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Abstract

We have to prepare the evaluation (fitness) function to evaluate the performance of the robot when we apply the machine
learning techniques to the robot application. In many cases, the fitness function is composed of several aspects. Simple
implementation to cope with the multiple fitness functions is a weighted summation. This paper presents an adaptive fitness
function for the evolutionary computation to obtain the purposive behaviors through changing the weights for the fitness
function. As an example task, a basic behavior in a simplified soccer game (shooting a ball into the opponent goal) is selected
to show the validity of the adaptive fitness function. Simulation results and real experiments are shown, and a discussion is given.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the ultimate goals of robotics and AI is to
realize autonomous robots that organize their own in-
ternal structure towards achieving their goals through
interactions with dynamically changing environments.
In applying some of evolutionary approaches to the
robot in order to obtain purposive behaviors, the fit-
ness (evaluation) function should be given in advance.
There are two important issues when we attempt to
design the fitness function.

First one is that the multiple fitness measures should
be considered in order to evaluate the resultant per-
formance. Since multiple objectives may be conflict-
ing with each other, it is usually difficult to obtain the
global minimum for each objective at the same time.
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In order to deal with multiple objectives, several meth-
ods are proposed[2]. The weighted sum method is
most popular for multi-objective optimization since it
is easy to implement and allows to scale objectives.
However, this approach faces the essential problem of
weighting itself, that is, how to decide the weight val-
ues. Another approach is to obtain the Pareto optimal
solutions taking advantage of the parallel search of
evolutionary computation. However, in robotic appli-
cations, it is sometimes meaningless to optimize one of
the fitness measures. For example, one of the rational
behavior of obstacle avoidance in a static environment
is not to move, which is not our intentional result.

In addition, it seems ineffective to fix the weight
values during the evolution. In general, when the
given tasks are too difficult for the robot to accom-
plish them, the good evaluation is seldom obtained
[1,7,8]. If we set up the severe fitness function at
the beginning of evolution, the robot does not obtain
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the good evaluation. As a result, the robot cannot
accomplish the task. Therefore, we have to set up the
appropriate fitness function according to the current
ability of the robot when the robot can obtain the
purposive behaviors in a finite learning time. In gen-
eral, it seems difficult to accomplish the complicated
task from the beginning. Asada et al.[1] proposed a
paradigm calledLearning from Easy Mission. Yang
and Asada[10] proposed Progressive Learning which
would learn a motion to be learned from slow to fast
and apply it to a peg insertion task. Omata[6] applied
genetic algorithms to acquire the neural network con-
troller which can drive a bicycle. The designer give
an initial velocity to the bicycle so as to control it
easily. After the generation proceeded, the assist was
slightly decreased.

In this paper, we propose an adaptive fitness func-
tion which changes the weights during the evolution-
ary processes. We focus on the correlation between
objectives to change the weight. Based on the given
priority, the robot modifies the fitness function to con-
trol the task complexity. In order to obtain the con-
troller, we select a Genetic Programming (GP) method
[4]. GP is a kind of genetic algorithms based on the
tree structure with more abstracted node representa-
tion than gene coding in ordinary genetic algorithms.
As example tasks in our work, we adopt the domain of
soccer robots, RoboCup, which is an attempt to fos-
ter robotics and AI researches by providing a standard
problem where a wide range of technologies can be
integrated and examined[3]. In this task, six objec-
tives are considered to evaluate the behavior. We show
how the robot would acquire the purposive behaviors
using the adaptive fitness function. Finally, the results
of computer simulation, real experiments, and a dis-
cussion are given.

2. Adaptive fitness function

As described above, adaptive fitness function is ef-
fective to accelerate the speed of evolution. Here, we
explain the advantage of this method schematically.
Let theith objective function of the individualk at the
generationt be fi(k, t). We assume thatfi is stan-
dardized, and positive fitness representation. In other
words, the smaller is the better (0.0 is the best). In
addition, we introduce a priority functionpr to define

the priority offi . The fitness functionF(k, t) is com-
puted by

F(k, t) =
n∑

i=1

wi(t)fi(k, t), (1)

where wi(t) and n denote the non-negative weight
for objectivefi and the number of objectives, respec-
tively. We have to minimize the fitness functionF .
Obviously, criteria with large weights have more influ-
ence on the fitness than those with small coefficients.
We focus on the change of eachfi and correlation so
as to modify the weights. Technically, all weights are
given an initial value and re-setting them happens by
adding a value�w after a certain predefined number
of evaluations. We consider the change of the objec-
tive functions by

�fi(t) = 1

N

N∑
k=1

{fi(k, t) − fi(k, t − 1)}, (2)

whereN is the number of population. Since the ob-
jectives are standardized,�fi < 0 means that the
objectivefi is improved based on the current fitness
functionF . Therefore, the robot does not modify the
weight if �fi < 0 for all i = 1, . . . , n.

The problem is that some objectives get worse, that
is �fi > 0. In this case, the weightwi should be
modified to improve the performance of the controller.
However, the weights for other objectiveswj (j �≡ i)
should also be considered since they might be related
to each other. Now we consider the relations between
two objective functionsfi andfj . Linear correlation
coefficient offi andfj is given by

rij (t) =
∑

k(fi(k, t) − f̄i )(fj (k, t) − f̄j )√∑
(fi(k, t) − f̄i )2

√∑
(fj (k, t) − f̄j )2

,

(3)

where f̄i and f̄j denote the average offi and fj ,
respectively. Based on the linear correlation, the
relations between two objectives can be roughly cat-
egorized into three: (a) no correlation, (b) positive
correlation, and (c) negative correlation. LetCi be the
set of objectives which is related to theith objective

Ci = {j ||rij | > ε, j = i + 1, . . . , n}, (4)

whereε is a threshold between 0 and 1, andrij is a
correlation betweenfi andfj . In case ofCi = ∅ (the
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objectivefi is unrelated to other objectives),wi can
be modified independently. Therefore,wi is increased
so thatfi would be emphasized:

wi(t + 1) = wi(t) + �w, (5)

where�w is a small positive constant. In case ofCi �≡
∅, the weight is updated by

�wj∗(t) =
{

1 (rij∗ > ε),

−1 (rij∗ < −ε),
(6)

wherej∗ is prior to other objectives inCi , that is

j∗ = arg max
j∈Ci

pr(fi).

The reason whywi is not changed directly is that
the weight of the upper objective would continue to
be emphasized even if the corresponding objective is
saturated. As a result, the lower objective related to
the upper one is emphasized directly.

Finally, we summarize our proposed method to
modify the weight of fitness function as follows:

(1) For i = 1, . . . , n, update the weights as follows:
A. In case ofC = ∅, update theith weight by

wi(t +1) = wi(t)+α, whereα is a step-size
parameter.

B. In case ofC �≡ ∅, update thej∗th weight by
wj∗(t + 1) = wj∗(t) + α�wj∗(t).

(2) Create the next population, and increment the gen-
eration byt → t + 1.

Fig. 1. GP implementation: (a) our mobile robot; (b) flowchart of GP.

3. Task and assumption

3.1. Environment and robots

RoboCup [3] is an attempt to promote intelli-
gent robotics research by providing a common task
for evaluation of various theories, algorithms, and
agent architectures. RoboCup has been increasingly
attracting many researchers. In order for a robot to
play soccer game reasonably well, many technolo-
gies need to be integrated and a number of technical
breakthroughs must be accomplished. Therefore, we
have selected a simplified soccer game consisting
of two mobile robots as a testbed to show the va-
lidity of the adaptive fitness function. The task for
the learner is to shoot a ball into the opponent goal
without collisions with an opponent. At the begin-
ning, the behavior is obtained in computer simulation,
and we transfer the result of simulation to the real
robot.

Fig. 1(a) shows an our mobile robot, a ball, and a
goal. The environment consists of a ball, two goals
(own and opponent goal), and two robots. The sizes
of the ball, the goals and the field are the same as
those of the middle-size real robot league of RoboCup
Initiative. The robot cannot obtain the complete infor-
mation about the environment because of limitation of
its sensing capability and occlusion of the objects. For
example, in order to capture the front view, the robot
has a TV camera of which visual angles are 35◦ and
30◦ in horizontal and vertical directions, respectively.
As motor commands, each mobile robot has two de-
grees of freedom.
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3.2. Objective functions

Although shooting behavior is one of the funda-
mental ability to play a soccer game, many objectives
have to be considered. In this experiment, we set up
six objective functions:fopp (the number of achieved
goals),fown (the number of lost goals),fkick (the total
number of ball-kicking),fc (the total number of col-
lisions),fstep (the total number of steps until all trials
end), andfov. The first five objective functions are
the same as what were used in our previous work[8].
The sixth objectivefov can be regarded as a sub-goal
to shoot the ball into the opponent goal effectively. If
the ball and the opponent goal are observed in a line,
fov become a small value.

In addition, our proposed method might depend on
the priority that is given in advance. In order to check
the dependence on the priority function, we prepare
four priorities (case A, B, C, and D) as follows:

A. fopp → fown → fov → fkick → fc → fstep
B. fopp → fown → fkick → fc → fov → fstep
C. fopp → fstep→ fov → fkick → fc → fown
D. fopp → fown → fov → fstep→ fc → fkick

The initial weights for the six fitness measures are set
as follows:fown = fopp = 9.0, fkick = 8.0, fc = 4.0,
fstep = fov = 2.0. They are the best values in our
previous experiments using the fixed weight fitness
function. The policy to design the priority is explained
as follows. Since the main purpose is to shoot a ball
into the opponent goal, the objectivefopp is prior to
all other objectives.

3.3. GP settings

In order to obtain the controller, we select the GP
method[4]. In our case one individual corresponds to
one controller, and each individual has two GP trees
which generate the motor command of the left and
right wheel, respectively. GP learns to obtain mapping
function from the image features to the motor com-
mand. In other words, GP tries to obtain the simple
feedback controller.

Then, we select the terminals as the center posi-
tion of the objects in the image plane. For exam-
ple, in a case of the ball, the current center position
(xb(t), yb(t)) and the previous one (xb(t−1), yb(t−1))
are considered. The total number of the terminals is 4

(objects) × 4 (features) = 16 since the objects in the
environment are the ball, two goals and an opponent.
Due to severe problems such as the limitation of sens-
ing capabilities, the robot does not always perceive
the correct information about the image features. As
a function set, we prepare four fundamental operators
such as+, −, × and/.

Fig. 1(b) shows a flowchart to create a new gen-
eration. The best performing tree in the current gen-
eration will survive in the next generation. The size
of the population is set to 150. In order to select
parents for crossover, we use tournament selection
with size 10. The maximum depth by crossing two
trees is 25. We performT = 30 trials to evaluate
each robot. The number of generations for which the
evolutionary process should run is 200. One trial is
terminated if the robot shoots the ball into the goal or
the pre-specified time interval expires. The parameter
ε in Eq. (4)is set to 0.5. The step-size parameterα is
set to 0.02. A time interval is defined as a time period
for one action execution corresponding to the sensory
input of a robot (33 ms).

4. Experimental results

4.1. Comparison between the proposed method
and the fixed weight method

At first, we perform a simulation using a station-
ary opponent. We compared the proposed method with
the fixed weight method. Since the opponent did not
move, this experiment can be regarded as an easy sit-
uation.Fig. 2(a) shows the result when the opponent
is stationary. In the case of the fixed weight method,
the performance was not improved after the 50th gen-
eration. On the other hand, the performance based on
the proposed method was improved gradually.

Next, we show a simulation results using an active
opponent. This experiment can be regarded as a more
difficult situation. As an initial population for this
experiment, we used the best population which was
obtained in the previous experiment.Fig. 2(b) shows
the histories offopp. In this experiment, although
the opponent just chased the ball, the speed could
be controlled by the human designer. Its speed was
gradually increased at the 40th and 80th generations,
respectively. According to the increase of the speed
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Fig. 2. Average of the number of achieved goals in the first experiment: (a) with the stationary opponent; (b) with the moving opponent.

of the opponent, the obtained scoresfopp was slightly
decreased in a case of the fixed weight method. On
the other hand, the robot using the proposed method
kept the performance same in spite of the increase of
the speed.

We checked the obtained behaviors based on both
methods, and it was found the following issues: with
respect tofopp andfown, both methods achieved the
almost same performances. In cases of the number of
collisions (fc) and the steps (fstep), the performance
of the proposed method is better than that of the fixed
weight method. We suppose the reason why the robot

would acquire such behaviors as follows. At the be-
ginning of the evolution, the most important thing is
to kick the ball towards the opponent goal even if it
makes a collision with the opponent. Therefore, the
weights for fc and fstep are set to small values in
a case of the fixed weight method. After a number
of generation, the weight forfopp affected the dif-
ferences of fitness among individuals because most
individuals accomplished the shooting behavior. Con-
sequently, the robot using the fixed weight method
did not considerfc andfstep through the whole gen-
erations. On the other hand, the robot based on the
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proposed method changed the weight forfstep to
be considered. As a result, the robot using the pro-
posed method obtained the shooting behavior more
quickly.

4.2. Comparison among the different priority
function

Next, we checked how the priority affects the ac-
quired behaviors when we changed the order of the
priority, because the priority of fitness measures must
be given to the robot in advance. For the sake of the

Fig. 3. Comparison among four priority functions: (a) achieved goals; (b) weight based on case C.

limitation of the space, we show the results of four
fitness measures inFig. 3 using the four priorities.
FromFig. 3(a), although the learning curves were dif-
ferent among four cases, the final values converged to
the almost same value.

Fig. 3(b) shows the weights of case C during
the evolution. Since the weights for the number of
achieved and lost goals were constant, only one line
was shown in this figure. It follows from the ini-
tial weights described inSection 3.2, the important
order of fitness measures were described as foll-
ows: fown → fopp → fkick → fc → fstep → fov.
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Using the adaptive fitness function, the resultant order
were described as follows:fkick → fstep → fown →
fopp → fc → fov. In many cases we can see that
settlement. That is, ball-kicking was emphasized
through the evolution. On the other hand, it was not
important for the robot to consider the measure about
the overlapping degreefov directly.

4.3. Real experiments

We transfer the controller obtained in the computer
simulation to the real robot. A simple color image pro-
cessing (Hitachi IP5000) is applied to detect the ob-
jects in the image plane in real time (every 33 ms). In
order to simplify and speed up the image processing
time, we painted the ball, the own goal, and the oppo-

Fig. 4. Typical shooting behavior in the real environment.

nent goal in red, blue, and yellow respectively. There
is only one robot in the environment because of the
limitation of image processing to detect the opponent
robot.

Fig. 4 shows the preliminary result of the experi-
ments, that is, one sequence of images where the robot
accomplished the shooting behavior. As compared
with the behaviors based on our previous methods
[1,8], obtained behavior seems very smooth because
of mapping from the continuous sensor space to the
continuous action space. Our robot participated in the
competition of RoboCup 1999 and 2000 which were
held in Stockholm and Melbourne, respectively. The
evolutionary processes among different priority were
slightly different, but resultant performance were
almost same in this experiment.
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Although the real experiments are encouraging, still
there is a gap between the computer simulation and
the real system. In other words, simulations are neces-
sarily different from the real world. The best evolved
controllers obtained by computer simulation may not
work in the real world, and the best controllers for the
real world may do poorly in simulation. One solution
is to evaluate the algorithms using simulation based
on the data collected in the real world. In other words,
before the simulated evolution, the robot is run and
sensor data is collected. Then, the evolution is done
off-line in computer simulation. In Martin’s work[5],
they evolved a good vision filter to estimate the dis-
tance to the nearest object. Based on the estimated
distance, the robot could avoid obstacles effectively.
They reported good results in their own applications.
We plan to adopt this approach in the future.

5. Conclusion

This paper presented the adaptive fitness function
based on the changes of fitness through the evolu-
tion. In consideration of the correlation between mul-
tiple fitness measures, the weights for the combined
fitness function are updated. We applied the adaptive
fitness function method to the simplified soccer game,
and showed the validity of the proposed method. The
adaptive fitness function is used for more complicated
behavior acquisition problem[9].

As a future work, we try to apply our adaptive fit-
ness function to simultaneous evolution of multiple
robots. We have already reported how the multiple
robots could obtain the cooperative behaviors based
on GP with the fixed fitness function[8]. Now, each
robot utilize its own fitness to evaluate the behaviors.
In order to realize successful co-evolution, fitness of
other robots should be considered. This problem can
be also regarded as multiple objective optimization
problem, we think that we can apply our method into
co-evolutionary tasks.
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