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AbstractThis paper addresses adaptive control architectures for systems that respondautonomously to changing tasks. Such systems often have many sensory and mo-tor alternatives and behavior drawn from these produces varying quality solutions.The objective is then to ground behavior in control laws which, combined with re-sources, enumerate closed-loop behavioral alternatives. Use of such controllers leadsto analyzable and predictable composite systems, permitting the construction ofabstract behavioral models. Here, discrete event system and reinforcement learningtechniques are employed to constrain the behavioral alternatives and to synthe-size behavior on-line. To illustrate this, a quadruped robot learning a turning gaitsubject to safety and kinematic constraints is presented.Keywords: Control Composition, DEDS, Reinforcement Learning, Walking.
1 IntroductionBehavior generation in complex sensorimotor systems can be viewed as ascheduling problem in which a policy for engaging resources (sensory andmotor) is selected in order to satisfy a task speci�cation. Many importantexamples of such systems, ranging from models of human behavior to processscheduling on the factory 
oor, permit an enormous range of possible schedul-ing policies from which to choose. To facilitate the acquisition of behavior inthese types of systems, this paper advocates an e�ective interaction betweennative structure and adaptation.This approach is motivated, in a very broad sense by accounts of human per-formance in the earliest stages of sensorimotor development (roughly the �rst? This work was supported in part by NSF IRI-9503687.



four months). During this period, re
exive responses begin to organize intocoherent motor strategies, sensory modalities are coordinated and attentionalmechanisms begin to emerge. Native re
exive responses like the primary walk-ing re
ex and the palmar grasp re
ex [1] provide primitive, closed-loop sen-sorimotor behavior that manages appropriate musculo-skeletal structures todo relevant, sensory-driven work in the world. Bruner [4] refers to these typesof behaviors as \preadaptation" primitives for learning skillful motor policies.Subsequently, policies for coordinating multiple sensory and motor modalitiesappear as primary circular reactions [21] which are repeated (assimilation)and perturbed (accommodation) until the infant �nds it possible to prolongcertain interactions with the world. Complex robot systems also require someform of preadaptive structure to organize the acquisition of sensorimotor be-havior. The model presented in this paper (described in Section 2) introducessuch structure in the form of a set of control laws which can be combined withsystem resources to yield stable closed-loop controllers. Behavior of the systemis then constructed as a sequence of such control situations in a Discrete EventDynamic System (DEDS) framework which enumerates the range of sensoryand motor alternatives available. Use of this formalism allows constraints tobe incorporated as \bootstraps", or to represent shaping and maturationalprocesses within this approach.Although the details di�er signi�cantly across human and robot subjects, itcan be argued that both systems must initially acquire a policy for engagingresources in a coordinated fashion, and that these policies form the most ba-sic internal model of the agent/world interaction. In biological systems suchpolicies are acquired naturally through interaction with the world. Dynamicprogramming-based Reinforcement Learning (RL) [2] provides a similar mech-anism for robots since it allows the system to learn from its own actions anda task related reinforcement. A number of control systems employing theselearning techniques have been designed to acquire policies o�-line using sim-ulated experience [3,8], or on-line using robot platforms [12]. To address on-line learning in systems of moderate to high complexity, behavior-based tech-niques have been used in conjunction with learning techniques to manage thesize of the search space. The approach presented here falls into this generalcategory. Other approaches advocate learning pre-requisite skills that solvepre-de�ned subproblems and then combine them in a subsumption or votingframework [18,13], or conversely, use previously designed behaviors as prim-itives within the learning system [17]. These approaches, however, are oftenbased on a largely procedural model of behavioral interaction that does notsupport global assertions regarding system behavior. It is our position that inorder to replace evolutionary selection in agent design, it is necessary to buildpredictable and analyzable systems.One important issue arising from the fact that behavior is acquired throughinteraction with the world is that the system has to be able to avoid catas-2



trophic failures. In biological systems, evolution leads not only to robust mech-anisms but also to behavioral biases such that unrecoverable errors are largelyavoided. One way to achieve \safety" in behavior acquisition in robot systemsis the use of a parametric controller which is safe over the entire range ofcontrol parameters as the basis for the learning task [24]. The use of a singlecontroller, however, dramatically increases designer e�ort and limits the scopeof the control task. Another approach employs a subsumption architecture toprovide guidance to the learning process [9]. The resulting policy is eventu-ally capable of outperforming the subsumption \supervisor", and inherits itsunderlying competence. However, since subsumption-based re
exes are oftennot predictable, it is generally di�cult to formulate a set of re
exes which willensure the safety of the mechanism over the entire range of contexts. The ap-proach presented here, on the other hand, uses the predictable character of theunderlying controllers within the DEDS formalism to constrain the admissiblebehavior of the system to safe parts of the control space.In the following, an overview of the proposed architecture is presented (Sec-tion 2) and developed in the context of a four-legged walking robot example.A set of control laws that serve as the basis for a family of feedback controllers(Section 3) is de�ned and a DEDS model is constructed (Section 4) that de-scribes the range of behavior available to the system. Using this structure, areinforcement learning problem is de�ned to construct behavior in the formof policies for controlling the robot platform (Section 5). Finally, results ofthe approach applied to a turning gait on the actual walking platform arepresented (Section 6).2 The Control ArchitectureA schematic of the proposed framework for adaptive control is presented inFigure 1. This architecture interacts with the physical world by means ofa set of closed-loop controllers constructed by associating input and outputresources with control laws drawn from the control basis. The resulting con-trollers represent generic control objectives projected onto pools of system re-sources and can be used to address a large variety of tasks. These behavioralprimitives work in low-dimensional operational spaces (as do behavior-basedapproaches in general), but more importantly, they suppress local perturba-tions by virtue of their closed-loop structure and transform a continuous statespace into a set of discrete equilibria. The behavior synthesis problem is like-wise transformed into the traversal of a discrete set of system equilibria withfunctional attributes. The abstract \state" of the system is characterized bya vector of predicates which represents the universe of discrete subgoals avail-able to an agent with these native control laws and resources. The result is adiscrete model of agent/world interactions. Behavior is represented as a syn-3
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Fig. 1. A Structured Control Architecture for On-Line, Reinforcement Learningchronous program of concurrent control situations. Policy formation in thisspace is higher performance and likely to be more robust by virtue of theclosed-loop behavioral primitives.To enumerate the range of possible concurrent control situations that can beconsidered from some initial state, a hybrid Discrete Event Dynamic System(DEDS) framework is employed. In this formalism [20,23,25], the state of theunderlying system is assumed to evolve with the occurrence of a set of discreteevents, some subset of which are controllable. A supervisory control mecha-nism for a given discrete system model can then be synthesized automaticallywhile ensuring properties such as safety, controllability, or freedom from dead-lock. The feedback map of this supervisor is illustrated in Figure 1 as �(s),which maps the state of the system in the discrete predicate space into a setof allowable control situations and thus e�ectively in
uences the occurrence ofcontrollable events such that no uncontrollable events can violate functionalconstraints on the system. Using this, the complete supervisor takes the formof a nondeterministic �nite state automaton in which states are functional as-sertions about the condition of the system and transitions represent possibleconcurrent control situations.A reinforcement learning algorithm is employed to acquire transition probabil-ities within this model (thus performing system identi�cation) and to estimatea value function for the given task | that is, to acquire a policy for associ-ating working sets of resources with appropriate control laws in a mannerthat solves the task. Since transition probabilities derived over the state ofcontroller predicates generalize well to subsequent tasks, they allow for im-4



proved learning performance and permit o�-line learning on the empiricalmodel [27,19]. In addition, in the course of policy formation, a variety of re-source commitments are explored, e�ectively allowing the system to respondin a 
exible manner when the run-time context imposes constraints on the setof available resources. Throughout this model improvement and policy opti-mization process, exploration is explicitly limited to safe actions. Moreover,the abstract system model also allows a convenient means of introducing ad-ditional knowledge in the form of domain constraints, transition probabilities,or suboptimal control policies to bootstrap the system.2.1 The Experimental Walking PlatformIn the remainder of this paper, the elements of the control architecture areintroduced and illustrated using an example task on the four legged, twelvedegree of freedom walking robot shown in Figure 2.

Fig. 2. Quadruped Walking Robot \Thing"Several examples of behavioral programs using the control basis representa-tion have been hand-crafted in prior work on both manipulation and walkingplatforms [11,15]. In contrast to this work, the experimental focus of this pa-per is the use of the proposed architecture for learning a turning gait in thewalking platform on the basis of run-time experience.3 The Control BasisA control basis is a �xed set of control laws that, when coupled to resources,de�ne the range of closed-loop responses in the system. We have adapted the5



hybrid control tradition in robotics to address the desired function of ourexperimental platforms. This perspective formulates concurrent position andforce control tasks in orthogonal subspaces to match the controlled complianceof a robot mechanism with the kinematics of the task [22]. This is a powerfulidea | it speaks to the issue of matching the control of the robot devicewith the natural geometry of the task. Moreover, it amounts to a closed-formschedule for position and force observers. For example, in robot crank turning,the subspace in which position and force control tasks are expressed changescontinuously during the execution of the task so that the robot attends todi�erent components of position and force error over time. For these reasons,this tradition provides a reasonable starting point for expressing more generalsensorimotor behavior as well.In the walking experiments presented in this paper, the control basis consistsof solutions to three generic robot control problems, namely: collision-freemotion control, contact con�guration control, and kinematic conditioning. Adetailed description of these controllers is beyond the scope of this paper, buta brief description is included for completeness.�0: Con�guration space motion control.Harmonic function path controllers [7] are used to generate collision-free mo-tion through a con�guration subspace of the robot. Formally, this approachminimizes collision probabilities for the robot system [6] by following thegradient of a harmonic potential.�1: Contact con�guration control.A contact con�guration controller [5] is employed to move contacts based onthe local geometry of the environment in order to minimize residual forcesand moments about some reference coordinate frame.�2: Kinematic conditioning.This controller optimizes the posture of an articulated structure while it isengaged in an interaction with the world [10].Informally, �0 addresses a position control task, �1 addresses a force controltask, and �2 performs posture control in a redundant mechanism. These con-trol laws, bound to system resources, have been used successfully in walkingapplications [15], and in dextrous manipulation experiments using a robothand [11].3.1 Candidate Closed-Loop ControllersTask-level controllers can be constructed for a variety of tasks by compos-ing controllers derived from the control basis. Closed-loop controllers in thisframework take the form �i �� , where �i is an element of the control basis,6



and � and � denote the input and output resources, respectively. In the mostgeneral sense, � and � are collections of sensors (or sensor abstractions) andactuators associated with the system. Each element of the control basis re-quires input resources of a particular type. For instance, the motion controllerrequires a con�guration space as input and actuators that control some subsetof these con�guration variables. The contact controller manipulates contactcoordinates relative to some task frame. These coordinates must be deter-mined from forward kinematics on an appropriate kinematic subchain and aremodi�ed by inverse kinematics back into the actuator space. The kinematicconditioning controller optimizes the value of a set of input con�guration vari-ables by manipulating a possibly disjoint set of output con�guration variables.These types constrain the variety of input and output resources that can beconsidered. Moreover, it is seldom valuable (or possible, by typing constraints)to consider single degrees of freedom or single actuators. Most often kinematicchains consisting of several con�guration variables are required.Figure 3 summarizes the set of controllers (�0;�1;�2) and schedulable re-sources (legs 0; 1; 2; 3 and the position and orientation of the center of massx; y; ') considered in the quadruped walking experiments.
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Fig. 3. Controller and Resource Notation
To allow for a concise notation for the predicate space model (Section 3.3),the set of controllers used in the example is further constrained to contactcon�guration controllers �1 a;b;ca , where a 6= b 6= c are legs of the robot. That is,the system is constrained at design time to consider only stable tripod stancesand instructed to achieve the tripod by moving only one of the constituent legsat a time. In addition, one instance of the kinematic conditioning controller ofthe form �2 0;1;2;3' is permitted, leading to a total of 13 independent closed-loopcontrollers. 7



3.2 Concurrent ControllersThe 13 controllers identi�ed in Section 3.1 are the building blocks for a va-riety of concurrent control alternatives. To preserve the predictability andanalyzability of concurrent control laws, a mechanism is required to eliminatedestructive controller interactions. The \subject to" operator (\�") restrictsthe control actions of a subordinate controller so that it can not interferewith the achievement of the primary controllers' objectives. �i � �j (read �isubject to �j) restricts the behavior of �i (the subordinate controller) to ac-tions that do not negatively e�ect the behavior of �j (the primary controller).The subordinate controller is limited to an \extended nullspace" of the pri-mary controller, which is conceptually similar to methods devised to addressmultiple objectives using pseudoinverse control [30]. The \�" operator reg-ulates control interactions in concurrent controllers and therefore preservespredictability and analyzability. This allows the use of concurrent controllersof the form ��i �j� j � �k �l� l � :::� within the presented framework.Although the \extended nullspace" required for the \�" constraint could bederived explicitly for the controllers used in the example task, this might behard to accomplish in general. Therefore, for simplicity the walking exampleuses an approximation by performing a local search to �nd a gradient directionin the subordinate controller which remains within the \extended nullspace"of the primary controllers.In the example presented here, elements of the set of candidate control sit-uations contain at most 3 concurrent, closed-loop controllers. Under thesecircumstances, the 13 original controllers yield a total of 1885 possible con-current controllers available from each state. Using simple boolean constraintsintroduced in Section 4, however, it is possible to reduce the number of controlalternatives by an order of magnitude.3.3 Predicate Space RepresentationIn addition to the inherent reactivity and the broad application domain pro-vided by the control basis, the goal-directed and predictable character of theclosed-loop controllers can be used to improve learning performance. In par-ticular, since closed-loop controllers form domains of attraction within a con-tinuous state space and optimize their respective control objectives locally, thespace can be modeled at a di�erent level of abstraction by a set of functionalpredicates. Each of these predicates indicates whether the equilibrium stateof the controller does in fact meet the control objective.Considering the 13 candidate controllers, the predicate state for the walking8



example can be represented as a vector of �ve predicates s = (p1; p2; p3; p4; p5),each element of which corresponds to the convergence of a control law andinput designation in the following way:p1  �1 1;2;3� ; p2  �1 0;2;3� ; p3  �1 0;1;3� ;p4  �1 0;1;2� ; p5  �2 0;1;2;3�where � is a wildcard and indicates the independence of the predicate eval-uation from the output resource. Therefore, predicates p1 � p4 evaluate thestable stance of the platform on one of four possible tripods and p5 indicateskinematically favorable 4-legged postures.At this level of abstraction, the overall behavior of the system can be char-acterized by the e�ects of each controller on the discrete predicate space. Todo this a priori, the e�ects of each controller on all of the predicates mustbe modeled. Such controller interactions can be determined by identifying re-lationships between input and output resources. For example, the controller�1 0;2;30 attempts to assert predicate p2 by actuating leg 0 using �1. The re-sulting behavior may modify predicates p2�p5 since leg 0 is an input resourcefor these controllers, but will not e�ect predicate p1. If the walking platformis in predicate state (1 0 0 0 0), then controller �1 0;2;30 will result in one ofthe states given by (1 � � � �), where � indicates that the correspondingpredicate can have a value of 0 or 1. The e�ects of a controller can thus bemodeled as a nondeterministic transition in this discrete predicate space. Fora more detailed discussion of controller descriptions as well as the derivationof possible successor states see [14].4 The Hybrid DEDS SupervisorWhile the use of a control basis addresses issues related to reactivity and com-plexity of the resulting learning system, activation of certain controllers in thewrong situation can still lead to unsafe conditions. Since activation and conver-gence events determine the progress of the system in the predicate space, theoverall system can be seen as a hybrid DEDS, where the controllers describedin Section 3 represent the continuous component. This permits the deriva-tion of a DEDS supervisor for the discrete component of the system [23,20,25]aimed at ensuring properties such as safety, controllability, or freedom fromdeadlock in the composite system.While the supervisor synthesis is generally automatic, most cases, includingmost hybrid systems [26,16], require the designer to provide the underlying9



system model completely. In the approach presented here, on the other hand,the symbolic controller descriptions described in Section 3.3 support the au-tomatic derivation of this model. Predictions for the behavior of each controlsituation from each predicate state results in a conservative and nondetermin-istic transition graph representing all possible system behavior. In the case ofthe walking platform, this system model in predicate space takes the form ofa nondeterministic �nite state automaton comprised of 25 possible predicatestates and 1885 candidate actions from each state. From this initial model, itis possible to derive a DEDS supervisor that expresses safety constraints anddomain knowledge.For example, one such safety constraint requires that the walking platformalways remains stable. This requires that at least one of the possible stanceshas to be stable or that the expression p1 _ p2 _ p3 _ p4 evaluates true. Useof the DEDS framework allows the pruning of control transitions in whichthis condition can be violated, e�ectively reducing the control alternativesavailable at each state. Furthermore, such safety constraints also provide ane�ective means of pruning the set of candidate controllers by identifying in-herently unsafe control alternatives a priori. Controllers like �1 0;2;30 � �1 0;1;22 ,for example, inherently violate the safety constraints since they potentiallymodify all 5 predicates and thus allow the predicate state (0 0 0 0 0) to occur.Imposing the stability predicate above on the system thus reduces the set ofcandidate controllers to 157 closed-loop control alternatives.In a similar fashion, the DEDS supervisor allows the introduction of addi-tional domain knowledge and preferences into the control architecture. Doingso can dramatically reduce the number of control alternatives considered dur-ing learning (Section 5), and can be used to accelerate learning or as a shap-ing mechanism. For example, kinematic constraints in the walking platform(Figure 3) do not permit simultaneous stable stances on opposing support tri-angles. Consider the support polygons consisting of legs (0; 1; 2) and (0; 2; 3),for instance. It is not possible, with this platform, for the robot's center ofmass to fall within these polygons simultaneously. This observation can beexpressed in the form of the boolean expression :(p1 ^ p3)^:(p2 ^ p4), whichevaluates true for all kinematically feasible stable stances.Figure 4 shows the nondeterministic �nite state automaton obtained usingthese constraints for the walking example. Controller actions in Figure 4 arenondeterministic and multiple controllers can lead to the same transition. Af-ter pruning the exhaustive behavioral graph, the resulting transition graphcontains 16 states with an average of approximately 50 control alternativesavailable from each state, each of which can result nondeterministically inan average of 6 successor states. Therefore, the resulting model contains ap-proximately 5000 transitions. It should be noted here that for purpose ofillustration, the complete supervisor is built a priori in this example, but in10



Fig. 4. The DEDS Supervisor. States are labeled with the corresponding predicatevector. The (multiple) concurrent controllers associated with transitions are omittedfor clarity.general it could also be generated locally during the exploration phase withoutcompromising the imposed constraints.Throughout system operation, the discrete part of the hybrid architecture isused to guide the exploration and activate the controllers while maintainingstability and safety within the limitations of the basis control laws. The con-tinuous controllers interpret all the low-level sensory information in a reactivesubstrate, interacting with the DEDS supervisor by way of symbolic activationand convergence events.4.1 System Identi�cation and AdaptationThe goal for controller �i is to achieve an equilibrium state for which itscontrol objective is satis�ed. Under these circumstances, predicate pi is true,asserting that, for instance, a particular stance of a walking machine is sta-ble, or that the robot arm has achieved a reference con�guration. However,the outcome of actions permitted in the DEDS supervisor are nondetermin-istic due to kinematic limitations, controller interaction, or other nonlineari-11



ties in the platform. The result is thus a possibly large number of predicatestates after convergence. The DEDS supervisor therefore takes the form ofa nondeterministic �nite state automaton with convergence events triggeringtransitions. Treating this system as approximately Markovian, i.e. consideringconvergence events as purely probabilistic, knowledge of the transition prob-abilities is important since it allows for better predictions about the utility ofa given activation policy.The system identi�cation task is to learn p(x; a; y), the probability that con-troller a in predicate state x will converge to state y. The DEDS framework,however, does not provide a mechanism to determine these probabilities apriori since they depend largely on the platform and application domain.Therefore, transitions must be determined in an empirical system identi�ca-tion process. This process must be performed on-line by executing actions incontext and therefore as part of the learning process. Since the DEDS super-visor does not include any speci�c task objectives but rather represents theset of all possible control strategies, transition probabilities could be collectedas result of randomized exploration in the DEDS supervisor or in the courseof policy formation (as in Section 5). These probabilities are primarily depen-dent on the agent and its environment and largely independent of the task,which suggests that they may generalize well across di�erent robot tasks. Inaddition to describing the range of behavioral alternatives, the DEDS modelprovides therefore a convenient structure in which to embed additional knowl-edge about the actual system behavior in terms of transition probabilities andto make these available for every policy formation task.
5 Reinforcement LearningReinforcement learning provides an e�ective mechanism for learning controlpolicies from delayed rewards. However, its applicability to on-line learningproblems is often limited by the complexity of the systems underlying thelearning process. The hybrid DEDS architecture creates a reinforcement learn-ing problem at the level of control activations in a symbolic state space andthus dramatically reduce the potential size of the search space. In addition, theDEDS model can store transition probabilities with which to improve learn-ing performance on subsequent tasks, it can limit exploration-based learningtechniques to safe and relevant behavior, and can be used to interact withthe learning algorithm by shaping expressed as a sequence of behavioral con-straints. In this section, a brief introduction to Q-learning is presented and itsapplication to policy formation within the DEDS supervisor is described.12



5.1 Q-learningQ-learning [29] is a widely used temporal di�erence method that learns a valuefunction over state/action pairs in order to encode the quality of a given actionand therefore the value associated with the corresponding policies. Q valuesrepresent an estimate of the future payo� of a given action. Using the Bellmanequation this can be written as:Q(x; a) = E(r + 
maxb2A Q(y; b))where r is the immediate reinforcement obtained, y is the system state afterthe action is executed, and A is the set of all possible actions. In order toavoid in�nite value functions and to remove the need for a �xed horizon, thediscount factor 
 is used, e�ectively reducing the in
uence of distant rewards.This value can be approximated iteratively using the simple formulation,Qt(x; a) = Qt�1(x; a) + �(rt + 
maxb2A Qt�1(y; b)�Qt�1(x; a))with � representing the learning rate and subscript t and t� 1 indicating therespective iteration number. This iterative formulation allows the algorithmto be used in an exploration-based framework as a Monte Carlo dynamicprogramming technique. After convergence of the algorithm the optimal actionin each state x can be easily extracted from the value function asamax = argmaxb2A Q(x; b):Convergence for this algorithm has been shown under restricted circumstances,especially requiring that the problem is purely Markovian and that Q valuesare represented in the form of a table [28]. In addition, convergence requiresthat each state/action pair is updated in�nitely often. This underscores theimportance of exploration in these schemes which generally attempt to performa tradeo� between exploring and following the maximum value policy.5.2 Learning Policies in the DEDS SupervisorIn the architecture presented here, learning is performed in the context ofthe nondeterministic DEDS supervisor. In order to conduct system identi�ca-tion and to determine a control policy for a given task, the system must beactively engaged in interactions with the environment. While system identi�-cation could be accomplished by purely random search, the use of exploration13



within the RL framework is especially appealing because it permits transitionprobabilities to be estimated during policy formation. A probability, as wellas a value can be assigned to each transition in the nondeterministic stateautomaton, representing the likelihood and expected payo� of this transitionin the given state. The underlying state space X is the predicate space derivedfrom the individual basis controllers and the action space A is the set of allconcurrent controllers.Rather than associating values with state/action pairs, state/action/next-state triples can be used such that:Q(x; a) = Xy2X(p(x; a; y)Q(x; a; y));where p(x; a; y) is the probability that controller a in state x will lead to statey, and therefore Py2X p(x; a; y) = 1 if action a is permitted in state x and 0otherwise. Q(x; a; y), on the other hand, represents the value of the transitionwhich leads from state x to state y by means of the controller a. This resolutionof the Q value allows the value function to be stored directly in the transitiongraph together with the transition probabilities.To adjust to this change in representation of the value function, the updaterule has also to be changed slightly toQt(x; a; y) = Qt�1(x; a; y) + �(rt + 
maxb2A Qt�1(y; b)�Qt�1(x; a; y))where updates are conducted when transition (x; a; y) occurs. The simulta-neous update of the corresponding transition probabilities can be performedin a straight forward manner using a frequency count for each transition per-formed. Keeping such an explicit representation of the system can help byproviding a basis for o�-line learning on the empirically derived model, as wellas for the resolution of hidden state information which might be necessary inmore complex tasks.6 Walking Experiment - Learning Turning GaitsTo demonstrate the applicability of the approach described in this paper, thearchitecture is employed to acquire a counterclockwise turning gait with thefour-legged robot.A correct policy for this task does not lead to a particulargoal state in the predicate space, but results instead in a stable cycle throughpredicate space such that angular progress is achieved.14



Starting from the automatically derived DEDS supervisor described in Sec-tion 4, the system uses the learning components introduced in Sections 4.1and 5 to learn transition probabilities and value functions for this task. A re-inforcement structure r(t) is de�ned that re
ects the angular progress achievedduring the last transition:rt = 't � 't�1where 't is the orientation of the robot at time t. Then, the robot systemis placed in a stable con�guration on 
at ground and the learning process isinitiated. Starting with purely random actions, the system rapidly acquires acorrect gait pattern while the exploration is incrementally reduced from 100%to a minimum of 10%. This minimum exploration is maintained until timestep 1000 to allow the system to visit di�erent parts of the predicate spaceeven after a locally optimal gait pattern is found, and thus to learn a moreglobal and robust strategy.Figure 5 shows a representative learning curve for this example task and agraph of the performance of the learned turning gait after exploration is turnedo� at time 1000.
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from di�erent initial conditions or after unmodeled external disturbances. Asshown in the right graph, however, some variation in the performance remainseven after the policy is �xed and exploration is no longer performed. Theseremaining changes in rotation rate are due to the fact that foot placementsgenerated by the controllers in this approach are not geometrically repetitivebut rather depend on the local con�guration of the robot. Throughout thewhole learning process the system never entered an unsafe situation due tothe limitations imposed by the DEDS supervisor.Figure 6 shows the control policy acquired in the form of a nondeterminis-tic �nite state automaton. This graph shows all the possible transitions that
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Fig. 6. Learned Control Policy for Counterclockwise Rotation Task. Bold ArrowsIndicate the Central Gait Cycle and Dashed Transitions Represent Transition Prob-abilities smaller than 2 %.can occur under the resulting policy. The core of the policy is the cycle in-dicated by bold transition arrows. Transition probabilities within this cycleare greater than 98%, making it a rather stable attractor for this task. Forthese situations, the controllers are given on the right side of the �gure. Forall states not on this cycle, the system learned control actions which will movethe robot back to the central turning gait. Figure 7 shows the robot execut-ing the central cycle of the learned control policy which e�ectively leads thesystem through a sequence of stable, three-legged stances. These robot pic-tures (top) illustrate the angular progress achieved throughout execution ofone gait cycle depicted in the bottom state diagram. The middle schematic,in which circles correspond to foot locations and the cross indicates the centerof mass, shows the support polygons maintained throughout each controllertransition, demonstrating that the system is always in a safe state throughoutthe execution of the learned policy. 16
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the policy formation process itself. Robot systems currently have no such re-
exive substrate. For human designers to subsume the role of evolution, it iscritical that behavior-based approaches lend themselves to design and analy-sis. The control basis approach and the DEDS formulation in this paper is ane�ort to provide a more general basis for behavior independent of the particu-lar task domain. The result is a form of internal model with which to describethe interactions possible between a robot device and its environment that canbe used to accelerate the acquisition of task-speci�c behavioral policies. Thismodel can be reused to provide structure and guidance to on-line reinforce-ment learning tasks and provides a convenient means of introducing domainknowledge in the form of reversible constraints, thus providing a mechanismfor modeling shaping and maturational processes.A unique feature of the proposed architecture is the simultaneous schedul-ing of behavior and resources. If a robot is really to be embedded in theenvironment then it must be capable of contending with multiple objectives.Competing objectives means that a mechanism is required to be able to ad-dress a task when resources are blocked by other processes. It is possible,after all, for humans to 
ip on the light switch with their elbow when theirhands are occupied with the groceries. Functional equivalence is overlookedin most re
exive or behavior-based architectures | it is a central element ofthe approach presented here. In this formulation, exploration-based learningconsiders all resource and control commitments that may solve the task and,it is hoped, will lead to more 
exible and resourceful behavior-based controlarchitectures.References[1] A. e. a. Aronson. Clinical Examinations in Neurology. W.B. Saunders Co.,Philadelphia, PA, 1981.[2] A. G. Barto, S. J. Bradtke, and S. P. Singh. Learning to act using real-timedynamic programming. Technical Report 93-02, University of Massachusetts,Amherst, MA, 1993.[3] A. G. Barto, R. S. Sutton, and C. Anderson. Neuronlike adaptive elements thatcan solve di�cult learning control problems. IEEE Trans. Syst. Man Cyber.,13(5):834{846, 1983.[4] J. Bruner. Organization of early skilled action. Child Development, 44:1{11,1973.[5] J. A. Coelho Jr. and R. A. Grupen. E�ective multi�ngered grasp synthesis.Technical Report 94-12, CMPSCI Dept., Univ. of Mass., Amherst, February1994. 18



[6] C. I. Connolly. Harmonic functions and collision probabilities. In Proc. IEEEInt. Conf. Robot. Automat., San Diego, CA, May 1994. IEEE.[7] C. I. Connolly and R. A. Grupen. The applications of harmonic functions torobotics. J. Robotic Sys., 10(7):931{946, October 1993.[8] R. H. Crites and A. G. Barto. Improving elevator performance usingreinforcement learning. In Advances in Neural Information Processing Systems8. Morgan Kaufmann, 1995.[9] J. del R. Mill�an. Rapid, safe, and incremental learning of navigation strategies.IEEE Trans. Syst. Man Cyber., 26(3):408{420, 1996.[10] R. Grupen and K. Souccar. Manipulability-based spatial isotropy: A kinematicre
ex. In Workshop on Mechatronical Computer Systems for Perception andAction, Halmstad, SWEDEN, June 1-3 1993.[11] R. A. Grupen, M. Huber, J. A. Coelho Jr., and K. Souccar. Distributed controlrepresentation for manipulation tasks. IEEE Expert, 10(2):9{14, April 1995.[12] V. Gullapalli, R. Grupen, and A. Barto. Learning reactive admittance control.In Proceedings of the 1992 Conference on Robotics and Automation, pages 1475{1480, Nice, FRANCE, May 1992. IEEE.[13] J. Ho� and G. Bekey. An architecture for behavior coordination learning. InProceedings of the 1995 IEEE International Conference on Neural Networks,pages 2375{2380, Perth, Australia, November 1996.[14] M. Huber and R. A. Grupen. A hybrid discrete event dynamic systems approachto robot control. Technical Report 96-43, CMPSCI Dept., Univ. of Mass.,Amherst, October 1996.[15] M. Huber, W. S. MacDonald, and R. A. Grupen. A control basis for multileggedwalking. In Proc. IEEE Int. Conf. Robot. Automat., pages Vol.4 2988{2993,Minneapolis, MN, April 1996. IEEE.[16] J. Ko�seck�a and L. Bogoni. Application of discrete event systems for modelingand controlling robotic agents. In Proc. IEEE Int. Conf. Robot. Automat.,pages 2557{2562, San Diego, CA, May 1994. IEEE.[17] P. Maes and R. Brooks. Learning to coordinate behaviors. In Proceedings ofthe 1990 AAAI Conference on Arti�cial Intelligence. AAAI, 1990.[18] S. Mahadevan and J. Connell. Automatic programming of behavior-basedrobots using reinforcement learning. Arti�cial Intelligence, 55:311{365, 1992.[19] A. W. Moore and C. G. Atkeson. Prioritized sweeping: Reinforcement learningwith less data and less real time. Machine Learning, 13, 1993.[20] C. �Ozveren and A. Willsky. Observability of discrete event dynamic systems.IEEE Transactions on Automatic Control, 35(7):797{806, 1990.[21] J. Piaget. The Origins of Intelligence in Childhood. International UniversitiesPress, 1952. 19



[22] M. Raibert and J. Craig. Hybrid position/force control of manipulators.Journal of Dynamic Systems, Measurements, and Control, 102:127{133, June1981.[23] P. J. Ramadge and W. M. Wonham. The control of discrete event systems.Proceedings of the IEEE, 77(1):81{97, January 1989.[24] S. Singh, C. Connolly, R. Grupen, and A. Barto. Robust reinforcement learningin motion planning. In Advances in Neural Information Processing Systems 6(NIPS), 1994.[25] M. Sobh, J. Owen, K. Valvanis, and D. Gracani. A subject-indexed bibliographyof discrete event dynamic systems. IEEE Robotics & Automation Magazine,1(2):14{20, 1994.[26] J. Stiver, P. Antsaklis, and M. Lemmon. A logical approach to the design ofhybrid systems. Mathematical and Computer Modelling, 27(11/12):55{76, 1996.[27] R. S. Sutton. First results with Dyna, an integrated architecture for learning,planning and reacting. In W. T. Miller III, R. S. Sutton, and P. J. Werbos,editors, Neural Networks for Control, pages 179{189. MIT Press, 1990.[28] C. Watkins and P. Dayan. Technical note: Q-learning. Machine Learning,8:279{292, 1992.[29] C. J. C. H. Watkins. Learning from Delayed Rewards. PhD thesis, CambridgeUniversity, Cambridge, England, 1989.[30] T. Yoshikawa. Foundations of Robotics : Analysis and Control. MIT Press,Cambridge, MA, 1990.

20


	University of Massachusetts Amherst
	From the SelectedWorks of Roderic Grupen
	1997

	A Feedback Control Structure for On-line Learning Tasks
	tmpukWGxb.pdf

