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Minimal parameterization of Fundamental
Matrices using motion and camera properties.

Diane LINGRAND

INRIA - Projet RobotVis
2004, route des Lucioles — B.P. 93
06902 Sophia Antipolis Cedex, France

Abstract

This paper addresses the optimal recovery of the displacement and projection
parameters from uncalibrated monocular video sequences. We study the particular
cases of camera and objects displacements and camera projection in order to extract
an optimized parameterization of the problem of parameters recovery for each cases.

This work follows previous studies on particular cases of displacement, scene ge-
ometry and camera analysis and focuses on the particular forms of fundamental
matrices. This paper introduces the idea of using not all particular cases as individ-
ual cases but grouping these cases into a tractable number of sets, using properties
on fundamental matrices.

Some experiments were performed in order to demonstrate that if several models
are correct, the model with the least parameters gives the best estimate, correspond-
ing to the true case.
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1 Introduction

This paper deals with video sequences taken by an uncalibrated camera in
an unknown environment. Our interest is to estimate as many parameters as
possible on the camera and objects motion and the camera projection using a
strategy of hypothesis testing.

Many efforts have been made in the Computer Vision community for determin-
ing motion and camera parameters from video sequences. Relations between
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2D views exist, Faugeras (1993), as the fundamental matrix F, but, in the gen-
eral case, we cannot extract all the unknown parameters from this F matrix.
It is however possible in some particular situations.

This work follows previous work on particular cases of displacement, scene
geometry and camera analysis Viéville and Lingrand (1999); Lingrand (1999,
2000). It focuses on the particular forms of fundamental matrices.

Several authors have already been interested in particular cases of projection:
Aloimonos (1990), Dementhon and Davis (1989), Horaud et al. (97), Soatto
and Perona (1995), Ma et al. (1999), Quan (1996), or displacement: Hartley
(1994),de Agapito et al. (1998), Viéville (1994), Armstrong et al. (1994). Some
of them consider several cases and compare each result, in order to automati-
cally determine which case was performed.

We call by general case the situation where we don’t know anything about
motion or camera projection. A particular case is when we know (or make the
hypothesis) that a parameter is null, constant or known, or related to other
parameters. A particular case has fewer parameters and/or simpler equations
than the general one.

The motivations for these studies are threefold:

e to eliminate singularities of general equations by considering each case that
may conduct to singularity,

e to estimate the parameters with more robustness using a simplified model
(an adapted model gives more accuracy than the general one as shown in
Viéville and Lingrand (1999)), and

e to retrieve parameters that cannot be retrieved in the general case because
we eliminate some unknowns that are meaningless in the particular case
studied.

It is already known that the large number of particular cases prevent examin-
ing all the cases linearly. In this paper, we introduce a new way to deal with
this amount of cases in three steps. (1) We eliminate, with some simple rules,
some redundant cases and some physically impossible cases. (2) We divide the
set, of cases into two sets, each corresponding to homographic or fundamental
relations. (3) We divide again the fundamental cases into sets corresponding to
particular forms. We will provide details for each of these steps in the following
sections.



2 Stereo framework

In this section, we present the stereo framework and the notations we will use
in this paper.

Rigid displacements: We consider a rigid or piecewise rigid scene. A 3D-
point M = [X Y Z 1]T is moving onto M’ = [X" Y Z' 1]T by a rotation R
followed by a translation t = [ty £5)7 :

M =RM+t

A rotation matrix R depends only on 3 parameters r = [ro 7 ro]” related to
the rotation angle # and axis u by:

r =2 tan(f/2)u < 6 = 2 arctan (||r||/2)
A rigid displacement us then parameterized by 6 parameters.
We note by r the antisymmetric matrix representing the cross-product r A -:
Ve re=rAcx

The rotation matrix R = ™ = e can be developed as a rational Rodrigues
formula, Rodrigues (1840) :
+ fQ]
rl.r
+

Camera projection: The most commonly camera model states that a 3D-
point M = [X Y Z 1]7 is projected with a perspective projection onto an
image plane on a 2D-point m = [u v 1]7. In the reference frame attached to
the camera, the projection equation is :
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Zm = OCMUU()O M (1)
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where «, and «, represent the horizontal and vertical lengths, uy and vy
correspond to the image of the optical center and ~y is the skew factor. Those
parameters are the intrinsic parameters and are collected in the projection
matrix A.



Considering two frames: Let I, and [, denote two images. In the general
case, there exists a fundamental relation, Faugeras (1993), between points msy
in /, and points my in I :

szle =0

where F is called the fundamental matrix and is related to the intrinsic and
extrinsic parameters by :

F=(Ayt) A, RA;?

where A; and A, are the projection matrix for the first and second frames,
see (1).

This kind of relationship vanishes if the displacement is a pure rotation or if
the scene is planar. The relation between points is homographic :

ms = Hm;,

where H is called the homographic matrix. Another study on homographic
matrices can be found in Lingrand (2000).

3 Deriving all particular cases

In order to study all particular cases of cameras and objects displacements and
camera projection, we will examine each particular value, considering each
parameter at a time. A particular model is obtained by combining several
particular values.

3.1 Particular cases of intrinsic parameters

Authors generally make several hypotheses regarding intrinsic parameters. For
example, the most general auto-calibration hypothesis states that the intrinsic
parameters are constant. They can be known or unknown. However, usually,
some parameters are constant while others are not.

e The principal point of coordinates (ug,vy) can be fixed and/or known in
some cases (for example, in the image center), thus changing the reference
frame, regarding the principal point position.

e The v parameter is usually assumed to be null or, at least, considered to be
a constant value.



gl | v= v constant and null

g2 | vy =1 7 constant

g3 | v=7(7) v free

sl | ay = ay(T) 3—’; constant and known

S2 | = ay(T) oy, free

fl |a,=1 o, constant and known

2 | a,=fo o, constant

3 | a, = a,(7) a, free

cl | ug=v9=0 ug and vg constant and known
c2 | up = up, and vy = vy, uo and vg constant

c3 | ug = up(7) and vy = vo(7) | wp and vy free

Table 1
Table of particular cases of intrinsic parameters for 2 frames

e Enciso (1995) has experimentally proven that for a large number of cameras
@, /o, can be considered to be constant even if other intrinsic parameters
change. We express this as f = a, = q,.

The table 1 summarizes, for each intrinsic parameter, the particular cases of
interest (constant values are indexed by zero). Subsequently, we will refer to
each case by the label given in the first column. For example, g1 means that
the v parameter is null.

3.2 Particular cases of displacement

Discrete motion - continuous motion: In an image sequence, if the dis-
placement between two frames is small, we can approximate the rotation equa-
tions by their first order :

R=e¢" =1+7+o0(F)
which occurs frequently in images sequences except with high speed objects.

If the motion is larger, we can also consider the second order expansion

=2
R=1+i+ = +o(i)

About extrinsic parameters: The rotation parameters are related to the
rotation axis and the rotation angle by : r = 2 tan g u where u is a unitary



vector giving the direction of the rotation axis.

Some components of u can be known or null. Some value of # may yield

singularities; § = 7 and the rotation axis is parallel to the translation vector

for a screw displacement.

Some robotic systems give precise values of the robot displacements (angle,
axis, translation). Some values may be known (we denote by _y a constant and
known value of a parameter ). Other informations regarding parallelism or
orthogonality to a known direction or to an other vector may also be available:

e The rotation axis is orthogonal to the translation plane (e.g. planar motion) :
rltert=0

e screw displacement :
r{|te dk/r=rkt

All constraints on motion: All these constraints, also called “atomic partic-
ular cases”, have simple expressions that can be easily combined. In this pur-
pose, we use the fact that u is a unary vector and that, for monocular systems,
the norm of translation cannot be recovered. To parameterize these vectors
with only 2 parameters, we divide each component by a non-zero component.
Then, the dot-product and scalar product induce linear relations. For example,
ty =1and t L r are equivalent to tyug + t1 uy +uy = 0 = uy = —toug — t1 Uy

All cases are collected in the table 2.

Generating all cases: All particular cases, each called a “molecular case”,
are generated by combining the atomic cases and solving the constraints by
a substitution®. A molecular case is composed of one case in each family, a
family being named by a letter (g, s, £ or ¢ for projection as seen in table 1
and u, R, a, t or Z for motion as seen in table 2). Thus, a molecular case is
identified by the sequence :

gl[1-31£f[1-3]1s[1-3]c[1-3]R[1-4]a[1-2]Jul1-24]1t[1-12]Z[1-3]

where g[1-3] means “one atomic case among g1, g2 and g3”.

How many cases do we have? If we look at the expression of the particular
above-mentioned cases, we obtain 6.10° particular cases. However, this is not
the real number because of the incompatibility of some atomic cases and the
redundancy of some constraints. Two different sets of atomic constraints can
generate the same simplified model.

1" This was done using Maple software for symbolic computations.



ul |ug=wup=0,u3 =1 |rot.axis || y-axis || R1 | R=1 null rotation
u2 ug =0, up =1 rot. axis L x-axis || R2 | R=1I+r first order
u3 ue =0, up =1 rot. axis 1-axis R3 | R=1I+r1+ % 2 second order
ud | up =1 general case R4 | R=1I+ fii general case
ub | wp =wuz =0, uy = —1 | rot. axis || y-axis
ub | ug=0,u =-1 rot. axis | x-axis || al | 0 =3 quarter turn
u7 | u2=0,u =-1 rot. axis 1 z-axis || a2 | 6 free angle
u8 | u=-1 general case
u9 |ug=wu; =0,up =1 | rot.axis || z-axis || t1 | ¢; =t2 =0, ¢ty =1 | trans. || x-axis
ul0 | ug =0, ug =1 rot. axis 1 x-axis || t2 t1=0,t=1 trans. 1 y-axis
ull | u; =0, us =1 rot. axis L y-axis || t3 tay =0,tp=1 trans. | z-axis
ul2 | up =1 general case t4 [ tp=1 general trans.
ulld | ug =u; =0, ug = —1 | rot. axis || z-axis || t5 | tp =1t2 =0, ¢t; =1 | trans. || y-axis
uld | ug =0, ug = —1 rot. axis 1 x-axis || t6 to=0,t1 =1 trans. L x-axis
uld | uy =0, ug = —1 rot. axis L y-axis || t7 tay=0,t1 =1 trans. | z-axis
ul6 | up = —1 general case t8 [t =1 general trans.
ul?7 |y =ur =0, ug =1 rot. axis || x-axis || t9 | to =t; =0, ty =1 | trans. || z-axis
ul8 | u; =0, ug=1 rot. axis L y-axis || t10 | g =0, t3 =1 trans. L x-axis
ul9 | ue =0, up=1 rot. axis L z-axis || t11 | t; =0,t, =1 trans. 1 y-axis
u20 | ug=1 general case t12 [ty =1 general trans.
u2l | u; =ug =0, up = —1 | rot. axis || x-axis
u22 | u; =0, up = -1 rot. axis 1 y-axis || Z1 | tu=0 trans. L rot. axis
u23 | upz =0, up = —1 rot. axis 1 z-axis || Z2 [ tAu=0 screw displ.
u24 | ug=—1 general case Z3 no relation
Table 2

Table of particular cases of displacements

It is easy to eliminate incompatible constraints
redundant constraints, because this requires to compare each set of combined
constraints with all others in order to determine the similarity. The complexity
of this process is O(n?).

. It is not possible to deal with

Although we cannot remove redundant cases, we propose an adapted strategy

to deal with the large number of cases. The idea of this paper is :

(i) to

eliminate some of the redundant cases by using some considerations on the




atomic cases and (ii) to limit the number of cases by studying the particular
forms of the matrices.

Reducing the number of cases: Some redundancy are obvious :

e In case (R1), one case of axis and angle is considered.
e In cases (R2) and (R3), we do not consider (a1) when 6 is equal to 7.
e The case (al) is only considered if r || t, (Z2).

This reduces the amount of cases of fundamental relations to only 216756
cases.

4 Forms of fundamental matrices

We have significantly reduced the number of cases but this is not small enough
to be computationally tractable. We now split fundamental relations in sets of
matrices by forms. The matrix form is determined using simple rules in order
to obtain a very simple parameterization. We consider (3x3) matrices having 9
parameters (coefficients). If a coefficient is equal to zero, then there is one less
parameter. If a coefficient has the same expression or is opposite to another,
there is one less parameter again. These operations are very simple and can
be rapidly computed in each case. Furthermore, we know that a fundamental
matrix is defined up to a scale factor, and that its determinant is fixed to
0 (removing in most cases one parameter). This process reduces the 216756
cases to only 188 subgroups.

The table in appendix A shows all the simplified forms obtained, and, for each
form, an example of case that has generated it. This table will be useful for
people who want to implement the algorithm.

5 Experiments

We have recorded several video sequences for which the camera displacement
induces a fundamental relation between image points m; and my. From each
particular matrix form, we have estimated the fundamental matrix parameters
with the robust least median square method in order to minimize the distance
between a 2D point m; and its epipolar line F my. To deal with cases with
different degrees of freedom, we use an appropriate Akaike criterion, Akaike
(1972).



Fig. 1. Images for x-axis translation, small pan rotation and auto-focus

For each recorded video sequence, we have verified that the model with the
minimal residual error effectively corresponds to the displacement performed
by the robotic system. We present one experiment in figure 1 for which the
camera has performed a small pan rotation followed by a translation parallel
to the x-axis. The auto-focus was also enabled. The case with the minimal
residual error corresponds to the fundamental matrix form number 59 in the
table given in appendix A :

0 0 O
F = Ty T1 T2
0 —T9 T3

This particular form was obtained from cases where the rotation was approx-
imated to its first and second order, the translation is parallel to the x-axis,
the rotation axis is orthogonal to the optical axis and the intrinsic parameters
are free.

6 Conclusion

In an earlier study on homographic matrices Lingrand (2000), we have shown
that it is possible to reduce the amount of particular cases in order to make the
case selection computationally feasible. In this paper, we have shown that a
similar result can be obtained with fundamental matrices using redundancies.
We have experimentally confirmed that our system is able to automatically
select the case corresponding to the performed displacement.



The applications are twofold: (i) an incremental reconstruction of the scene
and (ii) the segmentation of objects moving with different displacements or
with different geometric properties in video sequences.

This work has also been extended to motion estimation of human head inside
MRI scanner, improving the registration of fMRI volumes, Lingrand et al.
(2001).

Appendix A : Table of particular forms of fundamental matrices.

We denote by n° the form number, by p the number of parameters (we have
not taken into account the fact that the fundamental matrix is defined up to
a scale factor and that det F = 0 but we do so in our implementation) and by
n the number of molecular cases that have generated a form.

n® P simplified form of fundamental matrix for example generated by: n
1 1 [0 0 0 0 0 TG 0 -z 0] glfisicitiR1u24Z3a2 24
2 |1 [0 0 z3 0 0 0 -z3 0 0] glfisic1tbR1u24Z3a2 4
3 |1 0 =z 0 -z 0 0 0 0 0] glfisic1t9R1u24Z3a2 5
4 2 [0 0 0 0 0 zg 0 -zg zg | glf1s1c3t1R1u24Z3a2 12
5 2 [0 0 0 0 0 TG 0 Tg 0] glf3sicitiR1u24Z3a2 6
6 2 [0 0 0 0 0 zg x7 -zg 0] glfisic1t1R2u13Z2a2 16
7 2 [0 0 0 0 zp zg 0 -zg zg | glfisicit1R2ul7Z1a2 396
8 2 [0 0 0 T4 0 TG 0 -z 0] glfisicitiR2ulZ2a2 16
9 2 [0 0 z3 0 0 0 -z3 0 zg | glf1s1c3t5R1u24Z3a2 2

10 2 [0 0 T3 0 0 0 -3 Tg 0] glfisic1t5R2ul3Z2a2 8

11 | 2 [0 0 z3 0 0 0 =z 0 0] glf1s2c1t5R1u24Z3a2 4

12 2 [0 0 z3 0 0 zg —z3 —zg 0] glfisic1t3R1u24Z3a2 17

13 2 [0 To 0 ~To 0 TG 0 -z 0] glfisicit11R1u24Z3a2 8

14 2 [0 T 0 -z 0 zg 0 0 0] glfisic1t9R2ulZ2a2 24

15 2 [0 To 0 ~To 5 0 0 0 0] g2f3s1c1t9R1u24Z3a2 4

16 2 [0 zo 0 x4 0 0 0 0 0] g1f1s2c1t9R1u24Z3a2 3

17 2 [0 zo z3 —zo 0 0 —z3 0 0] glfisic1t10R1u24Z3a2 4

18 2 [0 To T3 ~To 0 0 0 0 0] glfisic1t9R2ul7Z2a2 12

19 2 [0 zo z3 0 0 0 -z3 0 0] glflsic1t5R2ul7Z2a2 8

20 2 [z 0 z3 0 0 0 —z3 0 z ] glfisicit5R2ulZia2 66

21 2 [z zo 0 ) z1 0 0 0 0] glfisiclt10R2ullZia2 198

22 3 [0 0 0 0 0 TG 0 Tg zg | glf3s1c2t1R1u24Z3a2 12

23 3 [0 0 0 0 0 zg x7 -zg zg | glf1s1c2t1R2u13Z2a2 32

24 3 [0 0 0 0 0 TG T7 Tg 0] glfisicit1R3ul3Z2a2 200

25 3 [0 0 0 0 zg zg 0 -zg zg | glf2s1c1t1R2ul7Z1a2 396

26 3 [0 0 0 0 z5 zg z7 —zg x5 ] glfisicitiR2uliZ2a2 16

27 3 [0 0 0 T4 0 zg 0 zg 0] glfisicit1R3ulZ2a2 56

28 3 [0 0 0 T4 0 zg x7 -zg 0] glfisic1t1R2ul0Z2a2 32

29 3 [0 0 0 T4 z5 zg 0 —zg 0] g2fisicit1R2ulZ2a2 32

30 3 [0 0 0 T4 xy zg 0 -zg zg | glfisic1t1R2u19Z2a2 16

31 3 [0 0 z3 0 0 0 —z3 zg zg | glfls1c2t5R2ul3Z2a2 16

32 3 [0 0 z3 0 0 0 z7 0 zg ] g1f1s2c2t5R1u24Z3a2 8

33 3 [0 0 T3 0 0 0 T7 Tg 0] glfisic1t5R3ul3Z2a2 64

34 3 [0 0 z3 0 0 zg —z3 —zg zg | glfls1c3t3R1u24Z3a2 13

35 3 [0 0 z3 0 0 zg -z3 zg 0] g2f1s1c1tBR2ul13Z2a2 22

36 3 [0 0 z3 0 0 zg z7 —zg 0] glfls2c1t3R1u24Z3a2 4

followed on next page
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37 3 [0 zo 0 —zo 0 zg 0 zg 0] glf3sicit11R1u24Z3a2 2
38 3 [0 z 0 -z zg zg 0 -zg 0] g3flslc1t11R1u24Z3a2 4
39 3 [0 zo 0 —zo z5 zg 0 0 0] g2f3s1c1t9R2ulZ2a2 12
40 3 [0 z 0 T4 0 zg 0 -zg 0] glf1s2c1t11R1u24Z3a2 4
41 3 [0 T 0 T4 0 zg 0 0 0] glfisic1t9R3ulZ2a2 60
42 3 [0 To 0 T4 5 0 0 0 0] g2f1s2c1t9R1u24Z3a2 6
a3 | 3 [0 =23 @3 - 0 0 =z 0 0] g1£351c1t10R1u2473a2 2
44 3 [0 zo z3 —xzo 0 zg —z3 —zg 0] glfisicit12R1u24Z3a2 40
45 3 [0 z z3 -z 0 zg 0 0 0] glf1s1c1t9R2ul9Z2a2 60
46 3 [0 zo z3 0 0 —z3 zg 0] glfisicit5R2ullZ2a2 16
47 3 [0 To T3 0 0 0 T7 0 0] glfisic1t5R3ul7Z2a2 64
a8 | 3 0 =z 3 zy 0 0 0 0 0] glf1s1c1t9R3ul7Z2a2 60
49 3 [z 0 z3 0 0 0 —z3 0 zg | glf2slcit5R2ulZia2 66
50 3 [z 0 T3 0 0 -z3 zg z ] glfisic1tBR2ul0Z2a2 8
51 3 [z zo 0 —zo T zg 0 0 0] glfisic1t9R2ul0Z2a2 24
52 3 [z z z3 -z xq 0 0 0 0] glfisic1t9R2ul1Z2a2 24
53 3 [z zo z3 0 0 0 -z3 0 zy ] glfi1slc1tbR2u19Z2a2 8
54 4 [0 0 0 0 0 zg z7 zg zg | glfls1c2t1R3ul3Z2a2 400
55 4 [0 0 0 0 z5 zg 0 zg zg | glfisic2t1R2ul7Z1a2 2772
56 4 [0 0 0 0 zy zg z7 ) zg | glf2sicit1R2ullZ2a2 16
57 4 [0 0 0 0 zy zg z7 zg z5 | g2flsiclt1R2ull1Z2a2 32
58 4 [0 0 0 T4 0 zg z7 zg 0] glf3slcit1R2ul0Z2a2 16
59 4 [0 0 0 Ty zp zg 0 -zg zg | glf2sic1t1R2ul9Z2a2 80
60 4 [0 0 0 T4 z5 zg 0 zg 0] g2fisicit1R3ulZ2a2 112
61 4 [0 0 0 x4 zy zg z7 -zg z5 | glflsiclt1R2ul2Z2a2 24
62 4 [0 0 z3 0 0 0 z7 zg zg | glfls1c2t5R3ul3Z2a2 128
63 4 [0 0 z3 0 0 zg —z3 zg zg | g2f1s1c2t5R2ul3Z2a2 44
64 4 [0 0 z3 0 0 zg z7 -zg zg | g1f1s2c2t3R1u24Z3a2 8
65 4 [0 0 z3 0 0 zg z7 zg 0] glfisic1t3R2ul3Z2a2 588
66 4 [0 zo 0 ) zy zg 0 zg 0] g2f3s1c1t11R1u24Z3a2 4
67 4 [0 To 0 T4 0 TG 0 Tg 0] glfisicit11R2ulZ2a2 146
68 4 [0 zo 0 T4 z5 zg 0 —zg 0] g2f1s2c1t11R1u24Z3a2 8
69 4 [0 zo 0 x4 zg zg 0 0 0] g2f1s1c1t9R3ulz2a2 120
70 4 [0 zo z3 —zo 0 zg —z3 —zg zg | glf3s1c2t9R1u24Z3a2 9
71 4 [0 zo z3 ) zy zg 0 ) z5 ] glfislclt11R2ul7Z2a2 8
72 4 [0 zo z3 —zo z5 zg 0 0 0] g2f3s1c1t9R2ul7Z2a2 36
73 4 [0 zo z3 0 0 0 z7 zg 0] glfls2c1t5R2ul1Z2a2 32
74 4 [0 zo z3 0 zy zg -z3 -zg 0] g2f1s1c1t5R2ul7Z2a2 12
75 4 [0 zo z3 0 z5 zg —z3 —zg x5 ] glfisic1t3R2ul7Z2a2 8
76 4 [0 zo z3 x4 0 0 z7 0 0] glflsic1t10R2ul7Z2a2 150
T 4 [0 To T3 T4 0 TG 0 0 0] glf1s2c1t9R2ul9Z2a2 24
78 4 [z 0 z3 0 0 0 -z3 zg zg | g1f2s1c1t5R2u10Z2a2 8
79 4 [z 0 z3 0 0 0 z7 0 zg | glfislc2t5R2ulZia2 1056
80 4 [z 0 z3 T4 0 zg —z3 —zg z ] glfislcit3R2ulZ2a2 8
81 4 [z zo 0 ) z1 zg z7 ) 0] glfislclt11R2ul13Z2a2 16
82 4 [z To 0 T4 5 0 0 0 0] glfis2c1t10R2uiizZla2 990
83 4 [z zo z3 ) 0 zg -z3 0 z ] glflsiclt10R2ulZ2a2 8
84 4 [z zo z3 —zo T 0 —z3 zg 0] glfisic1t10R2ul3Z2a2 16
85 4 [z zo z3 ) z1 zg 0 0 0] glflsic1t9R2ul2Z2a2 36
86 4 [z zo z3 0 0 -z3 0 zg | g1f2s1c1t5R2u19Z2a2 8
87 4 [z zo z3 0 0 0 —z3 zg z ] glfisicit5R2ul2Z2a2 12
88 5 [0 0 0 0 z5 zg z7 zg zg | glfisic2t1R2uliZ2a2 368
89 5 [0 0 0 T4 0 zg z7 zg zg | glf1s1c2t1R2ul0Z2a2 240
90 5 [0 0 0 T4 xy zg 0 xg zg | glf3s1c1t1R2u19Z2a2 48
91 5 [0 0 0 T4 z5 zg z7 —zg zg | glf2sicit1R2ul2Z2a2 24
92 5 [0 0 0 T4 zg zg z7 zg -zp ] glf1sic1t1R3ul0Z2a2 32
93 5 [0 0 0 T4 z5 zg z7 zg 0] g2fisicit1R2ul0Z2a2 96
94 5 [0 0 0 T4 zg zg z7 zg z5 ] glfisic1t1R3ullZ2a2 64
95 5 [0 0 z3 0 0 zg x7 xg zg | glf1s1c2t3R2ul3Z2a2 1176

followed on nexst page
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g2fisicit11R2ulZ2a2 292
glfls1c2t9R2ulZ2a2 26
glf1s1c2t9R2ul7Z2a2 14
glf3s1c1t12R1u24Z3a2 3
g3flslc1t10R1u24Z3a2 10
glf2sic1t11R2ul7Z2a2 8
g2f1slcl1t11R2ul7Z2a2 12
glfislc2t5R2ul1Z2a2 240
glf2s1c1t3R2ul7Z2a2 32
g2f1sic1tBR2ul1Z2a2 36
glfisic1t3R3ul7Z2a2 40
glfls2c1t12R1u24Z3a2 6
glfisic1t11R3ul7Z2a2 40
g2f1s1c1t9R3ul7Z2a2 168
glf1s1c2t5R2u10Z2a2 128
glf2s1c1t3R2ulZ2a2 8
glflsic1t3R3ulZ2a2 16
glfisicit11R3ul3Z2a2 56
glf1s2c1t9R2ul0Z2a2 120
glf2s1c1t10R2ulZ2a2 8
glflsic1t10R3ul3Z2a2 56
glf2sic1t5R2ul2Z2a2 12
glf1s2c1t5R2u19Z2a2 32
glflsic1tbR3ullZ2a2 16
glfisic1t5R3ul0Z2a2 32
g2f1sic1tbR2ulZia2 70
glf1s1c1t9R3ul9Z2a2 48
glfisic1t10R3ulZ2a2 16
glfls1c1t9R3ul0Z2a2 96
glf1s2c1t9R2ul1Z2a2 24
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0
z6
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0

zg ]
zg ]
zg |
zg ]
0]
zg ]
zg ]
0]
z5 ]
0]
zg ]
z5 |
z5 ]
zg ]
zg ]

zg ]

glfisicit1R3ul2Z2a2 5160
glf1s1c2t9R2u19Z2a2 199
g2f3s1c2t11R1u24Z3a2 34
glf3sicit11R2ul7Z2a2 44
g2f3s1c1t10R1u24Z3a2 10
g3f1s1c1t3R2ul7Z2a2 8
glf2s1c1t3R3ul7Z2a2 40
g2f1s1c1tbR3ul7Z2a2 192
glfisicit3R2ullZ2a2 32
glf3s2c1t12R1u24Z3a2 3
glf2sic1t11R3ul7Z2a2 40
glflsic1t11R2ul19Z2a2 32
glfisic1t12R2ul7Z2a2 84
glf2s1c1t3R3ulz2a2 16
glfls2c1t3R2ulZ2a2 16
glf2s2c1t6R2ubZ3a2 16
glflsic1t11R2ul0Z2a2 48
glfis2c1t11R2u13Z2a2 16
glf3s1c1t10R2ulZ2a2 8
glflsic1t12R2ul3Z2a2 126
glfisic1t10R2u10Z1a2 144
glfisicit11R2uliZia2 144
glfisic1t5R3ul2Z2a2 1536
glflsic1t3R2ul9Z1a2 358
g2f1s1c1t5R2u10Z2a2 12
glf2s1c1t10R3ulzZ2a2 16
glflsic1t12R2ulZ2a2 42
glfisic1t10R2u19Z2a2 16
glflsic1t10R2ullZ2a2 48

followed on next page
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155 6 [z zo z3 T4 z5 zg —z3 —zg z ] g2fisicit3R2ulZ2a2 24
156 6 [z zo z3 T4 zy zg 0 0 0] glflsic1t9R3ul2Z2a2 1428
157 7 [0 zo z3 —xzo z5 zg z7 zg zg | glfisic2t11R2ul7Z2a2 270
158 7 [0 zo z3 zy zg z7 zg zg | glflsic2t3R2ull1Z2a2 2480
159 7 [0 zo z3 T4 0 zg z7 zg zg | glfis1c2t10R2ul7Z2a2 912
160 7 [0 zo z3 x4 zy zg 0 zg zg | g1lf2sic1t11R2u19Z2a2 536
161 7 [0 zo z3 T4 z5 zg z7 —zg zg | glf2sic1t12R2ul7Z2a2 84
162 7 [0 zo z3 x4 zy zg z7 zg 0] g2f1s1c1t10R2ul7Z2a2 318
163 7 [z 0 z3 x4 0 zg z7 zg zg | g1f1s1c2t3R2u10Z2a2 640
164 7 [z zo 0 T4 z5 zg z7 zg 0] glfis2c1t11R2ul0Z2a2 584
165 7 [z zo z3 ) 0 zg z7 zg zg | glflsic2t10R2ulZ2a2 48
166 7 [z zo z3 —zo T zg z7 zg zg | glfisic2t10R2uiizZla2 1104
167 7 [z zo z3 ) zy zg -z3 zg zg | glflsic1t10R2u10Z2a2 32
168 7 [z zo z3 —zo z5 zg z7 —zg zg | glfisicit11R2ulizZ2a2 32
169 7 [z zo z3 zo z5 zg —z3 zg zg | g2f2s1c1t5R2ul0Z2a2 12
170 7 [z zo z3 T4 0 zg -z3 zg zg | glf2sic1t12R2ulZ2a2 42
171 7 [z zo z3 T4 0 zg z7 0 zg | glfls2c1t10R2ul9Z2a2 168
172 7 [z zo z3 T4 zy 0 z7 zg 0] g1f1s2c1t10R2ull1Z2a2 120
173 7 [z zo z3 T4 z5 zg —z3 —zg zg | glfisic1t3R2ul9Z2a2 104
174 7 [z zo z3 T4 zy zg -z3 zg 0] g2f1s1c1t10R2u13Z2a2 32
175 7 [z zo z3 T4 zy zg -z3 zg z ] g2f1sic1t10R2ulZ2a2 262
176 8 [0 zo z3 x4 zy zg z7 zg zg | g1lfls1c2t11R2u19Z2a2 5220
177 8 [z zo z3 —zo z5 zg z7 zg zg | glfis1c2t10R2ul0Z1a2 1232
178 8 [z zo z3 zo zy zg z7 zg zg | glfls1c2t3R2u19Z1a2 1564
179 8 [z zo z3 T4 -z zg z7 zg zg | g1f1s1c2t9R3ul9Z2a2 96
180 8 [z zo z3 T4 0 zg z7 zg zg | glfis1c2t10R2ul9Z2a2 1104
181 8 [z zo z3 T4 z1 zg z7 zg zg | g1lfls1c2t10R2ull1Z2a2 384
182 8 [z zo z3 T4 z5 zg —z3 zg zg | g2f1s1c1t10R2ul0Z1a2 774
183 8 [z zo z3 T4 zy zg z3 zg zg | g2flsiclt11R2ullZia2 288
184 8 [z zo z3 T4 z5 zg z7 —zg zg | glfis2cit11R2uiizZla2 352
185 8 [z zo z3 T4 z5 zg z7 zg zg | glfls2c1t10R2ul0Z1a2 144
186 8 [z zo z3 T4 zy zg z7 zg -z ] g2f1s1c1t5R3ullZ2a2 32
187 8 [z zo z3 T4 z5 zg z7 zg 0] glfis2c1t12R2ul3Z2a2 1078
188 8 [z zo z3 T4 zy zg z7 zg z ] g2f1s1c1t10R2u19Z2a2 128

Table of particular forms of fundamental matrices.
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