inQ(k + 1) which are valid for
a range of floor types. In this work we use only the
joint space model withkL = kR = 5× 10−6 m which
have been identified by observation.

2.2. Laser range finder

The laser range finder which was used in the ex-
periments is the Acuity AccuRange 4000 LIR. The
rotation frequency of the mirror is 2.78 Hz, yielding
a 1◦ angular resolution with its maximal sampling
frequency in calibrated mode of 1 kHz. It delivers
rangeρ and intensityi as analogue signals. The latter
is the signal strength of the reflected beam and pre-
dominantly affects range variance. In order to have a
good uncertainty model of range variability account-
ing not only for the distance to the target but also
for its surface properties, a relationshipσρ = f (i)

is sought. Identification experiments with a Kodak
gray-scale patch performed in [2] yielded a sim-
ple relationship describable by two parameters:imin
allows to reject too uncertain range readings with
i < imin and for measurement withi > imin a con-
stant value for range varianceσ 2

ρconst
could have been

found.

2.3. Camera

The vision system consists of a Pulnix TM-9701
full-frame, EIA (640× 480), gray-scale camera with
a 90◦ objective and a Bt848 based frame grabber
which delivers the images directly to the main CPU
memory. There is no dedicated hardware for image
processing.

The camera system is calibrated by combining
method [19] with spatial knowledge from a test
field. This provides a coherent set of extrinsic, in-
trinsic and distortion parameters. Since the visual
features are vertical lines, only horizontal calibration
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is needed, yielding the simplified model of Eq. (4) for
parameter-fitting:

C
yr − β(xr − Ox)

βyr + (xr − Ox)

= S[xc + xc(k1r
2 + k2r

4 + k3r
6 + k4r

8)], (4)

(xr, yr, zr) is the position of a point in the robot frame,
xc = x − Hx , yc = y − Hy , andr2 = x2

c + y2
c , where

the coordinates (x, y) refer to the distorted location of
the point in the uncorrected image. Focal lengthC,
scale factorSand image center (Hx , Hy) are instrinsic
parameters,β andOx are extrinsic parameters defining
the robot to sensor transformation andk1, k2, k3 and
k4 are the parameters of radial distortion.

Uncertainties from the test field geometry and those
caused by noise in the camera and acquisition elec-
tronics are propagated through the camera calibration
procedure onto the level of camera parameters, yield-
ing a 10× 10 parameter covariance matrix.

3. Feature representation and extraction

3.1. Laser range finder

The algorithm for line extraction has been described
in [1]. The method delivers lines and segments with

Fig. 1. A scan of the Acuity sensor and the extraction result. Eight segments on six lines have been found. Two closely situated objects
produced evidence for the two outlier segments. Thus, the local map contains six (α, r)-pairs which are passed to the EKF matching step.

their first order covariance estimate using polar coor-
dinates. The line model is

ρ cos(ϕ − α) − r = 0, (5)

where (ρ, ϕ) is the raw measurement and (α, r) the
model parameters,α the angle of the perpendicular
to the line, andr its length. The method differs from
the widely used recursive split-and-merge technique
which is also applied in [9,18] in the segmentation
criterion: Instead of using a line specific decision on
a single point, it decides on a model independent cri-
terion on a group of points. Multiple segments which
lie on the same physical object are merged for partic-
ular precise re-estimates of the line position. This is
realized by a clustering algorithm with a Mahalanobis
distance matrix. It merges lines until their distance in
the (α, r)-model space is greater than a threshold from
a χ2-distribution. Fig. 1 shows an extraction example
where six lines have been found.

3.2. Camera

Vertical lines are extracted in four steps:

• Vertical edge enhancement: Specialized Sobel filter
approximating the image gradient in the horizontal
direction.

• Non-maxima suppression with dynamic threshold-
ing: The most relevant edge pixels (maximal gradi-
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ent) are extracted and thinned by using a standard
method.

• Edge image calibration: The horizontal position of
each edge pixel is corrected yielding a new position
x̄ with

x̄ = S[xc + xc(k1r
2 + k2r

4 + k3r
6 + k4r

8)], (6)

resulting from the camera model.
• Line fitting: Columns with a predefined number of

edge pixels are labelled as vertical lines. Line fitting
reduces to a one-dimensional problem. The result-
ing angle isϕ = atan(x/C), whereC is the focal
length andx the weighted mean of the position of
the pixels in the extracted line.

Uncertainty from the camera electronics is modelled
on the level of the uncalibrated edge image. Together
with the uncertainty of the calibration parameters, it
is propagated through calibration and line fit, yielding
the first two moments(ϕ, σ 2

ϕ ) of the vertical edges.

3.3. Map

The a priori map (Fig. 2) contains 191 infinite lines
and 172 vertical edges for the 50 m× 30 m portion
of the institute building shown in Fig. 3. This is an
environment model of extreme compactness with a
memory requirement of about 30 bytes/m2.

Fig. 2. A 12 m× 6 m section of the environment model. Crosses
indicate vertical edges. The complete map consisting of 191 infinite
lines and 172 vertical edges describes 12 offices, two corridors,
the seminar and the mail room.

4. Multisensor EKF on-the-fly localization

After a brief summary of a Kalman filter localiza-
tion cycle, aspects particular for this work are consid-
ered in more detail.

A localization cycle consists of five steps [3,13]:
State prediction. The statêx(k+1|k) and its associ-

ated covarianceP(k +1|k) is determined from odom-
etry based on the previous state momentsx̂(k|k) and
P(k|k). This has been described in Section 2.1.

Observation. The feature parameters (α r) of lines
and ϕ of vertical edges constitute the vector of ob-
servationz(k + 1). Their associated covariance es-
timates constitute the observation covariance matrix
R(k + 1). Since measurement errors of sensors and
features are independent,R(k+1) is blockwise diago-
nal. This means that all subsequent equations operate
with 2 × 2-matrices for lines and scalars for vertical
edges.

Measurement prediction. The modelled features in
the map,Wm, get transformed into the frame of the ob-
servations. The first moments are computed byẑ(k +
1) = h(x̂(k + 1|k), Wm), whereh(·) is the non-linear
measurement model (the global-to-local transform).
Error propagation is done by a first-order approxima-
tion which requires the Jacobian∇h with respect to
the state prediction̂x(k + 1|k).

Matching. Since the Kalman filter represents and
propagates a single Gaussian distribution for the robot
pose, false pairings can lead to irreversible filter di-
vergence, i.e. a lost situation, which requires manual
intervention. This step is therefore of high importance
and is explained below in more detail.

Estimation. Successfully matched observation and
predictions yield the innovations

υ(k + 1) = z(k + 1) − ẑ(k + 1)

and their innovation covariance

S(k + 1) = ∇h P (k + 1|k)∇hT + R(k + 1).

Finally, with the filter equations

W(k + 1) = P(k + 1|k)∇hTS−1(k + 1), (7)

x̂(k + 1|k + 1)

= x̂(k + 1|k) + W(k + 1)υ(k + 1), (8)
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Fig. 3. Floor plan of the 50 m× 30 m environment where the experiments have been conducted. One of the test trajectories is shown with
a point at each location where the robot localized itself. Crosses indicate the modelled vertical edges. The robot starts in the laboratory,
goes to the elevator, then passes through the corridor to offices 1, 2 and 3, continues to the seminar room and returns to the laboratory
via the coffee room. The trajectory length is 140 m and has been driven 10 times with about 950 localization cycles per run. The average
speed was 0.3 m/s, maximal speed 0.6 m/s, resulting in about 7′45′ ′ for the whole path. In order to compare the multisensor setup and the
laser-only setup with respect to localization accuracy, five runs have been made with laser-only, five with laser and vision. The resulting
uncertainty of the posterior position estimates are illustrated in Fig. 5, overall averages are given in Table 1.
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P(k + 1|k + 1)

= P(k + 1|k) − W(k + 1)S(k + 1)WT(k + 1),

(9)

the posterior estimates of the robot pose and associated
covariance are computed.

4.1. Matching

Since the observation covariance matrixR(k+1) is
blockwise diagonal we have the freedom to integrate
matched pairings in a manner which is advantageous
for filter convergence:

The laser observations are integrated first since they
typically exhibit far better mutual discriminance mak-
ing their matching less error-prone. They are followed
by the vertical edges from the camera, where often
ambiguous matching situations occur. Starting from
the same idea, each pairing is integrated according to
its quality in an iterative procedure for each sensor:
(i) matching of the current best pairing, (ii) estima-
tion and (iii) re-prediction of features not associated
so far. This procedure has also been used in [16,18]
where the same observations concerning feature dis-
criminance have been reported.

The quality of a pairing of prediction̂z[i]
l,v and ob-

servationz[j ]
l,v is different for both sensors:

• For the lines the quality criterion of a pairing is
smallest observational uncertainty— not small-
est Mahalanobis distance like in [16,18]. This ren-
ders the matching robust against small spurious and
uncertain segments which have small Mahalanobis
distances (see Fig. 1). The ‘current best’ pairing
pij = (z

[j ]
l , ẑ

[i]
l ) is therefore that of observationz[j ]

l

with trace(R[j ]
l ) = mini which satisfies the valida-

tion test

(z
[j ]
l − ẑ

[i]
l )S−1

ij (z
[j ]
l − ẑ

[i]
l )T 6 χ2

α,n, (10)

where Sij is the innovation covariance matrix
of the pairing, andχ2

α,n a number taken from a
χ2-distribution withn = 2 degrees of freedom and
α the probability level on which the hypothesis of
pairing correctness is rejected.

• The criterion for vertical edges is uniqueness. Pre-
dictions ẑ

[i]
v with a single observationz[j ]

v in their

validation gate are preferred and integrated accord-
ing to their smallest Mahalanobis distance provided
that they satisfy Eq. (10) withn = 1 (subscripts l
become v). When there is no unique pairing any-
more, candidates with multiple observations in the
validation region or observations in multiple vali-
dation regions are accepted and chosen according
to the smallest Mahalanobis distance.

4.2. Time stamps

The main difference from the viewpoint of multisen-
sor localization between step-by-step and on-the-fly
navigation is that temporal relations of observations,
predictions and estimations of all involved sensors
have to be maintained and related to the present. This
is done by assigning time stamps to all sensory in-
puts. Time stamps are delivered by odometry which
continuously updates robot position and uncertainty
according to Eqs. (2) and (3). Each update receives a
time stamp and is written to a circular buffer. When
sensor A performs its data acquisition, the data re-
ceive a time stampTA and, after feature extraction
is completed, the corresponding state prediction is
read out from the odometry buffer. When the position
estimate arrives from the Kalman filter, it is valid at
time stampTA, which is now in the past. Based on
the odometry model, a means is then needed to relate
this old position estimate to the current position of
time t. This is done by forward simulation of Eqs. (2)
and (3) fromTA to t.

For a multisensor system, care has to be taken that
prediction and estimation results of one sensor are not
overwritten by those of another sensor. This would be
the case if each sensor would have its own EKF run-
ning independently from the others with its own cycle
time, yielding temporally nested updates. Nested up-
dates are unfavourable since a slow outer update cycle
(e.g. vision) overwrites the estimation results of faster
running inner cycles (e.g. laser). A sequential scheme
of EKFs for each sensor is therefore required with the
constraint that the estimates get integrated in exactly
the succession of their respective observation.

4.3. Scan compensation

The vehicle movement imposes a distortion on the
raw data of the laser scans. This deformity depends
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on the ratio of robot speed to mirror rotation velocity
which in our case is non-negligible (mirror speed is
2.78 Hz). It is important to note that scans have to
be compensated on the raw data level and not on the
level of extracted features. Since in the latter case the
extraction method would operate with an artificially
modified feature evidence.

We compensate for the vehicle displacement during
a scan by transforming each range readingS′

P acquired
in the sensor frame S′ into the non-stationary robot
frame R′ and then into the world frame W, followed
by a re-transform into the stationary robot frame R and
finally into the desired reference frame of the scan S.
For a compensation on-the-fly, S must be the sensor
frame at the start position of a new scan. By reading out
odometry each time when a new range reading arrives,
it gets immediately transformed by the expression

SP = R
ST −1 W

R T −1 W
R′T R′

S′ T S′
P, (11)

whereR
ST = R′

S′ T . The 4× 4 matricesT are homoge-
neous transforms casting the rotation and translation
of the general transform into a single matrix.R

ST

is the sensor-to-robot frame transform andW
R T the

world-to-robot transform given by the actual robot
pose vectorx. The compensated scan receives the time
stamp of S, i.e. the time when the scan has started
recording.

5. Implementation and experiments

5.1. The robot

Our experimental platform is the robot Pygmalion
which has been built in our lab (Fig. 4). Its de-
sign principles are oriented towards an application
as service or personal robot. Long-term autonomy,
safety, extensibility and friendly appearance were the
main objectives for design. With its dimensions of
45 cm× 45 cm× 78 cm and its weight of 55 kg, it is
of moderate size and danger opposed to many robots
in its performance class. The robot is operating au-
tonomously without any off-board infrastructure: sen-
sor data acquisition, feature extraction, localization,
global and local path planning, obstacle avoidance,
security monitoring and the web-server are all running
on the VME card. The code, the environment map

Fig. 4. Pygmalion, the robot which was used in the experiments.
It is a VME based system carrying currently a PowerPC card
at 300 MHz with 32 MB of RAM. Besides wheel encoders and
bumpers, the sensory system includes a 360◦ laser range finder
and a gray-level CCD camera discussed in Section 2. During all
experiments it ran in a fully autonomous mode.

and our hard real-time operating system XO/2 [4] fit
easily into 32 MB of RAM. No hard disk is required.

5.2. Experiments under controlled conditions

In the first set of experiments, the robot was driving
under controlled conditions: all runs have been per-
formed in the evening which allowed to limit environ-
ment dynamics and to control the illumination condi-
tions. Almost all corridors, offices and rooms in Fig. 3
are subject to direct daylight which otherwise would
influence the performance of the vision system. In or-
der to assure trajectories as reproducible as possible,
obstacle avoidance has been turned off and replaced
by a position controller for robots with non-holonomic
kinematics. The floor plan of the environment and the
test trajectory are shown in Fig. 3. In the laser-only
mode and in the multisensor mode the trajectory has
been driven five times. Care has been taken that both
experiments had the same localization cycle time by
limiting the implementation to 2 Hz resulting in about
950 cycles on the 140 m test trajectory. The average
speed was 0.3 m/s, maximal speed 0.6 m/s.
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Fig. 5. Averaged 2σ -error bounds of globalx (a), y (b), andθ (c)
a posteriori uncertainty during the test trajectory (showing only
each fifth step). In each mode, five runs have been made. Solid
lines: laser range finder only, dashed lines: laser and vision. In
some cases the uncertainty in the multisensor mode is greater than
for the single-sensor setup. This is possible since the values are
averaged over five runs containing noise on the level of matched
features.

5.2.1. Results
The resulting 2σ -uncertainty bounds of the a pos-

teriori position estimates are illustrated in Fig. 5. For
both cases they generally reflect a very high local-
ization accuracy in all the three state variables. Sub-
centimeter precision is approached. Table 1 shows the
overall means of error bounds 2σ̄x, 2σ̄y, 2σ̄θ , number
of matched lines̄nl , number of matched vertical edges
n̄v, and execution timestexe. The error bounds say

Table 1
Overall mean values of the error bounds, the number of matched
line segmentsnl and matched vertical edgesnv per cycle, and the
average localization cycle timetexe under full CPU load

Laser Laser and vision

2σ̄x (cm) 1.31 1.07
2σ̄y (cm) 1.35 1.05
2σ̄θ 0.92◦ 0.56◦
n̄l/n̄v 2.73/– 2.66/2.00
texe (ms) 64 411

that, based on the uncertainty model, the robot is with
a 95% probability within twice this value. The vision
information contributes to a reduction of this uncer-
tainty in x andy equally (−20%), but particularly in
the orientation (−40%), although the average number
of matched vertical edges is moderate. The cycle times
texe include sensor acquisition and the mean duration
for calculating an iteration under full CPU load on the
currently used hardware.

5.2.2. Discussion
Even carefully derived uncertainty bounds do not

necessarily permit inference about the sought first mo-
ments, since the estimation error could be arbitrarily
big without being noticed (estimator inconsistency).
We argue that the simple fact that the robot always
succeeded in returning to its start point is compelling
evidence for the correctness of these bounds. In fact,
they are even conservative since the true bounds could
be better. Otherwise the robot would have gone lost
due to a lack of matches caused by first moments
drifted away from the true values. Ground truth infor-
mation like in [18] would be preferable but is imprac-
tical and expensive to obtain for experiments of this
kind and extent. Positioning accuracy of the vehicle in
the endpoint has been measured and further confirm
the values in Table 1. These results are very similar to
the accuracy reported in [18]. In [11] the experiments
yielded a maximal precision of about 5 cm for Markov
localization, whereas scan matching produced, in the
best case, estimates of millimeter accuracy.

Matching vertical edges is, due to their lack of
depth information and their frequent appearance in
compact groups, particularly error-prone. For exam-
ple, door frames commonly have multiple vertical
borders which, dependent on the illumination condi-
tions, produce evidence for several closely situated
vertical edges. In the matching stage, they might be
confronted with a large validation region, position
bias from odometry or time stamp uncertainty, mak-
ing the predicted model edge difficult to identify. In
such ambiguous matching situations, incorrect pair-
ings are likely to occur and, in fact, they have been
occasionally produced in the multisensor experiments.
But their effect remains weak since these groups are
typically very compact.

However, this lack of discriminance in the pres-
ence of time stamp uncertainty is the main cause of
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reproducible failure of vision-only navigation (i.e.
robot went lost). With the frame grabber in use, it is
difficult to identify the precise instant when the image
is taken. Also limited time stamp resolution, in our
case 5 ms given by odometry, became noticeable par-
ticularly during fast turns (the camera of Pygmalion
is not mounted on a turret which keeps a constant
orientation). This furthermore makes the matching
more difficult since the limited temporal accuracy of
the state prediction causes a reduced metric accuracy
of the measurement predictions.

5.3. Experiments under controlled conditions: The
Computer 2000 event

The ‘Computer’ tradeshow is an annual fair for
computer hard- and software at the Palais de Beaulieu
exposition center in Lausanne, Switzerland. Our lab-
oratory (Fig. 6) was present during the 4 days, 2–5
May 2000, giving visitors the opportunity to control
Pygmalion by means of the web-interface shown in
Fig. 7. The robot itself was at EPFL, in the environ-
ment illustrated in Figs. 3 and 7.

The Computer 2000 event was the final testbed for
our localization system where we were mainly inter-
ested in long-term reliability under application-like
conditions. The setup was active during normal office

Fig. 6. During the 4 days of the Computer 2000 event, visitors
could teleoperate Pygmalion in the corridors and offices of our
institute building at EPFL. The environment which was attainable
to the robot is 50 m× 30 m in size and contains 12 offices, two
corridors, the seminar and the mail room. The robot was navigating
7 h each day during normal office hours with typical environment
dynamics.

Fig. 7. The Pygmalion web-interface, a plug-in-free Netscape ap-
plication. It provides context-sensitive menus on the map and
all subwindows with intuitive click-and-move-there commands
for robot teleoperation. Four different real-time streams consti-
tute the visual feedback on the current robot state: an external
web-cam (top-right), an embarked camera (top-middle), raw data
from the laser range finder together with predicted, observed and
matched features (top-left) and the robot animated in its model
map (left-middle). By clicking onto the map an office is defined
as destination, clicking onto the camera image turns the robot
and clicking on the laser scanner image defines a goal in the (x,
y)-plane.

hours with an average of about 7 h system up-time per
day. The environment exhibited typical dynamics from
people, doors, chairs and other robots, as well as day-
light illumination. Several doors open into the corridor
(see Fig. 6, right image). Travel speed has been limited
to 0.4 m/s since the robot shares its environment with
persons, some of them not implied into robotics. An
obstacle avoidance strategy based on the laser range
data was active during the event. The web-interface
allows to give global navigation commands (e.g. an
office) and local navigation commands (a (x, y)-point
or an orientation) to the robot.

5.3.1. Results
The event statistics of Computer 2000 is shown in

Table 2. A mission is either a global or a local naviga-
tion command from the user interface. A lost situation
is defined as a mission whose goal could not be at-
tained due to a localization error and which required
manual intervention to re-localize the robot. We do not
count missions where the robot went lost due to a col-
lision with an invisible object (e.g. glass door or object
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Table 2
Overall statistics for the Computer 2000 event

Hours of operation 28
Environment size 50 m× 30 m
Environment type Office, unmodified
Overall travel distance 5013 m
Average speed 0.2 m/s
Travel speed 0.4 m/s
Number of missions 724
Number of localization cycles 145,433
Number of lost situations 0
Number of unknown collisions ∼10

lower than the beam height of the scanner) and where
the robot was already lost (after such a collision).

It happens that there are no matched features dur-
ing a certain period, when the vehicle is surrounded
by people, is in less structured terrain or when odom-
etry delivers inconsistent position estimates (e.g. from
driving over uneven floors). We counted 14 of 724
missions where the robot had no matches during 10 s,
21 missions where it had no matches during 5 s. None
of them required manual intervention during or after
the mission.

5.3.2. Discussion
These positive results were further underlined by

the feedback we got from the big number of visitors
during Computer 2000. In particular, they enjoyed the
easy-to-use interface which allowed anybody to con-
trol a mobile robot and discover our institute building
over the internet.

Another important result of the Computer 2000
event is that under these experimental conditions, ver-
tical lines performed poorly. In addition to the short-
comings already stated in the first set of experiments,
they are:

• Environment dynamics: When navigating with a
robot in a populated office environment, its free
space and hence its vision sensor are often blocked
by obstacles (e.g. co-workers, doors; see Fig. 6).
This results in two independent problems. First, a
blocked sensor cannot contribute to the localization
update. Second, when avoiding these obstacles the
robot turns typically with high angular velocities
which in combination with the time stamp uncer-
tainties and the low feature discriminance is likely
to produce false matches.

• Illumination conditions: It is obvious that the illu-
mination in an office environment cannot be con-
trolled to suit best the need of a vision sensor. In
particular both corridors have big windows at their
end. The camera is heading to these windows from
a relatively dark corridor when navigating in this
direction.

This leads us to the conclusion that, in our setup,
vertical lines are features of insufficient robustness
with respect to environment dynamics, time stamp un-
certainty, changing illumination conditions and mu-
tual discriminance. In general, a trade-off between the
robustness of a feature and the computational effort
to obtain it has to be found. This in turn influences
how many features can be used for localization per
time or distance travelled. Vertical edges appeal by
their simple availability and the little requirements of
computational power compared to many other visual
features.

We finally emphasize the necessity of these types of
experiments. They reflect the ‘real case’ in a one-to-
one manner and are therefore indispensable when a
navigation approach shall prove its real-world per-
formance. ‘Laboratory experiments’ whose conditions
have been carefully controlled only yield optimistic
bounds for the practicability of a method. It is clear
that these kinds of experiments always remain in a cer-
tain dependency upon the specific robot setting. Espe-
cially a different vision/frame grabber system or a tur-
ret keeping a constant camera orientation could have
performed better under the same experimental condi-
tions. However, we rate it as not surprising that during
this work an approach which in the beginning seems
promising, and which has been successively applied
by several researchers before, turns out to be partially
incompatible with the requirements of application-like
conditions.

6. Conclusions

In this paper an approach for localization using ge-
ometric features from a 360◦ laser range finder and
a monocular vision system has been presented. The
features allow for an extremely compact environment
model of only 30 bytes/m2 memory requirement. This
is contrasted by a positioning accuracy close to sub-
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centimeter and small localization cycle times. These
results were obtained with a fully self-contained sys-
tem where long-term tests with an overall length of
more than 6.4 km and 150,000 localization cycles have
been conducted.

Already with a moderate number of matched fea-
tures, the vision information was found to further in-
crease this precision, particularly in the orientation.
However, the limitations encountered with this feature
motivate the use of constraint-based matching strate-
gies as utilized for feature-based global localization
[5,20]. In spite of the reliability of the presented po-
sition tracking approach, collisions can never be ex-
cluded completely, especially when the robot is em-
ployed, e.g. in public places. A method to globally re-
localize the vehicle after collisions and its integration
in real-time into a feature-based localization system is
the subject of on-going work [20].

The experiments show finally that the feature-based
approach for localization with infinite lines does an
excellent job concerning reliability, efficiency and pre-
cision and marks the closure of our efforts in local,
metric mobile robot localization. With this work, the
requirement claimed in the beginning, that localiza-
tion should be an easy-to-use black-box within a nav-
igation framework, could be met.

Acknowledgements

The authors would like to thank Jan Persson and
Benoit Moreau for their important contribution to the
Computer 2000 event. Also, we thank Illah Nour-
bakhsh from CMU for many fruitful discussions.

References

[1] K.O. Arras, R.Y. Siegwart, Feature extraction and scene
interpretation for map-based navigation and map building, in:
Proceedings of the SPIE, Mobile Robotics XII, Vol. 3210,
1997.

[2] K.O. Arras, N. Tomatis, Improving robustness and precision
in mobile robot localization by using laser range finding and
monocular vision, in: Proceedings of the Third European
Workshop on Advanced Mobile Robots, Eurobot’99, Zurich,
Switzerland, 1999.

[3] Y. Bar-Shalom, T.E. Fortmann, Tracking and data association,
Mathematics in Science and Engineering, Vol. 179, Academic
Press, New York, 1988.

[4] R. Brega, N. Tomatis, K.O. Arras, The need for autonomy
and real-time in mobile robotics: Case study of Pygmalion
and XO/2, in: Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, Takamatsu,
Japan, 2000.

[5] J.A. Castellanos, J.D. Tardos, J. Neira, Constraint-based
mobile robot localization, in: Proceedings of the International
Workshop on Advanced Robotics and Intelligent Machines,
Salford, UK, 1996.

[6] F. Chenavier, J.L. Crowley, Position estimation for a mobile
robot using vision and odometry, in: Proceedings of the IEEE
International Conference on Robotics and Automation, Nice,
France, 1992.

[7] K.S. Chong, L. Kleeman, Accurate odometry and error
modelling for a mobile robot, in: Proceedings of the
IEEE International Conference on Robotics and Automation,
Albuquerque, NM, 1997.

[8] I.J. Cox, Blanche — An experiment in guidance and
navigation of an autonomous robot vehicle, IEEE Transactions
on Robotics and Automation 7 (1991) 193–204.

[9] J.L. Crowley, World modeling and position estimation for a
mobile robot using ultrasonic ranging, in: Proceedings of the
IEEE International Conference on Robotics and Automation,
Scottsdale, AZ, 1989.

[10] D. Fox, W. Burgard, S. Thrun, Markov localization for
mobile robots in dynamic environments, Journal of Artificial
Intelligence Research 11 (1999) 391–427.

[11] J.-S. Gutmann, W. Burgard, D. Fox, K. Konolige, An
experimental comparison of localization methods, in:
Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, Victoria, BC, 1998.

[12] J.-S. Gutmann, C. Schlegel, Amos: Comparison of
scan matching approaches for self-localization in indoor
environments, in: Proceedings of the First European
Workshop on Advanced Mobile Robots, Eurobot’96,
Kaiserslautern, 1996.

[13] J.J. Leonard, H.F. Durrant-Whyte, Directed Sonar Sensing
for Mobile Robot Navigation, Kluwer Academic Publishers,
Dordrecht, 1992.

[14] F. Lu, E. Milios, Robot pose estimation in unknown
environments by matching 2D range scans, in: Proceedings
of the IEEE Computer Vision and Pattern Recognition
Conference (CVPR), 1994.

[15] A.J. Muñoz, J. Gonzales, Two-dimensional landmark-based
position estimation from a single image, in: Proceedings of the
IEEE International Conference on Robotics and Automation,
Leuven, Belgium, 1998.

[16] J. Neira, J.D. Tardos, J. Horn, G. Schmidt, Fusing range
and intensity images for mobile robot localization, IEEE
Transactions on Robotics and Automation 15 (1) (1999) 76–
84.

[17] I. Nourbakhsh, R. Powers, S. Birchfield, DERVISH, an
office-navigating robot, AI Magazine 16 (2) (1995) 53–60.

[18] J.A. Pérez, J.A. Castellanos, J.M.M. Montiel, J. Neira, J.D.
Tardós, Continuous mobile robot localization: Vision vs. laser,
in: Proceedings of the IEEE International Conference on
Robotics and Automation, Detroit, MI, 1999.



K.O. Arras et al. / Robotics and Autonomous Systems 34 (2001) 131–143 143

[19] B. Prescott, G.F. McLean, Line-based correction of radial lens
distortion, Graphical Models and Image Processing 59 (1)
(1997) 39–47.

[20] M. Schilt, Matching techniques for global localization with
infinite lines, Project Thesis, Autonomous Systems Lab,
EPFL, June 2000.

[21] R. Simmons, S. Koenig, Probabilistic navigation in partially
observable environments, in: Proceedings of the International
Joint Conference on Artificial Intelligence, Montreal, Que.,
Vol. 2, 1995, pp. 1660–1667.

Kai Oliver Arras is a Ph.D. student with
the Autonomous Systems Lab at the Swiss
Federal Institute of Technology, Lausanne
(EPFL). He received his Masters in Elec-
trical Engineering from the Swiss Federal
Institute of Technology, Zurich (ETHZ) in
1995 and worked as a Research Assistant
in Nanorobotics at the Institute of Robotics
in Zurich. In 1996 he joined Professor
Siegwart to co-establish the Autonomous

Systems Lab at EPFL where he is working on several aspects
of mobile robotics including hardware design, feature extraction,
local and global localization, data association and SLAM.

Nicola Tomatis is a Ph.D. student with
the Autonomous Systems Lab at the Swiss
Federal Institute of Technology, Lausanne
(EPFL). He received his M.S. in Com-
puter Science from the Swiss Federal In-
stitute of Technology, Zurich (ETHZ) in
1998. His research covered mobile robot
navigation, computer vision, sensor data
fusion, human–robot interaction and mul-
timodal web interfacing. His current focus

includes hybrid (metric–topological) mobile robot navigation, si-
multaneous localization and map building and adaptive unsuper-
vised exploration.

Björn T. Jensen is a Ph.D. student with
the Autonomous Systems Lab at the Swiss
Federal Institute of Technology. He re-
ceived his Masters in Electrical Engineer-
ing and business administration from TU
Darmstadt in 1999. In addition to robot
navigation and image processing his re-
search covers man–machine interaction.

Roland Siegwart (1959) received his
M.Sc. ME in 1983 and his Doctoral de-
gree in 1989 at the Swiss Federal Institute
of Technology, Zurich (ETHZ). After his
Ph.D. studies, he spent 1 year as a Post-
doc at Stanford University, where he was
involved in micro-robots and tactile grip-
ping. From 1991 to 1996 he worked part
time as R&D Director at MECOS Traxler
AG and as a Lecturer and Deputy Head

at the Institute of Robotics, ETH. During this time he was mainly
involved in magnetic bearings, mechatronics and micro-robotics.
Since 1997 he is a full-time Professor for Autonomous Systems
and Robots at the Swiss Federal Institute of Technology, Lausanne
(EPFL). His current research interests are robotics and mechatron-
ics, namely high precision navigation, network base robotics (Inter-
net, space exploration), all terrain locomotion and micro-robotics.
He lectures various courses in robotics, mechatronics and smart
product design at the two Swiss Federal Institutes of Technology
and is cofounder of several spin-off companies. Roland Siegwart
published more than 60 papers and is member of various scientific
committees. He namely represents Switzerland in the International
Federation of Robotics (IFR) and the Advisory Group for Au-
tomation and Robotics (AGAR) of the European Space Agency
(ESA).


