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Abstract

This paper analyzes the problem of motion estimation from a sequence of stereo images. Two methods are considered and
their differential and discrete approaches are compared. The differential approaches use differential optical flow whereas the
discrete approaches use feature correspondences. Both methods are used to compute, first, the 3D velocity in the direction
of the optical axis and, next, the complete rigid motion parameters. The uncertainty propagation models for both methods
and approaches are derived. These models are analyzed in order to point out the critical variables for the methods. The
methods were extensively tested using synthetic images as well as real images and conclusions are drawn from the results.
Real images are used without any illumination control of the scene in order to study the behavior of the methods in strongly
noisy environments with low resolution depth maps.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The estimation of the 3D motion is a problem
extensively studied in computer vision. It is highly
related to the problem of 3D reconstruction. This de-
pendency can be found instructure from motionwhen
the 3D recovery is done with the estimated 3D motion
parameters, inmotion from structurewhen 3D motion
parameters are estimated using 3D structure informa-
tion and in the case when both motion and structure
are estimated together. There are several applications
of the 3D motion parameters. Some of them are: 3D
reconstruction, surveillance, tracking, obstacles de-
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tection and avoidance, object pose estimation, facial
and gesture recognition and many other.

This problem can be decomposed into several dif-
ferent sub-problems. First of all we can distinguish the
cases where motion is rigid, that is, we consider that
all 3D points or regions of 3D points move rigidly with
each other. Another problem is the case of non-rigid
motion where there are more than one independent
motion of points or regions of space. The problem of
the rigid motion is often equivalent to the problem of
ego-motion.

The case we want to analyze is rigid motion. This
problem is known to be a highly unstable regression
problem. For the solution of this problem several meth-
ods and algorithms have been used. In a first step it is
possible to classify them into: discrete methods, dif-
ferential methods and direct methods. All these classes
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of methods use temporal sequences of images. The
former class of methods is designated by discrete be-
cause they use a set of features and they assume the
correspondences of all features through time. On the
other hand, differential and direct methods, also called
area-correlation methods, use the induced motion in
images, the image velocities (often approximated by
the optical flow). The distinction between those classes
of methods is that the differential methods use directly
the optical flow and the direct methods use the tem-
poral and spatial gradients of scalar fields to estimate
the parameters of 3D motion without calculating ex-
plicitly the optical flow. Some of those scalar fields
are intensity images and/or depth fields.

There are some advantages and disadvantages to
each class of methods. There are in each class differ-
ent problems to solve. Regarding the discrete meth-
ods there is the important correspondence problem.
The computation of correspondence between features
is itself a wide field of research. The most used fea-
tures are corners, lines and edges. Despite the diffi-
culty in the correspondence problem, discrete methods
allow two consecutive images to have a higher dis-
placement from each other than differential and direct
methods. When this displacement is very small the
discrete methods tend to present serious problems in
triangulation. On the other hand, differential and direct
methods use the optical flow that, as is well known,
can be estimated with reasonable accuracy only when
the disparities of the sequence of images is small (not
more than some pixels in image). Those methods as-
sume in almost all cases that the brightness is constant
with respect to time. They are very sensitive to noise
and often numerically unstable.

The majority of the methods presented so far to re-
cover the 3D motion use monocular vision. However,
some methods use stereo systems to take advantage of
the great amount of information provided by a stereo
pair of images. Dynamic stereo systems are systems
where the pair of images is taken by the same camera
in different moments of time.

We are particularly interested in methods that use
stereo systems. In what concerns the discrete methods,
Roach and Aggarwal[29] showed that using the per-
spective projection model two images are sufficient to
recover 3D motion of a camera if a set of correspon-
dent points are given. Huang and Blostein[12] applied
an iterative technique based on least squares to recover

the 3D motion parameters using correspondence of
points in two images taken in different moments. Kim
and Aggarwal[17] used depth maps to take features
correspondences between lines to recover motion pa-
rameters. Weng et al.[39] constructed a locally con-
stant angular momentum model to the same objective.
Matthies and Shafer[23] used the relation between the
3D structure in two different moments of time. They
developed the uncertainty propagation models for the
estimation of the 3D structure and motion parame-
ters, from stereo correspondences. Another important
work was developed by Young and Chellappa[41] that
used a kinematic model to approximate the 3D mo-
tion parameters. They also used correspondences be-
tween image features. Lee and Kay[19] started from
correspondences between a static stereo pair (left and
right) and from correspondences in time to recover the
pose of objects. Zhang and Faugeras[42,43] use cor-
respondences between 3D lines in space to recover 3D
motion parameters (using a Kalman filter). Kanatani
[14] and Kanatani and Takeda[15] construct the es-
sential matrix to recover the 3D motion parameters
using renormalization. Recently, Demirdjian and Ho-
raud [6] used the projective geometry formalism to
split the image points into static points and dynamic
points and calculate at the same time the ego-motion
parameters. Those parameters are then used to recover
all independent objects motions.

Regarding the differential and direct methods, as
they are essentially the same, we will mention them
indistinctly. Richards[28] proposed in the early 1980s
the use of the differential flow (difference between
the left and right flow induced by the same 3D point
in both images) and the disparity to calculate the 3D
motion parameters, using an orthographic projection
model. This method was later proposed using a per-
spective projection model by Waxman and Duncan
[36], pointing the importance of the ratio between the
derivative of the disparity and the disparity itself to
establish stereo correspondences. Waxman and Sinha
[37] proposed another method that takes two dynamic
stereo images and the image flows to recover not only
the 3D motion parameters but also depth. This method
works well when the temporal disparity is negligible.
Sudhakar et al.[34] and Shieh et al.[32] propose a di-
rect method based on the gradients of the intensity im-
ages to estimate the same 3D motion parameters using
long sequences of stereo images. Wang and Duncan
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[35] extended those concepts to recover motion pa-
rameters of multiple objects. Stein and Shashua[33]
used another differential method to recover both the
3D motion and 3D structure based on the optical flow.
Harville et al.[10] used a brightness constraint and a
depth constraint to recover the 3D motion parameters
showing that often the depth constraint gives more ac-
curate results than the former since there is no sensi-
tivity to illumination problems. The depth fields were
known at starting point. Recently, Molton and Brady
[26] presented a method that tries to take all possi-
ble information from stereo and motion using several
combinations of stereo pairs: left and right cameras at
the same time, left camera with right camera in differ-
ent moments, etc. This method recovers the 3D motion
and 3D structure. Other differential and direct works
in stereo vision are[2,13,16,20,24,25,38,40].

Motion estimation has been studied mainly within
the framework of rigid body motion. However, in
robotics literature it is easy to find the motion estima-
tion problem also stated in a different way: the estima-
tion of the time-to-impact (TTI) or time-to-collision.

This quantity yields the time needed to impact with
the nearest obstacle if motion remains unchanged. It
can be computed with the expression TTI= Z/VZ [5],
whereZ is the depth of the nearest obstacle andVZ the
3D velocity of the vehicle in the depth (Z) direction.
Given the depth information the problem becomes the
estimation ofVZ. Notice, however, that the TTI can
be calculated without the depth information, using the
rate of expansion of the shape of an object[22].

In robotics applications it is very important to avoid
the collision with obstacles and TTI performs an im-
portant role in that matter. Physiological researchers
[4,27]stated that in the human (and animal, in general)
visual system the speed of self-motion cannot be de-
termined visually using only the optical flow pattern.
TTI, however, can be directly measured from the opti-
cal flow. There is, nevertheless, no general agreement
if human uses this strategy in avoiding collisions.

Colombo and Del Bimbo[5] point out that often the
TTI is confused with scaled depth (which considers
only the translational motion). This approximation is
reasonable when a narrow field of view is used but at
the image periphery gross estimation errors should be
expected. To avoid this model error, both translational
and rotational components of rigid body motion should
be considered.

This paper presents a study on two of the cited
methods. One of the methods, that was proposed by
Harville et al.[10], a differential method, uses a lin-
ear depth change constraint equation (DCCE), that is,
assumes a model for the change of the depth fields.
If depth measurements are available this method can
be applied to a sequence of monocular images, us-
ing the temporal and spatial derivatives of the depth.
Otherwise a sequence of stereo images can be used to
estimate both depth and ego-motion.

The second method analyzed in this paper was pro-
posed by Waxman and Duncan[36], and uses stereo
sequences to recover the 3D motion parameters. This
method uses the differential image flow between left
and right images to compute the motion parameters.
Both methods presented in a differential/direct formu-
lation are extended to a discrete approach.

The main goal is to compare the accuracy of those
methods to recover two quantities: the total tridimen-
sional velocity in theZ-direction (VZ) and the full set
of 3D motion parameters (φ). The estimation of the 3D
velocity in theZ-direction is a relevant problem for the
computation of time-to-collision[5], which is useful
for robotics navigation (although other methods that
do not need the computation ofZ can be used[22]).

This paper also analyzes those methods within the
scope of uncertainty propagation. Matthies and Shafer
[23] have also considered similar issues. Errors in the
variables used to computeVZ will inevitably introduce
uncertainty in their results. Even very small errors in
the optical flow and disparity information can produce
a high level of uncertainty in the values ofVZ andφ.
The aim of this analysis is to quantify the variance of
the computed values forVZ which provides a mean to
point out the critical input variables in the methods.
Those critical factors indicate which measurements
should be carefully done.

The robustness of the methods was also analyzed
as a function of the resolution in the depth esti-
mates, in structured indoor scenarios, without a priori
knowledge.

In the next section the motion estimation problem is
stated. Then the differential and discrete formulations
of both methods, for the computation ofVZ and φ,
are derived inSections 3 and 4. The uncertainty anal-
ysis is presented inSection 5and inSection 7the ex-
periments and results obtained are reported. The main
conclusions drawn are presented inSection 8.
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2. Motion estimation problem

The notations and geometry used throughout this
paper shall be first introduced, before the description
of the methods used to compute the partial and total
3D velocity.

A 3D point in space is represented by its coordinate
vectorP = [X, Y,Z]T and the world coordinate system
is coincident with the cyclopean coordinate system.
The cameras (with focalf ) are parallel to each other,
separated by the baselineb.

Fig. 1 shows the geometry of the stereo vision sys-
tem and the world coordinate system.

Rigid body motion is used. LetV be the total
3D velocity of pointP. Any rigid body motion can
be expressed by a translational component given by
t = [tX, tY , tZ]T and a rotational component given
by � = [ΩX,ΩY,ΩZ]T. The 3D velocity is then
V = t + � × P.

Computing the components of the total 3D velocity
V by expanding its equation, the following expression
is obtained:

V =


tX + ΩYZ − ΩZY

tY + ΩZX − ΩXZ

tZ + ΩXY − ΩYX

 =


VX

VY

VZ

 =


Ẋ

Ẏ

Ż

 .

(1)

In the differential approach, the image velocities, in-
duced in the image plane by a 3D point with motion,
are given byvl = (vl

x, v
l
y) for the left image and by

Fig. 1. World and stereo coordinate system.

vr = (vr
x, v

r
y) for the right image. Using the perspec-

tive projection model (x = f(X/Z), y = f(Y/Z)) to
project the total 3D velocity in the image plane, one
obtains

[
vx

vy

]
= f


d

dt

(
X

Z

)
d

dt

(
Y

Z

)
 =


f

(
Ẋ

Z
− X

Ż

Z2

)
f

(
Ẏ

Z
− Y

Ż

Z2

)
 .

(2)

SubstitutingEq. (1)into Eq. (2)the image flow for the
cyclopean coordinate system is obtained:

vx =
{
f
tX

Z
− x

tZ

Z

}
+

{
−xy

f
ΩX +

(
f + x2

f

)
ΩY − yΩZ

}
,

vy =
{
f
tY

Z
− y

tZ

Z

}
(3)

+
{
−

(
f + y2

f

)
ΩX + xy

f
ΩY − xΩZ

}
.

To compute the image flow equations for left and right
cameras(xl, yl) and(xr, yr) are used, instead of(x, y)
and the motion parameters for each camera. Those are
related to the cyclopean system motion parameters by
the following expressions:

�l = �r = �,

tl = t + � × 1
2(b)î, tr = t − � × 1

2(b)î.
(4)
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From the discrete standpoint, however, two points are
related in space by a linear transformation composed
by a rotation matrix (R) and a translation vector (T)
such that

P′ = R · P + T

⇔


X′

Y ′

Z′

 =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 ·


X

Y

Z

 +


t1

t2

t3

 ,

(5)

whereP is a 3D point at timet andP′ the same point
at time t′. In the discrete formulation the velocity of
a 3D point is approximated by the finite differences
between the point coordinates in timet′ andt, that is,
VZ = Z′ − Z.

In the next two sections, two methods to compute
the total 3D velocity along the optical axis (VZ) as well
as the estimation of the translational and rotational
components of motion are presented in two different
approaches: the differential and the discrete one.

3. Differential approach

In this section 3D motion estimation is considered
from a differential standpoint. The correspondences
across time are not known and the differential optical
flow is available (approximation of image velocities).

The computation of the third component of the total
3D velocity, VZ, instead of the computation of the
total 3D velocity, is important sinceVZ is used in
the computation of time-to-impact (TTI= Z/VZ).
This quantity is very important in robotics applications
and in navigation in particular. It is used mainly for
obstacle avoidance. Furthermore, it is easy to compute
VZ for each image point with one single equation.

In this section two methods to estimateVZ are
presented. Those methods are later extended for the
computation of the rigid motion parameters (φ). This
paper reviews those methods from previous papers.
For further details, see[7,8,10,36].

3.1. Estimation ofVZ—depth constraint

The depth change of a point or rigid body over
time is directly related to its velocity in 3D space.

This principle can be used to relate the velocity in the
optical axis with depth.

Consider a pointP = [X, Y,Z]T, which projects
into a point with coordinates(x, y) in the image plane
at a timet and in point(x+vx, y+vy) at a timet+1.
The depth at instantt + 1 should be the depth at the
instantt plus the amount of space that the point moved
along the optical axis,VZ. This relationship is given
by the following expression, the linear depth change
constraint equation—DCCE (see[7,8,10]):

Z(x, y, t) + VZ(x, y, t)

= Z(x + vx(x, y, t), y + vy(x, y, t), t + 1), (6)

whereZ(x, y, t) is the depth of the pointP at a given
time t andVZ(x, y, t) the total 3D velocity in the opti-
cal axis.vx(x, y, t) andvy(x, y, t) are the components
of the optical flow.

ApproximatingEq. (6)by a first-order Taylor series
expansion, the DCCE equation then reduces to

VZ = Zxvx + Zyvy + Zt. (7)

As mentioned by Harville et al.[10], often motion re-
covered with depth information is more accurate than
that recovered from the intensity images because it is
less sensitive to illumination and shading problems.

3.2. Estimation ofVZ—binocular flow constraint

The second method to compute theVZ is now in-
troduced. This is based on the differences between the
flows induced by the movement of a point in a stereo
pair of images[7,8,36]. The parallel stereo system is
again used and is considered to move rigidly with the
scene.

Consider a pointP = [X, Y, T ]T that projects in
both image planes as shown inFig. 2.

PointP in Fig. 2, its projection in each image plane
((xl, yl) and (xr, yr)) and the optical centers (Ol and
Or) define two similar triangles, so that we can write
the relationship

Z

b
= Z − f

b − (xr − xl)
. (8)

Computing its temporal derivative and rearranging the
terms, one obtains

VZ = −Z2

bf
�vx, (9)
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Fig. 2. Binocular triangulation.

which is the binocular flow equation, relating the total
3D velocity in the optical axis (VZ) and the binocular
image flow (DV).

3.3. Motion parametersφ—depth constraint

The six motion parameters (t and �) can also be
estimated. The DCCEequation (7)can be written in
the following form:

−Zt = [Zx,Zy]

[
vx

vy

]
− VZ. (10)

Taking the derivatives of the equations of the perspec-
tive projection with respect to time, substituting it in
Eq. (10)and usingEq. (1) it yields

−Zt =



f
Zx

Z

f
Zy

Z

−Z + xZx + yZy
Z

−f Zy − y

f
(Z + xZx + yZy)

f Zx + x

f
(Z + xZx + yZy)

xZy − yZx



T

· φ, (11)

whereφ is the vector with the six motion parameters
to be estimated.

All values on the left-hand side ofEq. (11)and in
the row vector are known or can be measured (focal
length, depth, depth derivatives with respect to time
and spatial coordinates and the spatial image coordi-
nates themselves). So there is an equation for each
point in the image.

Taking several points (more than six) an over-
determined linear system is obtained. This system can
be solved forφ with any minimization algorithm.

The system can be written by

bDCCE = HDCCEφDCCE, (12)

where each row is given byEq. (11)for each point.

3.4. Motion parametersφ—binocular flow constraint

The total 3D velocity in theZ-direction (VZ) can
be expressed as a linear equation on three of the six
parameters (Eq. (1)) and so it can be substituted in the
equation of binocular flow giving

tZ + ΩXY − ΩYX = −Z2

bf
�Vx (13)

⇔
[
�Vx

bf

]
=

[
− 1

Z2
,− y

f Z
,
x

Z

] 
tZ

ΩX

ΩY

 , (14)
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where 3D point coordinatesX andY were replaced
by their inverse perspective projection equations.

Eq. (14)allows the construction of a linear system
in the translational velocity along theZ-direction (tZ)
and in the rotational velocities on vertical and hor-
izontal axis (ΩX and ΩY—pan and tilt) using only
known variables (focal, differential image flow, depth
and image coordinates).

Actually, this is the solution for only half problem
since all six parameters should be estimated to com-
pletely recover the motion. For now the three param-
eters are the solution of the linear system given by

bDELTAV = HDELTAVφDELTAV (15)

To recover the remaining parameters, the use of the op-
tical flow given byEq. (3)is proposed. For each ima-
ge point, tlZ, Ωl

X, Ωl
Y (equal for all points) and the

image flow (vl
x, v

l
y) are known. Another linear sys-

tem can be defined to estimate the other three motion
parameters.

The six motion parameters are then estimated in a
two-step estimation algorithm: first, differential flow
and depth field are used to recovertZ, ΩX andΩY and
then these estimated parameters as well as monocular
flow and depth field are used to recover the remaining
parameters—tX, tY andΩZ.

Due to the two-step nature of the algorithm it is ex-
pected that the estimation of the first three parameters
is more accurate then the other three parameters since
these are estimated with data provided by the first es-
timation step.

This algorithm can be used to compute the motion
parameters of the left, right or cyclopean system which
are related byEq. (4).

4. Discrete approach

In this section the discrete versions of both methods
(to computeVZ) are presented and also a minimiza-
tion method to compute the motion parameters in the
discrete formulation using stereo data.

A discrete number of points is considered, and the
transformation between consecutive images should be
recovered using the relationship given inEq. (5).

In the continuous formulations of the DCCE and
DV methods it was assumed that the depth information
was available and so the disparity in timet andt′ − d

andd′. Feature correspondences are also available as
input of the methods.

4.1. Estimation ofVZ—discrete depth constraint

Instead of expanding the DCCEequation (6)around
the point(x, y, t), it is used the point(x, y, t′) in the
Taylor series expansion, yielding

Z(x, y, t) + VZ = Z(x, y, t′) + Zx(x, y, t
′)(x′ − x)

+Zy(x, y, t
′)(y′ − y). (16)

The DCCE equation in the discrete formulation is then
given by

VZ = Zt + Zx�x + Zy�y, (17)

whereZt = Z(x, y, t′) − Z(x, y, t).
In the discrete formulation of the DCCE equation,

the image velocities were replaced by the finite differ-
ences of the point image coordinates.

4.2. Estimation ofVZ—discrete binocular flow
constraint

For the formulation of the binocular flow constraint
equation for the discrete approach consider both the
disparities in timet andt′:

x′
r − x′

l = f
X′

r − X′
l

Z
= −f

b

Z′ = d′ (18)

and

xr − xl = f
Xr − Xl

Z
= −f

b

Z
= d. (19)

Calculating the difference between the two disparities
and re-grouping the terms, it yields

�Z = −ZZ′

bf
(d′ − d) (20)

and then the discrete binocular flow equation is given
by

VZ ≈ −ZZ′

bf
(d′ − d). (21)

4.3. Motion parametersφ—discrete formulation

ConsideringEq. (5) and expanding it, a relation
between discrete motion parameters (R and T) and
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the 3D points P and P′ is possible to establish,
given by

X′ − X = (r11 − 1)X + r12Y + r13Z + t1,

Y ′ − Y = r21X + (r22 − 1)Y + r23Z + t2,

Z′ − Z = r31X + r32Y + (r33 − 1)Z + t3.

(22)

Transforming that equation into an over-determined
system, matrixR and vectorT can be recovered by any
linear minimization method. Further constraints can be
used in order to enhance the accuracy of the estimation
(unit determinant and row–column orthogonality).

The translational and rotational velocities of the mo-
tion are expected to be recovered using the rotation
matrix and translation vector between the two refer-
ence frames.

Let [Ω]x be the anti-symmetric matrix of the rota-
tional velocity vector such that it can be written as

V(t) = d

dt
P(t) = t + [Ω]xP, (23)

which is a set of first-order differential equations inP.
The general solution ofEq. (23)is not straightfor-

ward. Often some restrictions are used to facilitate
the recovery of the solution. Zhang and Faugeras[43]
used the Rodrigues formula to prove that, assuming
that translational and rotational velocities are constant,
the trajectory of pointP is given by

P(t) = RP0 + Ut, (24)

where

R = I3 + sin(θ�t)

θ
[�]x + 1 − cos(θ�t)

θ2
[�]2x,

(25)

U = I3�t + 1 − cos(θ�t)

θ2
[�]x

+ θ�t − sin(θ�t)

θ3
[�]2x (26)

with θ = ‖�‖, �t = t − t0, I3 is the 3× 3 identity
matrix andP0 = P(t0).

The instantaneous approximation (see[11] for more
details) is used to obtain the rotational velocities, given
by

R ≈


1 −ΩZ�t ΩY�t

ΩZ�t 1 −ΩX�t

−ΩY�t ΩX�t 1

 . (27)

Adiv [1] stated that this approximation is valid only if
two conditions are met. First, the translational velocity
in theZ-direction has to be small in relation to the dis-
tance of the scene to the reference frame (tz�t � Z)
and, second, thex- andy-components of the rotation
must be small relative to the imaging geometry, that
is, the field of view has to be narrow (∀x |xΩY�t| �
f and∀y |yΩX�t| � f ). These conditions are sim-
ilar to those of the weak perspective but they are not
the same, i.e., if the weak perspective conditions are
verified then these conditions are also verified. The
reverse may not be true.

ConsideringEq. (24)one concludes that the trans-
lational motion parameters are given by

t = U−1 · T, (28)

whereU is given byEq. (26)andT is the result of the
linear regression algorithm ofEq. (22).

5. Uncertainty propagation

Given the two models forVZ, both in the differential
and discrete approaches, the uncertainty propagation
in the equations due to uncertainty in the data inputs is
important to analyze. From this analysis, it is possible
to determine the critical independent variables that in
presence of uncertainties affect the recovery of motion.

The first step is to define the independent variables
for each expression:

VZ1(Zx, Zy, Zt, vx, vy) = Zt + Zxvx + Zyvy,

VZ2(Z, v
l
x, v

r
x) = −Z2

bf
�vx,

VZ3(Zx, Zy, Zt, x, y, x
′, y′) = Zt + Zx�x + Zy�y,

VZ4(Z,Z
′, d, d ′) = −ZZ′

bf
(d ′ − d),

(29)

where the geometric parameters were assumed to be
known, that is, the baseline and the focal length.

Any noise in the values of the disparity maps, depth
data, their temporal and spatial derivatives and in the
binocular image flows will affect the computation of
VZ.

To study the uncertainty propagation the covariance
matrix of an expression that depends on an input vari-
able vector is computed. LetF be the function vector
to be estimated andS the vector with the independent
variables. ConsiderS an n-vector random variable
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and F an m-vector random variable function of the
n-vectorS. Notice that the relation betweenF andS
is in general nonlinear. Considering the mean point
of the random variables, and using a first-order ap-
proximation, the covariance matrix� of the function
vectorF [14] can be written as

� = ∂F
∂S

T

· � · ∂F
∂S

, (30)

where� is the covariance matrix of the input vari-
ablesS. ∂F/∂S is the Jacobian matrix that maps vector
S to F.

It is assumed that all variables are affected by
Gaussian random white noise with zero mean and
standard deviationσi, where i denotes the variable.
Independent noise in the variables is also assumed so
that the covariance matrix for this input signalS is
given by

Λjk =
{
σ2

ii for j = k,

0 for j �= k.
(31)

In this study depth is computed from the disparity
with Z = bf/d and so the uncertainty analysis will
be within the scope of the disparity and optical flow
(differential and/or discrete). TheVZ expressions
depend on depth and on the temporal and spatial
gradients of depth. So, before analyzing each equa-
tion, the uncertainty propagation in depth will be
derived:

σ2
ZZ = ∂Z

∂d
· σ2

dd · ∂Z
∂d

= Z4

(bf)2
· σ2

dd. (32)

For the gradients of depth relative to the variablei

(i ∈ {x, y, t}), one obtains

Zi = ∂

∂i

(
bf

d

)
= − bf

d2
· di, (33)

so that

σ2
ZiZi

=
[
∂Zi

∂d
,
∂Zi

∂di

]
·
[
σ2

dd 0

0 σ2
didi

]
·


∂Zi

∂d

∂Zi

∂di

 .

(34)

The depth gradients covariance expressions become

σ2
ZiZi

=
(

2bf

d3
di

)2

· σ2
dd +

(
bf

d2

)2

· σ2
didi

. (35)

It is possible now to focus the attention on the expres-
sions ofVZ for both the DCCE and DV methods.

5.1. Depth constraint—differential

For the first expressionF1 = [VZ] and S1 =
[Zx,Zy, Zt, vx, vy]T.

Independent noise in the variables is also assumed,
so the covariance matrix for this input signalS1 is
given by

�1=



σ2
ZxZx

· · · 0

σ2
ZyZy

... σ2
ZtZt

...

σ2
vxvx

0 · · · σ2
vyvy


. (36)

Eq. (30)is used to compute the covariance matrix of
the function vector. It yields

�1 = [vx, vy,1, Zx, Zy]�1



vx

vy

1

Zx

Zy


. (37)

The resulting covariance matrix is a scalar matrix
given by the expression

�1 = σ2
ZxZx

v2
x + σ2

ZyZy
v2
y + σ2

ZtZt

+ σ2
vxvx

Z2
x + σ2

vyvy
Zy (38)

showing the dependencies on the variances ofZi (i ∈
{x, y, t}). SubstitutingEqs. (33) and (35)into Eq. (38)
it yields

�1 = σ2
VZVZ,1

=
(

2bf

d3

)2

(d2
xv

2
x + d2

yv
2
y + d2

t )σ
2
dd

+
(

bf

d2

)2

(v2
xσ

2
dxdx

+ v2
yσ

2
dydy

+ σ2
dtdt

)

+
(

bf

d2

)2

(d2
xσ

2
vxvx

+ d2
yσ

2
vyvy

). (39)
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5.2. Binocular flow constraint—differential

Using a similar reasoning for the second method
the following is obtained:

S2 =


Z

vl
x

vr
x

 , (40)

�2 =


σ2

ZZ 0 0

0 σ2
vl
xv

l
x

0

0 0 σ2
vr
xv

r
x

 (41)

and the Jacobian matrix is then

∂F2

∂S2
=

[
−2Z

bf
�vx,−Z2

bf
,
Z2

bf

]
. (42)

The covariance matrix of the function vector, after
arranging the terms, is then

�2 = 4VZσ
2
ZZ + Z4

(bf)2
(σ2

vl
xv

l
x
+ σ2

vr
xv

r
x
) (43)

and substitutingEq. (35)into Eq. (43)it is obtained

�2 = σ2
VZVZ,2

= (2bf)2

d6
(�vx)

2σ2
dd + (bf)2

d4
(σ2

vl
xv

l
x
+ σ2

vr
xv

r
x
). (44)

5.3. Depth constraint—discrete

In this case the independent variables vectorS3 is
given by

S3 = [Zx,Zy, Zt, x, y, x
′, y′]T. (45)

The Jacobian matrix is straightforward in this function.
The covariance matrix dependent on the depth is then
given by

�3 =
(
∂F3

∂S3

)T

�3

(
∂F3

∂S3

)
= σ2

ZxZx
(x′ − x)2 + σ2

ZyZy
(y′ − y)2 + σ2

ZtZt

+ (σ2
xx + σ2

x′x′)Z2
x + (σ2

yy + σ2
y′y′)Z2

y (46)

and substitutingEqs. (33) and (35)into Eq. (46)it is
obtained

�3 = σ2
VZVZ,3

=
(

2bf

d3

)2

(d2
x(�x)2 + d2

y(�y)2 + d2
t )σ

2
dd

+
(

bf

d2

)2

· [(�x)2 · σ2
dxdx

+ (�y)2 · σ2
dydy

+ σ2
dtdt

+ d2
x(σ

2
xx + σ2

x′x′)

+ d2
y(σ

2
yy + σ2

y′y′)]. (47)

5.4. Binocular flow constraint—discrete

Using the same reasoning, the independent variables
vector for the discrete binocular flow method is

S4 = [Z,Z′, d, d′]T. (48)

Calculating the Jacobian matrix and substituting in the
first-order approximation of the covariance matrix of
F4, it yields

�4 =
(

1 − d

d′

)2

σ2
ZZ +

(
d′

d
− 1

)2

σ2
Z′Z′

+ Z2Z′2

(bf)2
(σ2

dd + σ2
d′d′) (49)

and putting togetherEqs. (35) and (49)it yields

�4 = σ2
VZVZ,4 =

(
bf

d2

)2

· σ2
dd+

(
bf

d′2

)2

· σ2
d′d′ . (50)

5.5. Resolution of depth data

The uncertainty due to random noise in the input
variables strongly affects the accuracy of the estima-
tion ofVZ. Besides that, the finite resolution of the dis-
parity maps can be one important source of error and
affects even more theVZ estimation accuracy.Fig. 3
shows how the resolution of the disparity can gener-
ate uncertainty in the position of a 3D point, mainly
in the depth coordinate (since the uncertainty regions
are elongate in the depth direction).

The software used to obtain the disparity fields has a
finite resolution of 1/16 of pixel. So, some changes in
the real depth of a point do not produce any change in
the disparity and since depth is inversely proportional
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Fig. 3. Effect of finite resolution of disparity maps in depth.

to the disparity its value is calculated with decreasing
resolution as the value of the depth itself increases.

Let �d be the minimum change in disparity. Then
for the minimum change in depth to produce change
in disparity we have

Z = bf

d

→ �Z = − 1

1 + (d/�d)
· bf

d

= − 1

1 + (d/�d)
· Z, (51)

Eq. (51)indicates that, for close objects, small changes
in depth cause significant changes in the disparity and
that for distant objects only big changes in depth pro-
duce changes in the disparity.

So, consider a realistic situation:b = 130, f =
5 mm,�d = 1/16 px and the pixel width pw= 0.012
mm. In that particular case, for example (the disparity
is in pixels and the depth is in mm), it is obtained:

• d = 1 → Z = 54 167→ �Z = −3186 mm;
• d = 5 → Z = 10 833→ �Z = −133.7 mm;
• d = 10 → Z = 5417→ �Z = −33.7 mm;
• d = 20 → Z = 2708→ �Z = −8.4 mm;
• d = 50 → Z = 1083→ �Z = −1.4 mm.

However, if the resolution lowers to 1/4 px, for the
same case one obtains:

• d = 1 → Z = 54 167→ �Z = −10 833 mm;
• d = 5 → Z = 10 833→ �Z = −515.9 mm;
• d = 10 → Z = 5417→ �Z = −132.1 mm;
• d = 20 → Z = 2708→ �Z = −33.4 mm;
• d = 50 → Z = 1083→ �Z = −5.4 mm.

It can be seen that the low resolution in dispar-
ity/depth data can produce large errors with increasing
distance to the optical center of the camera. This fact
will produce significant errors in the computation of
depth field gradients mainly for small motion between
two consecutive frames. This also means that it will
be difficult to recover motion for distant points.

The perturbation caused by rounding/quantization
error (limited resolution) is given by the following
equation[31]:

σ2
dd = step2

12
(52)

where step is the minimum increment due to finite
resolution.

5.6. Discussion

To analyze quantitatively the uncertaintyequations
(39), (44), (47) and (50), we constructed a synthetic
world (for details, seeSection 7.1andFig. 4that shows
the left and right images of a synthetic stereo pair and
the corresponding disparity map).

This world was projected into two equal cameras
mounted in a virtual navigation robot with baseline
130 mm, focal length 5.0 mm, square pixels with side
of 0.012 mm. The virtual robot performed several
paths (translational, rotational and mixed paths) and
the data stored includes: left and right images, dispar-
ity in high resolution (map of floats) and continuous
and discrete image velocities (in high resolution).

Given the disparity maps, their spatial and temporal
gradients and the continuous and discrete velocities,
the uncertainty for each point can be computed using
the uncertainty equations as a function of the variance
of the input variables.

For that purpose the following assumptions are
made: the variances of the differential and discrete im-
age velocities are equal in bothx- andy-coordinates
(σ2

vv = σ2
vl
xv

l
x

= σ2
vl
yv

l
y

= σ2
vr
xv

r
x

= σ2
vr
yv

r
y
) and the same

holds for the discrete velocities and for the gradients
of the disparityσ2

didi
= 0.5σ2

dd because the deriva-
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Fig. 4. Intensity images and disparity field for synthetic world.

tives of the disparity maps are approximated by a
finite differences equation (for example,dt(x, y, t) ≈
0.5d(x, y, t + 1) − 0.5d(x, y, t − 1)).

The uncertainty propagation equations are then
given by

�j = Coefj disp · σ2
dd + Coefj vel · σ2

vv, (53)

wherej ∈ {1,2,3,4} represents one of the methods
(DCCE/DIF, DV/DIF, DCCE/DISC and DV/DISC, re-
spectively). Coefj disp and Coefj vel are the weights of
the disparity and velocities due to random noises, re-
spectively.

From the variance equations of all expressions it
is clear that depth is one of the most important fac-
tors.Fig. 5plots the variance value forEq. (39)where
darker points represent values with low variance and
lighter points have high variance (saturation for values
equal to and above 3000 mm2). It can be seen that far-
ther objects have higher variances. The corresponding

Fig. 5. Variance distribution for�1. The quantization error for a
resolution of 1/4 px (σ2

dd = σ2
vv = 0.0052) was used.

representations of uncertainty equations�2 to �4 are
not presented since they are similar to the one shown.

To see more explicitly the relation between the un-
certainty coefficients and the depth of the points used
to computeVZ, Fig. 6 plots these uncertainty coeffi-
cients when a sphere is moved from 2.5 to 5 m with
the same motion conditions.

Fig. 6 plots the coefficients ofEq. (53) in two
groups: (a) all coefficients that increase highly with
the depth and (b) all coefficients that grow much more
slowly with the increase of the depth. All coefficients
in Fig. 6(a) have very close values in such a way that
its distinction is difficult and the same happens with
coefficients Coef1 vel and Coef3 vel in Fig. 6(b). Ad-
ditionally, the scales ofFig. 6(a) and (b) differ three
orders of magnitude. Thus it is possible to point out
which is the critical factor for each method.

We conclude that, for the DCCE method, both in
the differential and in the discrete formulations, the
critical factor is the disparity (Coef1 disp � Coef1 vel
and Coef3 disp � Coef3 vel). The uncertainty coeffi-
cients increase as the uncertainty in the disparity itself
increase.

For the DV method, however, the two formula-
tions have distinct behaviors. For the differential
one, the critical factor is the uncertainty on veloci-
ties (Coef2 vel � Coef2 disp) and for the discrete one
the critical factor is the uncertainty on the disparity
(Coef4 vel = 0). The former approach presents an
increase in the uncertainty coefficients as velocities
increase. On the other hand, in the case of the discrete
approach, the corresponding coefficients decrease
their values.

In the DCCE method as well as in the DV method
(in both approaches), the critical factor coefficients
were always higher than the other ones (between one
and five orders of magnitude).
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Fig. 6. Uncertainty coefficients ofEq. (53)—depth effect. All coefficients in (a) are almost coincident and they are separated from (b) since
they increase much more quickly than those in (b). The indices 1, 2, 3 and 4 refer, respectively, to the methods DCCE/DIFF, DV/DIFF,
DCCE/DISC and DV/DISC.

It was also observed that the 3D point depth relative
to the cameras is very important to the uncertainty
coefficients. Those coefficients increase with a high
power (between 2 and 4) of the depth coordinate, so
farther objects have much higher uncertainty which
suggests that theVZ is more accurate when closer
points are used.

6. Estimation methods

In this section two methods used to estimate mo-
tion parameters are presented. Consider the following
equation:

yi = xi1φ1 + · · · + xipφp + ei for i = 0, . . . , n,

(54)

wheren is the total number of observations, the vari-
ablesxi1, . . . , xip are called explanatory variables and
yi is called the response variable.ei represents the error
of the observation and is assumed to have a Gaussian
distribution of zero mean, and standard deviationσ.
The explanatory and response variables are measured
values in several observations. One wants to estimate
the unknown parameters vectorφ.

Let φ̂ be the best estimated parameters vector and
ŷi the estimated response variable calculated using the
estimated parameters. It is possible to construct the
equation

ŷi = xi1φ̂1 + · · · + xipφ̂p. (55)

The main task is to best estimate the parameters vector
φ using some criterion.

6.1. Least squares

The most used criterion is to minimize the sum of
least squares, given by the equation

Minimize
φ̂

n∑
i=1

(yi − ŷi)
2. (56)

If the problem is in the form ofEq. (12)or (15) (b =
Hφ) andH is over-determined, it can be shown that
mathematically the solution for least squares criterion
is given by

φ̂ = (HTH)−1HTb. (57)

This estimator is the most used since its solution is
very simple and fast to compute usingEq. (57). How-
ever, its main problem is the behavior in the presence
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of strong noisy measurements. The estimated solution
is the one that minimizes the residuals (square of the
difference between the response variable and the esti-
mated response). If there are some observations with
very strong deviation (called outliers) the estimated
parameters will be truly affected. For a complete study
on this estimator and many others, see[30].

6.2. Least median of squares

The breakdown point of an estimator is the smallest
fraction of contamination data that can cause the es-
timator to take on values arbitrarily far from the true
value. In other words, the breakdown point of an es-
timator is the fraction of data that can contain strong
error without strongly affecting the estimated parame-
ters. Obviously, the estimator is better if its breakdown
point is higher.

The least squares estimator has a 0 breakdown point
since one sole bad observation can cause the estimated
parameters to be very bad. Thus one looks for an esti-
mator with the highest possible breakdown point (0.5).
Rousseeuw and Leroy[30] proposes the least median
of squares estimator with a breakdown point of 0.5,
given by

Minimize
φ̂

{median
i

(yi − ŷi)
2}. (58)

This estimator also provides a mean to detect the out-
liers and to reject them. Although its algorithm is very
simple, the computation time is much higher than the
least squares estimator.

Suppose there aren observations andp explanatory
variables. The minimum number of observations to
get a vector estimate isp. So, try all combinations
of p observations and get the estimated vectorφ̂—
possibly usingEq. (57). Compute for all observations
the estimated response and calculate the median of
the obtained squared error (Eq. (58)). The best vector
of estimated parameters is the one that minimizes the
median of squares.

The total number of trials to compute is the com-
binationsCp

n which increases very fast withn andp.
This is impracticable to do to some values ofn. So,
Rousseeuw and Leroy[30] propose that in big sys-
tems it can be taken a certain number of random sets
of p observations and chose the one that minimizes
the median of squares. This numberm of sets of ob-

servations to try can be calculated using the following
equation:

P = 1 − (1 − (1 − ε)p)m, (59)

whereP is the probability of at least one of the random
sets be “good” and so the estimated vector is “good”,
that is, unaffected by noise.ε represents the maximum
fraction of data affected by noise (at most 0.5).

This parameterm is then a trade off between the
quality of the solution and velocity of the algorithm.
Its value should depend on these two criteria.

As expected, the least median of squares (LMS) es-
timator, produced, in our experiments, more accurate
results than the first presented—least squares (LS).

7. Experiments and results

Two groups of experimental tests were performed.
First synthetic images were used to analyze the per-
formance of both methods. Several sensitivity tests
were done measuring the accuracy of the estimation
of VZ andφ, by changing the resolution of the dispar-
ity/depth fields, by adding noise to the disparities and
velocities, and by changing the displacement from im-
age to image, in order to identify the critical variables
for both methods (in both the differential and discrete
approaches).

The second group of experiments was done with
real images obtained with known motion parameters.

For both groups of experiments, several paths, in-
cluding translational, rotational and mixed paths were
considered.

For reasons of lack of space only the main results
and conclusions will be reported. Extensive testing,
results and further details are described in the technical
report[9].

7.1. Synthetic sequences

To generate the synthetic images a virtual world was
designed. This virtual world consisted of a ground,
a front wall, left and right walls and two objects in
the middle of the scenario. Using a stereo pair of vir-
tual cameras every point was projected in the image
planes. Their disparities and image flows (differential
and discrete) were also computed and saved.Fig. 4
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Table 1
Motion parameters for the synthetic sequences

Sequence tX tY tZ ΩX ΩY ΩZ VZ

A 0.0 0.0 −5.0 0.0 0.0 0.0 −5.0
B 0.0 0.0 0.0 0.0 −0.25 0.0 0.25X
C 10.0 −10.0 −15.0 0.1 0.1 0.0 −15.0 + 0.1(Y − X)

shows an example of the intensity and disparity im-
ages obtained.

The stereo system motion is made up of sequences
with only translational velocity along the optical
axis (Z-direction) and also combined with trans-
lational components along the other two axis and se-
quences with rotational motion over the vertical and
horizontal axis (Y - and X-directions—pan and tilt
motion). There are also some sequences with com-
bined translational and rotational motion. The mo-
tion parameters of the three sequences here reported
are listed inTable 1. The true value ofVZ is also
presented.

Concerning the methodology used to study the
accuracy of theVZ andφ estimation, six sensitivity
tests were performed:

• Displacement between two consecutive images, that
is, the amplitude of the velocity vector. The parame-
ter STEP (in the set{1,2,4,8,16,32}) corresponds
to a factor applied to the velocity vector. It is ex-
pected to study the influence of the velocities am-
plitude in the estimation accuracy.

• Disparity resolution. The parameter used, ROUND,
represents the number of resolution steps between
two consecutive integer values. ROUND is in the
set {∞,32,16,8,4}, where∞ represents the infi-
nite resolution (since in programming languages the
infinite value is not trivial, the ROUND value was
substituted by zero, representing infinite resolution).

• Noise added to the disparity data. The parameter
STD DISP is the standard deviation of the random
white noise with zero mean added to the disparity
data (before the disparity is rounded off). The values
used are in the set{0,1/16,1/8,1/4,1/2}.

• Noise added to the differential image flows. The
parameter STDVEL is the standard deviation of
the random white noise with zero mean added to
the differential image flow data. The values used

are in the set{0, 1/16, 1/8, 1/4, 1/2}. This study
is performed only in the differential approach.

• Noise added to the discrete image flows. The
parameter STDTRACK is the standard deviation
of the random white noise with zero mean added to
the discrete image flow data (feature tracking). The
values used are in the set{0,1/16,1/8,1/4,1/2}.
This study is performed only in the discrete
approach.

• Number of features. The parameter FEATURES
represents the number of features tracked through
the stereo sequence and used in theVZ and
φ computation. The values used are in the set
{27,29,211,213}. This study is performed only in
the discrete approach.

The accuracy analysis ofVZ is based on the mean
value of the relative error computed in all points where
VZ is estimated through the image sequence (sev-
eral points in several images). This measure, which is
called ERM, allows the comparison of both methods.
In the estimation of the motion parametersφ, however,
only one value is computed for each frame (since each
point adds a restriction to the over-determined linear
system ofequations (12) and (15). The values com-
puted forφ are valid to all points in the scene. The
ERM, in the complete motion parameters estimation,
is thus the mean of that value for all frames of the se-
quence. When the motion parameter is zero, the mean
of the absolute error (EAM) is computed instead of
the relative error.

The relative mean error (ERM) values obtained for
sequence C are plotted inFigs. 7–9, for theVZ and
φ estimation. The following acronyms are used—
DCCE: depth constraint method; DV: binocular flow
method; DIFF: differential approach; DISC: discrete
approach.

Fig. 7 shows that the critical factors for each for-
mulation of the method are in accordance with those
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Fig. 7. Relative mean error ofVZ for synthetic sequence C—sensibility analysis. The amplitude of the velocity of the camera is given
in number of focal lengths per frame, the disparity resolution is given in pixels (Inf. means floating point resolution) and the standard
deviation of the noise added to the disparity and to the velocities is given in pixels. Sequence C motion parameters are given inTable 1.

pointed out by the uncertainty analysis. It can be seen
that the estimation error ofVZ tends to increase for
slow velocities (one or two focal lengths per frame)
and slightly increase for much higher velocities (more
than eight focal lengths per frame). For the resolution
sensibility test the estimation error increases for all
methods as was expected. This error increase occurs
mainly for the discrete approach of the DV method.
In what concerns to the noise added to the disparity

and to the velocities, the behavior is as was expected:
the discrete approach of the DV method is very sensi-
tive to the noise added to the velocities (seeFig. 7(d))
and almost insensitive to the noise added to the dis-
parity although all other methods are sensitive to the
noise added to the disparity (seeFig. 7(c)) and almost
insensitive to the noise in the velocities.

Figs. 8 and 9plot the tZ, ΩX and ΩY estima-
tion error for the amplitude of velocities sensibility
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Fig. 8. Relative mean error ofφ for synthetic sequence C—sensibility analysis in the magnitude of velocities (a)–(c) and disparity resolution
(d)–(f). The magnitude of the velocities is given in number of focal lengths per frame and the disparity resolution is given in pixels (Inf.
means floating point resolution). Sequence C motion parameters are given inTable 1.
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Fig. 9. Relative mean error ofφ for synthetic sequence C—sensibility analysis in the noise added to the disparity (a)–(c) and velocities
(d)–(f). The standard deviation of the noise added to the disparity and to the velocities is given in pixels. Sequence C motion parameters
are given inTable 1.
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Fig. 10. Stereo head attached to a manipulator.

analysis (Fig. 8(a)–(c)), resolution sensibility analysis
(Fig. 8(d)–(f)), noise in disparity sensibility analysis
(Fig. 9(a)–(c)) and noise in the velocities sensibility
analysis (Fig. 9(d)–(f)). It can be seen that the error is
much smaller in the estimation oftZ than in the es-
timation of the rotational velocitiesΩX andΩY and
that the same behaviors observed in the estimation of
VZ can be here observed.

7.2. Real sequences

The acquisition of the real stereo image sequences
was made using a stereo head mounted on an Eshed
manipulator (seeFig. 10) with precision of 0.1 mm in
the translational movements and 0.1◦ in the rotational
movements. The manipulator permitted five degrees of
freedom—translation over all three axes and rotation
over theX- and Y -axes. The manipulator does not
allow rotation around theZ-axis.

Fig. 11. Intensity images and their disparity map for the real world.

Table 2
Motion parameters for the real sequences

Sequence tX tY tZ ΩX ΩY ΩZ VZ

A 0.0 0.0 0.0 0.0 −0.25 0.0 0.25◦ · X
B 0.0 0.0 0.0 0.0 −0.5 0.0 0.5◦ · X
C 0.0 0.0 0.0 0.0 −1.0 0.0 1◦ · X
D 0.0 0.0 0.0 0.0 −2.0 0.0 2◦ · X
E 0.0 0.0 1.0 0.0 0.0 0.0 1.0
F 0.0 0.0 5.0 0.0 0.0 0.0 5.0
G 0.0 0.0 10.0 0.0 0.0 0.0 10.0
H 0.0 0.0 20.0 0.0 0.0 0.0 20.0
I 0.0 0.0 40.0 0.0 0.0 0.0 40.0
J 0.0 5.0 10.0 0.0 0.0 0.0 10.0
L 0.0 10.0 20.0 0.0 0.0 0.0 20.0
M 0.0 5.0 5.0 0.0 −0.25 0.0 5.0 + 0.25 · X

The disparity data was calculated by a commer-
cial algorithm—SVS[18]—which produces disparity
maps with resolution of 1/16 px. To compute the opti-
cal flow, a well-known algorithm (Lucas–Kanade) was
used[3,21]. The scene was structured without light
and shadows control. It was composed of two front
walls and some objects.Fig. 11shows a stereo pair of
real images as well as their disparity map.

The report of the results in this section is similar to
that presented in the previous one. It is based on the
ERM and EAM. Furthermore, the standard deviation
(STD) of the estimated results distribution is used.

The motion parameters as well as the true value of
VZ for each sequence used is summarized inTable 2.

In the differential approximation, the results ob-
tained forVZ are reported inTable 3and the results
obtained forφ are reported inTables 4 and 5.

Concerning the estimation ofVZ, it can be con-
cluded that the path is very important in the accuracy
obtained. For translational paths it is possible to ob-
tain VZ with relative errors of about 10–30%, using
low resolution disparity maps. In the rotational paths,
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Table 3
Estimation ofVZ—real sequences: differential approacha

Estimated value True value ERM (%) STD (%)

DCCE DV DCCE DV DCCE DV

A – – – 586.98 3010.7 1898.5 8178.7
B – – – 216.85 1573.8 574.38 5024.4
C – – – 290.18 1698.0 782.49 4990.3
D – – – 230.60 722.29 560.62 2204.5
E 0.556 1.048 1.0 −44.39 4.75 1715.6 714.22
F 5.491 8.022 5.0 9.82 60.45 250.51 211.29
G 6.520 10.391 10.0 −34.80 3.91 182.69 110.53
H 12.763 17.374 20.0 −36.18 −13.13 182.83 85.36
I 40.765 34.918 40.0 1.91 12.71 128.47 102.15
J 10.427 16.043 10.0 4.27 60.43 138.94 153.78
L 21.621 27.251 20.0 8.10 36.26 83.09 116.79
M 3.097 3.549 ≈5.0 −38.06 −29.03 4159.1 4413.0

a The image sequences A–D are rotational sequences, E–L translational sequences and sequence M both rotational and translational.
ERM represent the relative mean error of the estimation ofVZ and STD is the measured standard deviation of the estimation. There is
no estimated value and true value in rotational sequences sinceVZ varies from point to point. All estimated values and true values are in
mm/frame. Error and standard deviation are in percentage. Sequence motion parameters are given inTable 2.

however, the estimation results are very poor. The
depth constraint method (DCCE) presents slightly
better results than the binocular flow method (DV)
in translational and mixed paths and, although poor,
much better results in rotational paths.

The VZ standard deviation is almost always very
high. This is a relevant fact since it suggests that when
computingVZ, a high number of measurements may
be necessary to allow for a decrease in the standard
deviation.

Table 4
Estimation ofφ—real sequences—rotational sequences: differential approacha

tX tY tZ ΩX ΩY ΩZ

A Exact 0.0 0.0 0.0 0.0 −0.25 0.0
DCCE 249.90 15.01 0.67 0.041 −0.160 0.069
DV 12.10 2.79 −0.15 0.074 −0.224 −0.038

B Exact 0.0 0.0 0.0 0.0 −0.50 0.0
DCCE 258.62 57.05 −1.81 −0.018 −0.124 16.936
DV −24.81 −72.52 −5.49 −2.455 0.860 −0.128

C Exact 0.0 0.0 0.0 0.0 1.00 0.0
DCCE −621.67 −99.28 2.86 0.842 0.786 −16.819
DV −10.76 −58.70 −4.26 −1.352 0.208 0.531

D Exact 0.0 0.0 0.0 0.0 2.00 0.0
DCCE −222–20 0.0 11.05 0.606 −0.187 −0.781
DV −45.91 −36.72 −13.70 −0.889 1.159 0.488

a All translational velocities are measured in mm/frame and rotational velocities in degrees/frame. Sequence motion parameters are
given in Table 2.

For the computation of the complete motion param-
eters,φ, which is a multi-linear regression problem,
there are numerical instability problems for the pa-
rameterstX, tY andΩZ due to ill-conditioning of the
observation matrix. On the other hand, it is possible to
estimate with reasonable accuracy the other three pa-
rameters (tZ, ΩX andΩY ). The parametertZ, which
represents the translational motion in the depth direc-
tion is the parameter with best estimation values. The
DCCE method is again the best one.
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Table 5
Estimation ofφ—real sequences—translational and mixed sequences: differential approacha

tX tY tZ ΩX ΩY ΩZ

E Exact 0.0 0.0 −1.0 0.0 0.0 0.0
DCCE −9.66 6.23 −0.71 −0.003 −0.013 2.096
DV −4.32 −0.45 −1.77 −0.015 0.083 0.008

F Exact 0.0 0.0 −5.0 0.0 0.0 0.0
DCCE −30.41 21.64 −4.11 −0.018 0.038 0.696
DV −4.88 −8.41 −7.12 −0.194 0.126 0.173

G Exact 0.0 0.0 −10.0 0.0 0.0 0.0
DCCE −27.60 1.05 −6.14 −0.006 −0.013 2.275
DV −7.41 −1.88 −10.73 −0.085 0.207 0.045

H Exact 0.0 0.0 −20.0 0.0 0.0 0.0
DCCE −99.25 −70.17 −12.78 0.067 −0.071 4.660
DV −31.39 10.60 −18.86 0.234 0.874 −0.122

I Exact 0.0 0.0 −40.0 0.0 0.0 0.0
DCCE −118.76 −130.54 −38.49 −0.515 0.020 −0.252
DV −110.39 −6.64 −40.00 −0.303 2.344 −0.148

J Exact 0.0 5.0 −10.0 0.0 0.0 0.0
DCCE −42.65 86.22 −10.16 −0.115 0.042 1.574
DV −5.78 −28.29 −15.86 −0.475 0.141 0.228

L Exact 0.0 10.0 −20.0 0.0 0.0 0.0
DCCE −243.77 351.56 −19.41 −0.215 −0.029 22.193
DV −61.79 −61.04 −28.10 −1.068 1.333 1.030

M Exact 0.0 5.0 −5.0 0.0 0.25 0.0
DCCE −296.22 78.99 −5.94 −0.140 0.130 −8.490
DV 25.71 110.80 8.35 2.436 0.702 −1.122

a All translational velocities are measured in mm/frame and rotational velocities in degrees/frame. Sequence motion parameters are
given in Table 2.

Table 6
Estimation ofVZ—real sequences: discrete approacha

Estimated value Real value ERM (%) STD (%)

DCCE DV DCCE DV DCCE DV

A – – – 775.11 2599.6 2296.3 6407.0
B – – – 376.49 1011.5 1012.6 2550.2
C – – – 396.40 751.63 1012.9 1806.6
D – – – 210.73 514.37 474.67 1207.8
E 0.823 3.131 1.0 −17.68 213.08 1220.5 649.67
F 5.205 6.437 5.0 4.09 28.73 225.14 130.09
G 6.547 6.824 10.0 −34.53 −31.77 156.48 54.29
H 12.991 13.532 20.0 −35.04 −32.34 176.97 64.05
I 43.513 43.034 40.0 8.78 7.58 123.43 37.45
J 11.395 11.121 10.0 13.05 11.21 151.52 83.39
L 24.444 18.578 20.0 22.22 −7.11 80.90 54.99
M 4.910 6.705 ≈5.0 −1.81 34.10 348.90 327.04

a The image sequences A–D are rotational sequences, E–L translational sequences and sequence M both rotational and translational.
ERM represent the relative mean error of the estimation ofVZ and STD the measured standard deviation of the estimation. There is no
estimated value and true value in rotational sequences sinceVZ varies from point to point. All estimated values and true values are in
mm/frame. Error and standard deviation are in percentage. Sequence motion parameters are given inTable 2.



44 N. Gonçalves, H. Ara´ujo / Robotics and Autonomous Systems 45 (2003) 23–49

Table 7
Estimation ofφ—real sequences: discrete approacha

tX tY tZ ΩX ΩY ΩZ

A Exact 0.0 0.0 0.0 0.0 −0.25 0.0
Estimated 1.59 1.52 0.00 0.200 −0.118 0.017

B Exact 0.0 0.0 0.0 0.0 −0.5 0.0
Estimated 0.97 −10.75 7.99 −0.138 −0.323 −0.226

C Exact 0.0 0.0 0.0 0.0 1.0 0.0
Estimated −17.66 18.13 233.35 0.607 1.395 0.105

D Exact 0.0 0.0 0.0 0.0 2.0 0.0
Estimated −15.28 35.49 136.00 0.800 2.683 0.461

E Exact 0.0 0.0 −1.0 0.0 0.0 0.0
Estimated −3.39 0.07 4.90 0.185 0.207 0.028

F Exact 0.0 0.0 −5.0 0.0 0.0 0.0
Estimated −3.52 −0.54 5.32 0.169 0.179 0.016

G Exact 0.0 0.0 −10.0 0.0 0.0 0.0
Estimated −2.01 −1.84 −12.18 0.105 0.164 0.022

H Exact 0.0 0.0 −20.0 0.0 0.0 0.0
Estimated 3.62 −3.46 −28.53 −0.081 0.107 −0.006

I Exact 0.0 0.0 −40.0 0.0 0.0 0.0
Estimated −5.74 −2.29 −44.91 0.164 0.340 −0.096

J Exact 0.0 5.0 −10.0 0.0 0.0 0.0
Estimated −2.74 −0.19 −12.13 0.093 0.235 −0.006

L Exact 0.0 10.0 −20.0 0.0 0.0 0.0
Estimated −0.15 6.44 −17.83 0.156 0.201 0.067

M Exact 0.0 5.0 −5.0 0.0 0.25 0.0
Estimated −5.42 −3.99 −6.57 0.050 0.319 0.010

a All translational velocities are measured in mm/frame and rotational velocities in degrees/frame. Sequence motion parameters are
given in Table 2.

Fig. 12. Relative mean error ofVZ for translational and rotational paths—effect of increasing the amplitude of velocities. Translational
velocities are given in mm/frame and rotational velocities in degrees/frame.
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Fig. 13. Relative mean error ofφ for real images—translational path. Effect of increasing the amplitude of velocities. Velocities in mm/frame.
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Fig. 14. Relative mean error ofφ for real images—rotational path. Effect of increasing the amplitude of velocities. Velocities in degrees/frame.
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For the discrete approximation, the results obtained
to VZ are reported inTable 6and the results obtained
to φ are reported inTable 7.

Regarding the values in these tables one can observe
in the estimation ofVZ the same behavior observed
in the differential approach. That is, good accuracy
(once low resolution disparity is used) for translational
sequences and poor accuracy for rotational sequences.
In what concerns to the estimation ofφ, the same
instability problem intX, tY andΩZ exists andtZ, ΩX

andΩY are recovered with reasonable accuracy.
Comparing the differential and discrete methods in

the estimation ofVZ, few differences between both
methods are noticed. However, in the estimation of
φ, the discrete approach presents smaller errors in the
unstable parameters (and again few differences in the
other three).

Additionally, the translational and rotational se-
quences were grouped to study the effect of increas-
ing the amplitude of velocities. The relative mean
error (ERM) values obtained for those sequences are
plotted in Figs. 12–14, for theVZ andφ estimation.
The following acronyms are used—DCCE: depth
constraint method; DV: binocular flow constraint
method; DIFF: differential approach; DISC: discrete
approach.

These figures plots the values ofTables 3–7. The
same observations and conclusions can be drawn. The
effect of increasing the amplitude of velocities (trans-
lational or rotational) is possible, however, to disclose
now. Generally, theVZ estimation error decreases
for greater velocities as well as thetZ estimation
error for translational velocities. For the other param-
eters, some instability is noticed due to numerical
problems.

8. Conclusions

This paper studies the performance of the estima-
tion of 3D motion in theZ-direction and also the es-
timation of the rigid motion parameters from stereo
images. Two formulations were presented: differential
and discrete. Two methods to compute bothVZ andφ
were derived and compared in terms of their accuracy
in the estimation.

The uncertainty propagation expressions of the third
component of 3D velocity estimation were derived.

Those expressions were written as a function of the
uncertainty on the disparity map and the uncertainty
on the velocities (differential and discrete).

For the DCCE method, both in the differential and
in the discrete formulations, the critical factor is the
disparity. There is an increasing tendency of the un-
certainty coefficients when the velocities themselves
increase.

For the DV method, however, the two formulations
have distinct behaviors. For the differential formula-
tion, the critical factor is the uncertainty on velocities
and for the discrete one the critical factor is the un-
certainty on the disparity.

Furthermore, it was concluded that the depth is a
key parameter in the estimation of bothVZ andφ. The
accuracy is better for closer points. Additionally, it was
also concluded that rotational sequences increase the
difficulty of the estimation process. The results with
real and synthetic images are in agreement with the
discussion made in the uncertainty study.

Regarding the experiments and results obtained with
synthetic and real images some conclusions can be
drawn.

The estimation ofVZ is obtained with good accu-
racy (once low resolution disparity maps are used)
for translational sequences and poor accuracy for ro-
tational ones. The standard deviation of the values re-
covered is very high suggesting the use of as many
points as possible.

In what concerns the estimation of the full motion
parameters (φ), ill-conditioning of the observation ma-
trix cause very poor accuracy in parameterstX, tY and
ΩZ although good values are recovered for the re-
maining parameters, mainly fortZ, the best estimated.

Concerning the comparison of the differential and
discrete methods, it can be concluded that in the esti-
mation ofVZ andφ, there are few differences between
both methods. However, in the estimation ofφ, the
discrete approach presents slightly better results than
the differential one. The discrete formulation gets bet-
ter results for higher displacements.

When using both methods in real environments one
concludes that the critical factors are the accuracies in
the disparities and in the velocities. In our tests, the
best method was, in general, the DCCE. Depending
on the type of the most accurate values (disparity or
velocities) the best one should be the DCCE or the
DV, respectively.
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