
1

A Behavior-Based Mobile Robot Architecture for Learning from Demonstration

Michael Kasper, Gernot Fricke, Katja Steuernagel, Ewald von Puttkamer

Robotics Research Group, Department of Computer Science, University of Kaiserslautern,
Postbox 3049, 67663 Kaiserslautern, Germany

Tel: +49-631-205-2886; fax: +49-631-205-4409
e-mail: kasper@informatik.uni-kl.de

Abstract

Autonomous Mobile Robots (AMR), to be truly flexible,
should be equipped with learning capabilities, which
allow them to adapt effectively to a dynamic and changing
environment. This paper proposes a modular, behavior-
based control architecture, which is particularly suited for
"Learning from Demonstration"-experiments in the spatial
domain. The robot learns sensory-motor-behaviors online
by observing the actions of a person, another robot or
another behavior. Offline learning phases are not
necessary but might be used to trim the attained
representation. First results applying RBF-approximation,
growing neural cell structures and probabilistic models
for progress estimation are presented.

Keywords: Online Learning from Demonstration;
Behavior-based architecture; Behavior classification;
Growing neural net; Mobile Service Robot

1. Introduction

Behavior-based approaches have been established as a
main alternative to conventional robot control in recent
years [1]. Due to their modular architecture, these
approaches provide high scalability, while limiting the
complexity of the individual modules. These can be
implemented (or taught) and tested independently, and
they directly support software re-use. Furthermore, they
meet real-time requirements in a dynamic environment by
creating a tight coupling between sensing and acting.

Autonomous Mobile Robots (AMR) need to be
equipped with learning capabilities as an essential
prerequisite in order to adapt effectively to dynamic and
varying environments. This is especially true for the
growing field of service robotics, where non-professionals
are intended to operate complex mobile robot systems. In
this context, Programming by Demonstration (or from the
viewpoint of the robot: Learning from Demonstration) is
an interesting alternative to conventional robot

programming for learning new skills (behaviors),
improving already existing ones or generating new
combinations of them.

While the field of robot learning has been an
intensively studied research topic over the last decade [9]
within the behavior-based robotics community, research on
Learning from Demonstration (LFD) concentrated mainly
on learning reactive behaviors, i.e. simple stimulus-
response connections. Approaches going beyond reactive
behaviors (e.g. [6] describing reinforcement learning of
planning rules) are rarely known. Hence, learning from
complete temporal sequences of perceptions (rather than
from single perceptions) is still an open question [11].

This is only one problem, which is addressed within the
MOBOCOB-project (mobile robot control by concurrent
behaviors). In the context of this project the authors
developed a framework for investigating learning
techniques for behavior-based architectures. The main
focus of our ongoing studies lies on Learning from
Demonstration for temporal sequences in the spatial
domain. After a number of good examples have been
taught e.g. by a human teacher, the robot is able to imitate
the teacher, and moreover to generalize from the given
examples.

Fig. 1. Robot PHOENIX following a person

2

Fig. 1 shows robot PHOENIX performing the reactively
learned task to follow a person by using its onboard laser
range finder (LRF) Sick LMS 200.

After a short teaching phase of approx. 2 minutes,
during which the robot was shown a couple of examples,
the machine was able to reproduce the demonstrated
behavior immediately. If for more complex tasks the initial
training is not sufficient, specific situations can be taught
additionally. The robot will subsequently be able to master
these situations, too.

The presented paper is organized as follows. The next
section gives a formal motivation for behavior-based
control. The MOBOCOB-architecture is introduced in
Section 3. A classification of behaviors based on the
formal motivation is defined in Section 4, followed by a
brief survey of different aspects of learning in Sections 5.
Section 6 describes the learning techniques used within
MOBOCOB. Finally, first experimental results are
presented together with some concluding remarks.

2. Motivating behavior based systems

While behavior-based approaches in robotics are mostly
known to be motivated from ethology and (behavioral)
psychology [2], we will introduce a more formal
motivation for them.

Technically, an AMR consists besides its auxiliary
components (batteries, wheels, etc.) of a set of sensors S to
perceive the environment, some actuators A to modify the
environment (or the robot's configuration in the
environment), and a digital control system, which is
equipped with some memory Z.

From a mathematical point of view, mobile robot
control appears to be a simple problem, since all we need
is a function f, which maps the sensor input s to some
actuator output a with respect to the internal memory state
z:

f: (s,z) → (a,z) or (a,z') = f(s,z)

Unfortunately, the desired transformation is quite complex.
While the dimension of a is typically small (e.g. a tupel
(v,ω) for controlling the robot’s movement by specifying
its linear and angular velocity), the dimension of the sensor
input s can be very high and, even worse, the dimension of
the internal state space, which is needed to perform a
specific task, may not be known.

In general, we will not be able to find a closed term
representation for f. However, we can try to reduce
complexity by splitting the domain and dividing the
problem into piecewise defined sub-tasks. Thus, we get for
disjoint domains Di:

(, ')

(,) (,)

(,) (,)

. . .

(,) (,)

a z

f s z s z D

f s z s z D

f s z s z Dn n

=

1 1

2 2

 if is in

 if is in

 if is in

Alternatively, if we transfer the decision of domain
membership into each function fi (which is reasonable,
since the functions „know“ their domain best), we can
write:

 (a,z') = f1(s,z) ∪ f2(s,z) ∪ ... ∪ fn(s,z)

Since sensor input as well as actuator output, and the
amount of internal memory does not need to be the same
for each function fi, we yield:

(a,z') = f1(s1,z1) ∪ f2(s2,z2) ∪ ... ∪ fn(sn,zn)

This equation already describes a behavior-based
architecture. Each fi denotes an individual behavior and the
arbiter corresponds to the union-operator. Since behaviors
are usually implemented as individual processes and we do
not demand the zi to be disjoint, behaviors can share
memory, which is helpful for inter-process communication.

Before we use this formal motivation to establish a
classification of behaviors in Section 4, we introduce the
MOBOCOB-architecture, to give an example of an actual
behavior-based system.

3. The MOBOCOB-architecture

MOBOCOB is implemented on the experimental
mobile robot PHOENIX (see Fig. 1) which was developed
within the CAROL-project [5]. PHOENIX, a differential
drive mobile robot running under the commercial real-
time-operating-system QNX, is equipped with a laser range
finder (Sick LMS-200), a pan&tilt-video system and both,
ultrasonic and infrared proximity sensors. Calculations are
performed using two onboard Pentium PC’s, which are
connected via a wireless Ethernet to the research group’s
LAN. A laptop, optionally mounted on top of the robot
supplies an additional user-interface.

The MOBOCOB-architecture is an experimental
platform, which utilizes a flexible, modular concept for
implementing behaviors, an arbitration unit, and
components for sensor and actuator control. All modules
share a common software-interface, which easily allows to
add new modules such as behaviors or virtual sensors. Fig.
2 depicts the architecture’s overall structure. Its basic
components are discussed in the following sections.

3

Behavior 1
c

c
Behavior 2

c
Behavior n

A
rb

itr
at

io
n

U
ni

t

A
ct

ua
to

r
C

on
tro

l

Global Memory / States
P

hy
si

ca
l

S
en

so
rs

(e
xt

er
na

l
&

 i
nt

er
na

l)

V
irt

ua
l

S
en

so
rs

Environment

Fig. 2. MOBOCOB-Architecture
(data-flow from left to right)

3.1. Sensor and Actuator Modules

Physical sensors either observe the external
environment or provide data about the internal state of the
robot. In order to reduce the dimensionality of sensor
input, it is reasonable to perform some kind of sensor data
preprocessing such as filtering or feature detection within
video- or range-images. This is done by virtual sensors
which process the output of physical or other virtual
sensors. In this way, a higher abstraction of perceptions
can be achieved. Virtual sensors are typically used for
sensor fusion, feature detection, object tracking or adding
history to physical sensors. They may also be used to
observe the output of other modules, such as behaviors or
the arbitration unit.

In the person-following example given previously, a
virtual sensor “human detector” was used, to detect
persons in a horizontal LRF-scan. This virtual sensor
utilizes a simple model of leg movement to generate
human position hypotheses. Fig. 3 depicts some of these
hypotheses in the two-dimensional laser scan.

Actuator modules are much like sensor modules, with
the difference, that they consume data rather than
producing it. To provide access to both, sensors and
actuators an object-oriented generic interface has been
implemented. It defines standard access-, data-
manipulation and -evaluation functions, such as
instantiating new sensors or actuators (short: SA’s),
reading and writing data or calculating the weighted
average and the similarity of SA-data-sets.

The same library functions are used to access all SA’s,
regardless of the underlying data types. A parameter string
of the form “<sa-name>: <arg 1>; ... <arg n>”, describing
the sensor-type and the required arguments is all a module
needs, to access any SA. For example, initializing a new

entity of a laser range finder can be done by using the
following string: “LaserScanner: sectors=48; min=1;
max=8000; blur=0”, which means that a sensor module for
the laser scanner with an angular resolution of 12 sectors
and a maximum range of 8 m is initialized.

Fig. 3. Possible locations of persons found by
the virtual sensor (indicated by large
circles)

It is noteworthy, that even for a single physical sensor,
different parameter configurations are allowed at the same
time, as long as they are compatible. This implies that one
sensor’s configuration comprises the others. If for
example, two distinct behaviors require a different angular
resolution of the laser scanner the sensor module initializes
the hardware to deliver the higher resolution, while the
lower one is automatically calculated from the raw data.

Parameter strings can also be used to group sensors to
sensor sets, which are called multi-sensors. The standard
functions of the interface are recursively applied to each
individual sensor of the set. For any combination of
sensors and their data types, the library functions are
sufficient to access them.

As will be shown in chapter 6, the learning algorithms
for behavior modules do not need any a priori knowledge
of the actual data structures delivered by a sensor or a set
of sensors. Instead, the algorithms rely exclusively on the
library functions of the generic interface which
encapsulates the SA’s raw data with standardized data
headers. This makes the learning module completely
independent from the given sensors and actuators. Only the
parameter string describing the SA’s, as well as the
learning parameters may vary.

Fig. 4 depicts the communication scheme for the
sensor/behavior communication.

4

Fig. 4. Data flow using the generic
sensor/actuator interface

3.2. Behavior Modules

Within MOBOCOB, behaviors are realized as parallel
QNX-processes, which exchange data via common
communication channels. Please recall, that in Section 2,
the decision of domain membership was transferred to the
individual behaviors. Thus each fi uses a competence-value
c to convey its competence concerning a given situation to
the arbitration unit. For our further formal considerations,
we will omit this value, since it can be seen either as part
of the actuator- or state-output of a behavior.

3.3. Arbitration Unit

The arbiter observes the output commands produced
by individual behaviors and uses the competence-values to
generate an overall command set, which is passed to the
actuator control unit. Since we do not want to restrict the
arbiter to a specific arbitration scheme, competitive
behavior selection is possible as well as cooperative
behavior fusion, or any combination between them. The
arbiter is hierarchically organized and also responsible for
some kind of behavior sequencing (compare assemblies or
engagement-modules in [2]). In this context, the arbiter can
trigger behaviors or can halt and restart the associated
processes.

4. Classification of Behaviors

Please recall our motivation from Section 2. Depending on
the domain and co-domain of the describing functions, we
distinguish four main types of behaviors1:

Hidden behaviors. Hidden, most likely deliberative
behaviors do not control actuators directly. They can be
characterized as f: (s,z) → z. Usually, processing at this
level does not only occur in a sub-symbolic manner, but
mainly at a symbolic level for planning and reasoning
about the environment. Hidden behaviors typically modify
the robot’s set of targets or its „motivational“ state [2].
Obviously hidden behaviors are poor candidates for LFD,

1 This classification scheme takes up ideas of the Kalman

decomposition. Alternative classifications can be found in [1] or [7].

since they cannot be observed from a teacher. However,
learning can be applied using unsupervised methods like
reinforcement learning (see [6]).

Reactive motor behaviors. Purely reactive (reflexive)
behaviors, do not depend on state information at all. They
directly map sensor input to actuator output as denoted by
the formula f: s → (a,z). The z component may be used for
data transfer to other modules.

Blind motor behaviors. Although reactive behaviors
are easy to handle, they solve a simple class of problems
only. For example, when no sensor information is
available, reactive behaviors are not able to initiate a
sequence of actions. This leads to the class of blind motor
behaviors, which do not rely on any (external) sensor
information at all and which are described by f: z → (a,z).

State-dependent motor behaviors. Combining the
classes of reactive and blind motor behaviors, we get state-
dependent motor behaviors, which require some memory
to accomplish a task, and which were the basis for the
motivational introduction from above: f: (s,z) → (a,z).

Since hidden behaviors are not suited for LFD and
blind behaviors are straight forward to realize, we focus on
both, reactive and history-dependent behaviors: a subset of
state-dependent behaviors, which are based on temporal
sequences and can hence be represented by means of
cycle-free state graphs.

5. Aspects of learning

Concerning a behavior-based system, there are many
opportunities for applying machine learning techniques
advantageously. They can be integral parts of various
system components such as behavior modules, the
arbitration unit, sensor data preprocessors, or actuator
controllers. For some tasks, unsupervised learning is
promising, for others supervised learning is adequate.

In this paper, we concentrate on LFD as a special type
of supervised learning for behaviors. Especially for
(motor) behaviors this technique seems to be straight
forward and very promising. Instead of explicitly program-
ming a behavior, a (human) teacher simply demonstrates a
task to the robot by specifying, which sensors are relevant
and by controlling the robot’s actuators. This easily allows
even non-professionals to teach a new behavior or to adopt
an already existing one to new tasks, other environments or
a different robot hardware (sensors and actuators).
Furthermore, LFD can be a basis for implementing new
behaviors, which can be subsequently improved by the
robot itself, using unsupervised learning techniques,.

Ge ner ic
Interface

Behav ior
Module 1

Sensor 1

Sensor 2

Sensor n
Behav ior
Module j

...
...

5

There is no difference, whether teaching is performed
by a person, another robot or simply by another behavior
running on the same robot. The latter is called behavior
cloning and is interesting for several reasons. One is to
clone functionality using different sensors as input, which
could be cheaper, faster or more reliable. Another reason is
to copy a conventionally programmed behavior which can
be improved or extended by further supervised or
unsupervised learning. In any case, learning an individual
behavior should be considered as approximating a single
describing function rather than a set of functions.

The introduced classification of behaviors leads
directly to a classification of solvable problems within the
spatial domain. Blind behaviors are able to playback action
sequences independently from any sensor data. This is
necessary for instance, when sensor feedback is too slow
or not available. From the robot's point of view, learning
blind behaviors is simple, as long as they depend only on
their own internal states (e.g. a time basis), rather than
internal states zi of other behaviors. However, since blind
behaviors do not get any external feedback, they are
restricted to short, non-critical action sequences.

Teaching reactive behaviors to mobile robots is state of
the art and has been investigated by many researchers in
the last years using various types of sensors [1], [10].
Teachable tasks include wall following, obstacle
avoidance, box pushing, docking, phototaxis and so on
[11]. However, since reactive behaviors just learn simple
stimuli-response connections, they are not suited for any
history- or state-dependent tasks.

For state-dependent tasks, a bijective mapping between
sensors and actuators is not sufficient to describe the
behavior. For instance, passing a door with a longish robot
cannot be solved using reactive behaviors, if the used
sensor covers only a limited area in front of the robot (Fig.
5.a). Because of the temporal loss of information about the
door position, the robot would get stuck using a reactive
behavior. Also, driving a robot with an Ackerman-steering
into a parking-box is more than a reactive task, since there
exist identical external sensor perceptions, which
correspond to completely different actions (reverse
direction, see Fig. 5.b).

Originally reactive tasks which 1) do not effect the
environment and 2) have to be repeated a fixed number of
times are also state-dependent, because the robot cannot
derive from the sensor data, how many repetitions have
already been accomplished. Figure 5.c exemplifies this by
driving the robot around a totem pole for three times.

Some tasks which normally do not have a reactive
solution may, however, be solved reactively, if the required
memory is „hidden“ in some other components. For
example, the door-passage problem could be solved
reactively, if instead of the limited physical sensor a virtual
360°-sensor, based on a grid map, is used. The totem pole

problem could be solved using an accumulative angular
sensor, which takes the place of a counter.

However, such sensors would be task specific. For
different problems, different sets of „history sensors“
would have to be implemented. Since they do not provide
a general history model, one can easily think of problems,
where their history representation is not sufficient.

A more universal concept is to use sequences of
reactive behaviors [2]. They correspond to history-
dependent behaviors introduced in Section 4. These are
basically sufficient to solve a large set of robot navigation
tasks, like the ones mentioned previously.

view angle of
laser range finder

desired path

starting position

a) Door passage

identical sensor situations
with contradicting actions

starting position

b) Parking box

3 times

c) Totem-pole

Fig. 5. Non-reactive robot tasks

Since the authors are not aware for any approaches
applying LFD to history-dependent behaviors in mobile
robotics, MOBOCOB tries to contribute to this topic. From
the viewpoint of LFD, it is desirable that individual

6

behaviors already have sequencing capabilities. Thus
teaching involves a single behavior only, and not the entire
behavior-arbiter complex.

6. Learning within MOBOCOB

Within the MOBOCOB-project, a generic concept for
learning-experiments has been developed. The learning
module can observe any two communication ports, e.g.
(virtual) sensor and actuator ports, and tries to find a
mapping between them. Since most modules within
MOBOCOB share the same communication concept,
learning is not only restricted to behaviors, but can also be
applied to virtual sensors or actuators.

Observing an existing behavior, the learner can be used
for behavior cloning or off-line cloning (cloning an
existing behavior with simulated sensor input, so different
learning-algorithms and parameters can be compared under
the same conditions).

For LFD, the learning module observes the output of a
behavior, controlled by the teacher. In most cases, this
output is provided by a joystick-module controling the
motors of the robot via a (v,ω)-interface. If needed, also
the competence-value for a behavior can be taught using a
force-sensor, associated with a button of the joystick. The
teacher specifies the behavior which should be taught, as
well as the learning parameters (reactive/state-dependent,
learning-rate, sensors to be used, etc.). Any set of (virtual)
sensors can be selected using one parameter string. As
mentioned before, the learning algorithm does not need to
know any internals of the data-structures it learns from. It
abstracts from the data, using the similarity- and average-
functions, encapsulated within the generic sensor/actuator-
library.

6.1. Learning reactive behaviors

What makes a task reactive is the fact that it does not use
any state information to generate the output. Hence, it can
be described as a = f(s). We are now looking for an
adequate approximation for f. A common mathematical
technique is to represent an unknown function by a set of
support points. The function then can be regarded as an
inter- or extrapolation between these points.

We decided to use Radial Base Functions (RBF) with
growing neural cell structures [8] to approximate f (and
thus the behavior). This technique can cope with non-
linearities and is well suited for our extension to history-
dependent behaviors. While learning, the robot collects a
set of stimuli-response pairs (s,a) describing the taught
examples. We use these pairs to derive support points
represented by neurons. Each neuron marks the center of a

Radial Base Function rbfi, which is used to interpolate
between the support points.2

6.1.1. RBF-approximation

RBFs are radial symmetric, i.e. the value of a function
depends on the distance of the input to its center, only. The
value of rbfi(s) can be interpreted as how strong the
support point spi = (si,ai) located in the center of rbfi
influences the output value of f(s). In the center, it will be
highly representative and in greater distance, it will not be
representative at all.

We have chosen to use a Gaussian base function with
its co-domain scaled to [0,1] together with the RBF-
approximation defined as:

∑ ⋅
∑

==
i

i

j
j

i
ii a

srbf

srbf
asrbfaveragewsapprox

)(

)(
)),((_)(

It is noteworthy, that all rbfi are different functions of the
same type: They have different centers and may also have
a different half-width σ, which is defined as the distance
(from the center) where rbfi falls under 0.5. In areas in
which the approximated function varies with a high
frequency, more support points will be needed than in
other "smooth" areas. Appropriately choosing σ ensures
that the ranges of influence of adjacent rbfi do not overlap
too much.

Despite the fact that RBF-approximation is defined on
distance measurements, the implemented sensor/actuator-
library defines similarity-measurements exclusively. As the
libraries’ interface may be used for any data type, it can
not be guaranteed that there always will be an Euclidean
metric defined, which is needed for distance
measurements. Hence, instead of distance measurements
an estimation based on similarity measurements is used:

distance x y
similarity x y

(,)
(,)

= −
1

1

Similarity functions return 1 for identical data and 0 for
absolutely different data (however this may be defined).
An interesting challenge would be to learn similarity
functions as well.

6.1.2. Growing cell structures

Support points should be well chosen. The aim is to
retrieve an approximation of high accuracy with a compact
representation. The implemented algorithm is inspired by

2 The current implementation does not use extrapolation methods

yet, since extrapolation is calculation intensive and well established for
Euclidean domains, only. Until suited extrapolation techniques are
developed, the postulated „good“ teacher has to take care, that important
„extreme situations“ will be taught to the robot.

7

connectionist approaches known as growing neural gas
algorithms [8].

Adding new support points (neurons) is necessary only
when the actual teach-in t = (s,a) was „unexpected“, i.e. the
output of the current approximation differs significantly
from a. This can be expressed as sim(approx(s),a) >
ActDiffBound where ActDiffBound is a parameter close to
one (e.g. 0.95 as used in our experiments). Furthermore, to
keep the number of support points small, a new neuron is
inserted only, if its sensor reading differs significantly
from all known sensor readings, i.e. if sim(si,s) >
SensDiffBound for all neurons spi.

Otherwise, the closest neuron is just modified to better
represent the current action a. Modifying a neuron can be
seen as adapting the position of the support point to the
new teach-in. This is done by setting the (new) values spi’
= (si’,ai’) to the weighted average of the old spi (weighted
w) and the actual teach-in t (weighted 1-w)3:

()sp s w w s a w w ai i i' (()), (())= ⋅ − + ⋅ ⋅ − + ⋅1 1

Fig. 6 explains what this means for the one-dimensional
case. For continuos functions, sensible chosen learning
parameters and statistically distributed measurement
errors, it can be shown that the approximation-error
converges towards zero.

a function to be approximated

s

neurons

adaption of neuron

range in which neuron
can be modified

new teach-in

Fig. 6. Adapting neurons to new teach-in

6.1.3. Results with learning reactive tasks

Although a quantitative comparison to other learning
approaches is still to be evaluated, it has revealed that
learning reactive tasks with the proposed algorithm is very
efficient.

Fig. 7 shows a reactively learned door passage within a
real environment. After teaching three examples only,
PHOENIX was able to reproduce the shown trajectories
(dotted lines) immediately. The resulting neural net
consisted of 19 neurons, representing the task.

3 The learning rate w indicates, how strong the modification of the

previous representation can be. With a constant learning rate, early
teach-ins lose weight through each later modification, allowing actions to
be overwritten or retrained. On the other hand, the same relevance for
every teach-in can be achieved by setting the weight of the k-th teach-in
wk to the reciprocal of k.

taught trajectories

replayed trajectories

Fig. 7. Reactively learned door passage

Learning was based on the front-mounted LRF with its 180
degree scan grouped into 12 sectors with a limited range of
two meters. Similar trajectories can be achieved at other
doors (e.g. with a different width) within comparable
environments. In cases, where the induction capabilities of
the framework are not sufficient, e.g. in order to cope with
a door having an orthogonal wall as one door post, these
specific cases can simply be taught additionally and the
robot will master them. Applying a specific virtual door-
sensor similar to the human detector from Section 3.1
would have revealed even better results.

initially taught
trajectory

replayed trajectory
based on LRF

cloned trajectory
based on vision

Fig. 8. Taught and cloned wall-following task

A second example of a simple reactive task is given in
Fig. 8. It shows the trajectories for a wall following task,
which was taught using the laser range finder with the
same settings as before. Fig. 8 shows an output trajectory
of the resulting neural gas net which was composed of 79
neurons.

8

This behavior was subsequently cloned by replaying it,
while the robot at the same time was learning the stimulus-
response pairs by exclusively using a video camera as
sensor for the new behavior. The camera observed the
environment, consisting of a dark floor and white walls, by
pointing 1.5 m in front and slightly to the right-hand side
of the robot. Fig. 9 shows a typical perceived video image.

 Fig. 9. Video image when following a wall

The 12-dimensional feature vector, the network was
trained with, consisted of a single row (512 pixels, taken
from the middle of the image), which was compacted to 12
gray-scale values. The resulting neural net had 162
neurons and performed as shown by the light gray line in
Fig. 8.

Obviously, the new behavior performs similar to the
first one. However, the new trajectory is slightly smother.
This results from the input vector’s smaller bandwidth and
a lower reactivity, resulting from a lack of “extreme”
situations while building up the network. This effect is
comparable to making analog copies of audio tapes. So in
general, the sequence of clones should be kept short, as
long as teaching is not followed by special optimization
procedures.

6.2. Learning history-dependent behaviors

One of MOBOCOB’s aims is to learn history-dependent
behaviors. This can be achieved by using the same
representation, which was already used for learning
reactive tasks. However, instead of merging all teach-ins
(s,a) into a single representation, the learner collects
temporal sequences (chains) of (s,a)-pairs. This may lead
to several chains describing a single task (Fig. 10). Each
node implicitly represents the complete history of
perceptions and actions obtained so far.

When applying a learned history-dependent behavior,
the robot has to determine which state of progress within

each chain represents the current situation best. Each node
of a chain contains an actuator command a. Thus,
depending on the estimated progress we have to interpolate
between the commands of a chain when executing a taught
behavior. Furthermore, for multiple chains, even
interpolation between these chains is necessary.

trained chains,
describing the task

"door passage"

door

Fig. 10. (s,a)-sequences for passing a door

For behaviors defined by a single chain, progress is totally
temporally ordered. When having multiple chains, each
chain represents an individual training example which
forms a distinct solution of the task. In this context, it
might be necessary to decide between alternatives, e.g.
when teaching „obstacle avoidance“ by alternately evading
a few times to the left and to the right hand side of an
obstacle, respectively (Fig. 11). Since the progress of the
individual alternatives is hardly comparable, progress is
not totally ordered. Multiple chains, for which progress is
comparable (and hence totally ordered) are called variants
of each other.

two groups forming alternatives of each other

target point

chains forming variants

Fig. 11. Taught sequences, defining an
obstacle avoidance task

Against this background, we are faced with two major
problems: a) Identifying sets of (sub-)sequences which
form variants (so called groups) and b) evaluating the
totally ordered progress within these variants. There are
several possible ways for identifying variants or
alternatives within a given set of chains, e.g. by the user

9

manually defining situation based “checkpoints”. We will
not go into detail here, but will focus on the second matter,
instead.

The most simple case of totally ordered progress is
found in single-chain behaviors. This is described in the
following section. Thereafter, the method is generalized to
groups and multiple chains containing alternatives, which
are the most general cases of history-dependent behaviors.

6.2.1. Single-chain behaviors

Due to their ability to cope with dynamic environments
and uncertainty, probabilistic approaches have been
established for solving various problems in mobile
robotics, e.g. for self-localization [4] and speech
recognition [3]. They are also well suited for progress
estimation within behavior chains.

In general, progress can be regarded as a probability
distribution over a chain. This continuos distribution can
be approximated by a discrete distribution over all nodes.
A node’s value represents the robot’s belief of being in (or
close to) a specific state or node. In this way, the nodes not
only represent support points for the actuator function but
also for the probability distribution. Peaks of the
distribution characterize hypotheses of possible positions.
At the very beginning, the probabilities are either evenly
distributed or the ones at the beginning of a chain are
slightly emphasized. While executing a behavior, the
distribution is periodically updated by applying two rules:
a) shifting the probabilities along the chain and b)
synchronizing to the environment. In this context,
weighting between synchronizing and shifting is an
important parameter. If there is no synchronizing at all, we
are restricted to blind behaviors.

Synchronizing is performed by emphasizing the
probability of those nodes, for which the current sensor
readings are similar to the expected ones (Fig. 13.a).

Defining a general model for shifting is more difficult.
Within the set of fixed support points, two subsequent ones
may be located far apart from each other, while the
maximum of a hypothesis is located somewhere in
between. In this case, the hypothesis’ probability is
distributed to the adjacent support points. Uncertainty
about the exact position of the maximum has got the same
representation, hence both cases are indistinguishable. To
guarantee a sufficient approximation of the probability
distribution, we have to limit the maximum distance
between the nodes (comparable to Shannon’s Theorem in
signal-theory). One has to trade off between accuracy and
compactness of a representation to meet real-time
demands. Loss of accuracy is acceptable as long as
synchronizing performs sufficiently well in order to
compensate the accumulating error.

robot's relative movement

projected distances

trained chain

spi spi+1

spi+3

spi+2

Fig. 12. Projecting the robot’s relative
 movement to the trajectory between

two support points

For the spatial domain, we propose the use of a
geometrical heuristic for shifting. This heuristic is based
on dead-reckoning and the relative positions of the nodes.
The robot’s relative movement within an update interval
can be projected onto the trajectory between two
subsequent support points as shown in Fig. 12.

The length of the projected distance results in the
relative advancement advrel,i,k between each pair of support
points spi and spi+k. By properly selecting k for each spi,
advrel,i,k can be limited to the range of [0..1]. For k = 1 the
probability value pi of a node spi can be updated by the
simple rule

pi’ = advrel,i-1 · pi-1 + (1-advrel,i) · pi

This corresponds to a linear interpolation of the probability
distribution between two adjacent support points.
Therefore shifting leads to a loss of accuracy resulting in a
blurring of distribution’s peaks (hypotheses). Fig. 13.b
shows this effect, which is acceptable as long it can be
compensated by synchronizing.

previous hypothesis new hypothesis
expected perception

similar to sensor reading

a)

previous hypothesis

new hypothesis

positions of nodes within a chain
b)

projected movement of the robot

p

p

Fig. 13. Updating hypotheses by
a) synchronizing and b) shifting

6.2.2. Multiple-chain behaviors

Please recall the example „obstacle avoidance“ from Fig.
11. When interpolating between different variants forming
a group, it is reasonable to interpolate between those nodes

10

only, which represent (almost) equivalent states of
progress. Once the nodes representing the actual progress
have been selected, calculating the actuator commands by
interpolating between these nodes is a purely reactive task.
Advancing within the group will select different sets of
nodes and therefore different reactive control functions.
Hence, a sequence of reactive behaviors can be seen as an
instance of a group. A new behavior within this sequence
is selected whenever the succeeding nodes represent the
state of progress better than the previous ones. Fig. 14
sketches a possible partitioning of a group into individual
reactive behaviors while executing a history-dependent
obstacle-avoidance task.

Please note, that progress within a group is also totally
ordered. The methods for calculating progress within
single-chain behaviors can therefore be directly transferred
to progress evaluation for groups.

individual reactive behaviors forming a group

reactive behaviors outside
the chosen group

Fig. 14. Sequence of reactive behaviors
while executing a history-dependent task.

Conclusion

A common, modularized behavior-based architecture,
which is particularly suited for learning-experiments has
been presented. The formal classification of behaviors
offers opportunities for learning blind, reactive and
history-dependent tasks. In any case, teaching can be
conducted by a human teacher, another robot or simply by
another behavior running on the same robot. Since relevant
functions are encapsulated within a generic
sensor/actuator-interface, the learning algorithm is
independent of both, physical and virtual sensors.

First experiments for learning reactive and history-
dependent tasks have performed within the MOBOCOB-
Project. While learning reactive behaviors using RBF-
approximation with growing neural cell structures is very
satisfactory, there are still open questions concerning
history-dependent tasks. To cope with small relative

progress, unevenly distributed nodes, or unknown starting
positions, the approach has to be further optimized.

Chances to overcome these problems might be given by
using improved approximations for probability
distributions (not just linear ones) or by using different sets
of support points for representing actuator commands and
probability distributions. The support points of a
distribution could be shifted rather than shifting the
distribution itself. However, using a probabilistic approach
seems to be an appropriate way to cope with uncertainty of
progress estimation. Further work will improve the
obtained results and compare them with traditional
approaches.

References

[1] R. C. Arkin, Behaviour-based Robotics, MIT Press,
Cambridge Massachusetts; 1998

[2] C. Balkenius, Natural Intelligence in Artificial Creatures,
Cognitive Studies 37 PhD-Thesis, Lund University, 1995.

[3] A. Bonafonte, X. Ros, J. B. Marino, Explicit Modeling of
Duration in HMM, in R. Ayuso, Speech Recognition: New
Advances and Trends, in: Proceedings of the NATO
Advanced Study Institute on New Advances and Trends in
Speech Recognition and Coding, Bubión, Granada, Spain,
1993.

[4] W. Burgard, D. Fox, S Thrun, Active Mobile Robot
Localization by Entropy Minimization, in: Proceedings of
the 2nd Euromicro Workshop on Advanced Mobile Robots
(EUROBOT '97), Brescia, Italy, 1997.

[5] Documentation of the CAROL Project, Department of
Computer Science, University of Kaiserslautern, http://ag-
vp-www.informatik.uni-kl.de.

[6] J. Donnart, J. Meyer, Learning Reactive and Planning
Rules in a Motivationally Autonomous Animat, in: IEEE
Transactions on Systems, Man and Cybernetics, Special
Issue on Learning Autonomous Robots, 1996.

[7] G. Fricke, Mobile Robot Teaching within a Behavioural
Architecture, Diploma Thesis, Department of Computer
Science, University of Kaiserslautern, 1999.

[8] B. Fritzke, Wachsende Zellstrukturen - Ein
selbstorganisierendes Netzwerkmodell - Arbeitsberichte
des Instituts für Mathematische Maschinen und
Datenverarbeitung (Informatik), Friedrich Alexander
Universität Erlangen, Nürnberg 1992.

[9] S. Mahadevan, Machine Learning for Robots: A
Comparison of Different Paradigms, in: Proceedings of the
IROS Workshop Towards Real Autonomy, Osaka, Japan,
1996.

[10] P. Martin, U. Nehmzow, 'Programming' By Teaching:
Neural Network Control in the Manchester Mobile Robot,
published in: International Conference on Intelligent
Autonomous Vehicles, Helsinki, 1995.

[11] U. Nehmzow: Applications of Robot Training: Clearing,
Cleaning, Surveillance, International Workshop on
Advanced Robotics and Intelligent Machines, Salford, UK,
1995.

11

Michael Kasper was born in Würzburg,
Germany in 1968. He received his Dipl.-
Inform. degree from the University of
Kaiserslautern’s Department of
Computer Science in 1994. Since 1995
he is a research assistant at the Robotics
and Process Control Research Group at
the University of Kaiserslautern. His
research interests include behavior-based
control, sensor data processing and robot
architectures.

Gernot Fricke was born in Bad
Kreuznach, Germany in 1971. He
studied computer science at the
University of Kaiserslautern with a focus
on AI and robotics. 1999 he received his
Dipl.-Inform. degree from the
Department of Computer Science.
Currently he is employee of Realmedia
Deutschland GmbH in Munich.

Katja Steuernagel was born in Zeitz,
Germany in 1978. She received her
intermediate diploma in technical
computer science from the University of
Mannheim. Since 1998 she is studying
Techno-Informatics at the University of
Kaiserslautern with a focus on robotics,
computer networks and data base
systems.

Ewald von Puttkamer, born 1936,
received his diploma degree in physics
from the University of Freiburg,
Germany in 1965 and got his PhD in
physics from the same university in
1969 with a thesis on photoion-
photoelectron coincidence
measurements. 1969 he went to the
University of Mainz and 1970 to the
then newly founded University of

Kaiserslautern. In 1975 he became university professor at the
Computer Science Department. Since the early 80s his research
interests are in the field of autonomous mobile robots.

