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Abstract 

A critical challenge in the creation of autonomous mobile robots is the reliable detection of moving and static obstacles. In 
this paper, we present a passive vision system that recovers coarse depth information reliably and efficiently. This system is 
based on the concept of depth from focus, and robustly locates static and moving obstacles as well as stairs and dropoffs with 
adequate accuracy for obstacle avoidance. We describe an implementation of this vision system on a mobile robot as well as 
real-world experiments both indoors and outdoors. These experiments have involved several hours of continuous and fully 
autonomous operation in crowded, natural settings. 
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1. Introduction 

A mobile robot must be able to avoid both static and 
moving obstacles in its path. This essential task often 
relies on sonars to provide distance measurements in 
the immediate vicinity of the robot. Sonars are inex- 
pensive, relatively reliable, and require little compu- 
tation to process the data they provide. However, they 
are also limited in range and lateral resolution, and are 
sensitive to false echoes caused by specular reflections. 
In some applications, sonars may also be undesirable 
because of interference problems with other sonar sys- 
tems and because they are active devices that send ul- 
trasounds into the environment. Infrared devices and 

laser rangefinders share many of these problems with 
sonars, with the addition of “washout” problems in the 
presence of strong radiation such as direct sunlight. 

In contrast, vision systems are passive and can 
provide lateral and depth resolution exceeding that of 
ultrasonic devices. However, vision systems for the 
computation of depth from stereo correspondence or 
image motion are still in their infancy. They make 
sometimes unrealistic assumptions about the environ- 
ment and even when the latter are satisfied these sys- 
tems are brittle and sensitive to image measurement 
and sensor calibration errors. 

In this paper, we show that a simple form of 
depth from focus provides an inexpensive and reli- 
able sensing method for obstacle avoidance. The idea 
of depth from focus is not new and is even incor- 
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recovers less than 2 bits of depth information, yet 
enables reliable real-world obstacle avoidance. In 
fact, the low resolution of the resulting depthmap, 
usually viewed as a liability, turns out to be an as- 
set in our system, because it simplifies both sensing 
and computation, and is nevertheless demonstrably 
adequate for real-world obstacle avoidance. Any 
control strategy must eventually compress depth in- 
formation into a few bits of information, since the 
choices for the robot’s action are limited. Conse- 
quently, by determining how much depth information 
is required before building the depth sensing mod- 
ule, we compute all and only the necessary depth 
information. 

A $5000 prototype of our system has so far accu- 
mulated more than 20 h of exploration with no fail- 
ure in demanding indoor and outdoor environments 
under varying lighting conditions, crowds of people 
walking past and towards the robot, and treacherous 
steps and obstacles all around. Our robot gracefully 
coasts around tables and chairs, mingles with people 
who pay little or no attention to it, and happily spins 
around when children hold hands around it singing 
“ring around the roses.” 

The depth from focus system we present is remark- 
able because of what it does not have. The system per- 
forms no convolutions except those computed for free 
by defocused lenses. It has no explicit mathematical 
model of how defocusing alters an image. Finally, its 
computations requirements are easily met in real time 
by a PC. Indeed, the algorithm is sufficiently simple 
that we have constructed an inexpensive embodiment 
using purely analog circuitry. 

In summary, this paper is about an extremely sim- 
ple idea. Simplicity itself is the point, as it yields at 
the same time efficiency, reliability and ease of use. 
The vision system requires no camera calibration or 
registration. Our experiments, summarized in this pa- 
per and recorded on long video tapes, show our depth 
from focus system to be an attractive alternative to 
sonars for its passive nature, greater accuracy, longer 
distance range, high reliability, and low computational 
cost. This is one of the first examples of a vision al- 
gorithm that is hard to defeat. 

In Section 2, we introduce the general idea of depth 
from focus and survey some of the previous work 
in this area. Section 3 describes the details of the 
implementation, and Section 4 discusses our experi- 

ments. We conclude in Section 5 with some general 
remarks. 

2. Depth from focus 

The focusing ring of a modem autofocus camera 
provides approximate depth information about the ob- 
ject in the center of the camera’s field of view. One 
could walk around with such a camera and avoid ob- 
stacles using the position of the focusing ring as a 
range sensor. 

The robustness and simplicity of active autofocus 
explain the commercial success of this “active depth 
sensor”. Unfortunately, autofocus technology has sig- 
nificant limitations when applied to mobile robotics. 
The focusing ring moves slowly and, most impor- 
tantly, the autofocus system yields only one depth 
value for the entire field of view. In contrast, our goal 
is to recover depth across the entire image while tak- 
ing advantage of the intuition behind many autofocus 
systems. 

Determining exact depth from focus requires mea- 
suring the amount of defocus throughout the image. 
Computing defocus is hard because objects do not 
have the same inherent degree of sharpness. There- 
fore, an edge that appears blurred can be the result of 
either defocus or a soft-edged object. 

A limitation that depth from focus shares with al- 
most all other passive vision systems, including stere- 
opsis and shape-from-motion, is that the scene must 
have texture or edges. Happily, natural and artificial 
objects are replete with texture. But depth from focus 
has an important advantage over stereo and motion: 
there is no correspondence problem. 
In addition, all passive vision systems have an ar- 

ray of advantages over active ranging systems such as 
laser rangefinders, sonars, and active infrareds. Passive 
systems have no intrusive component, no interference 
problems, and no physical anomalies that accompany 
active ranging such as a sonar signal’s specular reflec- 
tion and infrared’s reflectivity eccentricities based on 
object color and texture. 

The problem of measuring defocus has been the 
core challenge of the depth from focus community. 
Early research made simplifying assumptions to work 
around this persistent problem. For instance, (41 as- 
sumes that all objects have sharp edges. 

, 
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A more practical solution is to shine illumina- 
tion patterns on the scene, measuring the defocus of 
the patterns that have a known sharpness [9]. The 
recent work of Nayar et al. [7] has improved on 
this active approach, resulting in depth map recov- 
ery with extremely high precision and at speeds of 
30Hz. Nayar has optimized the illumination pattern 
and has minimized registration error by emitting the 
illumination pattern along the same optical path as 
the incoming image. As with all active illumination 
methods, this solution is of limited applicability in 
natural, outdoor environments where the emitted ra- 
diation can be either harmful or washed out by solar 
radiation. 

Other recent work has focused on recovering depth 
by measuring defocus using the relative blurring be- 
tween two images of the same scene. Pentland et al. 
[8] introduced the concept of performing inverse fil- 
tering in the spatial frequency domain to recover the 
local defocus operator. In his work, two images of the 
same scene are taken, one with a pinhole aperture and 
one with a large-diameter aperture for shallow depth 
of field. He measures the change in defocus between 
two corresponding areas in the two images and thus 
computes the distance. 

Pentland has achieved very good results, citing 
speeds of up to 8 frames per second. Others have 
improved on accuracy by using more exact defocus 
models based on diffraction optics [ 11. These meth- 
ods do suffer from several drawbacks. They require 
significant computational resources to achieve real- 
time performance because of the need to perform 
convolutions and filtering on the images. 

Furthermore, the methods have generally been 
tested in constrained, static environments and over 
fairly shallow ranges of depth. For example, Ref. [3] 
cites results for depth map recovery over a 15cm 
range. Ref. [2] provides experimental data that ap- 
pears to encompass a comparable range although the 
specific distances are not disclosed. In fact, Pentland’s 
scene, that is 1 m3, appears to define the outer size 
limit of this body of work. 

In contrast to the above work, Krotkov [5] initiated 
the depth from focus approach, in which a large num- 
ber of images with different focus operators is used 
to estimate the maximum focus point. Krotkov’s ap- 
proach also requires a static scene because the method 
filters intensities based on temporal averaging. Fur- 

thermore, depth is recovered for only one window in 
the image, whereas, a mobile robot requires a multi- 
valued depth map in order to navigate around obsta- 
cles smoothly. 

Pyramid-based Depth from Focus [2] does create a 
depth map based on a large number of images. The au- 
thors acquire the-images using one lens with a servo- 
controlled focusing ring. By acquiring between 8 and 
30 images and interpolating the sharpness of objects 
over distance, they achieve good accuracy. Like its an- 
cestors, this method involves nontrivial computational 
resources and requires a static scene. 

A recent, successful vision system reported by 
Krotkov and Bajcsy [6] combines focus and stereo 
ranging to achieve reliable depth over a range of 2 m. 
Insofar as Krotkov and Bajcsy demonstrate that a 
cooperative ranging system is more reliable than the 
sum of its contributing technologies, our very simple 
depth from focus system can be coupled cheaply and 
effectively with stereo at the acquisition level and 
with other ranging technologies found on robots such 
as sonar, infrared and laser-rangefinder systems to 
create a more reliable whole. 

Current research has produced precise depth from 
focus systems capable of high degrees of accuracy at 
a high computational cost. Our research takes a step 
away from this attitude by abandoning inverse filtering 
altogether to decrease computational cost dramatically 
while also exchanging precision in favor of simplic- 
ity and robustness. Our method does not challenge 
the above research results in their areas of expertise; 
rather, it achieves very successful results in the do- 
main of mobile robotics, an area that the depth from 
focus community has not addressed. 

3. Categorization 

In building a simple system for robot navigation, it 
is important to investigate the minimum requirements 
of a perceptual system - what is the simplest sensing 
system that will allow robust obstacle avoidance be- 
havior? Fig. l suggests a flowchart for a simple robot 
control strategy. Although simpler strategies may be 
possible, the one shown allows for some degree of 
smooth behavior, as it slows down and begins to turn 
away from objects rather than coming to jarring halts 
in front of them. 
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Fig. 1. Robot control flowchart. 

What granularity is required of a vision system for 
this strategy? At a minimum, the sensing system has 
to differentiate between left and right and between 
close, medium, and far. That is, there are only three 
categories of distance that are crucial to this control 
strategy. Of course, the distances corresponding to 
each depth category depend upon scene dynamics and 
the robot’s maximum forward speed. It makes sense to 
ensure that the distance value corresponding to “close” 
be sufficiently large to allow the robot to safely stop 
from its intended forward speed, given the cycle times 
of the robot control system and vision system. 

Our depth from focus method capitalizes on the 
simplicity of this control strategy by categorizing a 
scene into only n discrete levels of depth. The resulting 
algorithm is much simpler than many previous depth 
from focus algorithms [3,8]. In fact, we depend only 
on the convolution that is performed instantly and for 
free by the defocusing lens. 

We begin by simultaneously recording n images of 
the same scene using n cameras (in our embodiment, 
n = 3). Ideally, the images would be identical except 
for the position of the focusing rings during image 
capture. In practice, this would require a light splitter 
to allow all cameras to share the same scene perspec- 
tive. Instead of using such a splitter, we grouped the 
cameras closely and introduced a small vergence to 
minimize the image shift error. Although the image 
shift is still quite evident, this approach has proven to 
be successful in our experiments. 

The scene is divided into regions, and the best dis- 
tance for each region can be computed by determining 
the image that provides the best focus. This results in a 
depth map of the scene, with a depth granularity equal 
to the number of images and width/height granularity 
based on the number and shape of regions. 

Fig. 2. Pictures of a concrete step at two different focus settings. 

Fig. 2 shows two focus points of a concrete sidewalk 
step. The closer portion of the step, that occupies the 
lower half of the images, is best in focus in image 
2(a), indicating that the focusing ring position for this 
image (40 in) is a better distance estimate to this step 
than the focus position of image 2(b) (55 in). 

We compute the sharpness of a region as the sum 
of the absolute values of the intensity differences be- 
tween all neighboring pixels in the region. In order to 
compute this sharpness measure, the algorithm must 
make only one pass over the pixel values. The entire 
algorithm is linear in cost with the number of pixels 
and the number of regions. Thus, the categorization 
method we propose yields a computationally inexpen- 
sive method for obstacle avoidance. 
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Fig. 3. Architecture of the mobile robot. 

4. Implementation 

A schematic diagram of the mobile robot system is 
shown in Fig. 3. This obstacle-avoiding robot consists 
of three subsystems: motor, vision, and motion control. 
The motor subsystem, that also serves as a chassis 
for the entire robot, consists of a Nomad 150 robot 
(Nomadic Technologies, Inc.). This cylindrical robot 
has three degrees of freedom: it can translate forward 
and backward; it can rotate its wheel base; and it can 
rotate its turret (the upper third of the robot, that moves 
separately from the wheel base). 

The task of the vision and control system is to pro- 
vide a desired velocity to the robot for each of the 
degrees of freedom, approximately once every 0.25 s. 
The robot’s sonar ring and position encoders were dis- 
abled to create a purely vision-driven robot. 

The vision subsystem is entirely aboard the Nomad 
150. It consists of four Sony XC77 2/3” CCD cameras 
(768 x 493), a neutral density filter, three lenses, three 
junction boxes, a Matrox Meteor RGB framegrab- 
ber, and a custom Pentium computer with the Triton 
chipset and fastPC1 toolkit. The three lenses are identi- 
cal 12 mm lenses with a field stop range of 0.3 m to in- 
finity. The entire system is powered by on-board 12 V 
PowerSonic batteries and can run for several hours. 
The total cost of this vision hardware is approximately 
$5500. 

Three cameras are angled down from the horizon- 
tal at approximately 35”, with a small vergence to 
minimize the image shift error. A one-to-three image 
splitter would have been an even better optical solu- 

tion to the problem of minimizing perspective shift 
between the three images, although such an optical so- 
lution proved unnecessary. The focusing rings are set 
to positions of 0.4, 1, and 2 m, corresponding to close, 
medium, and far categories, respectively. The three 
CCD cameras are synchronized by being slaved to a 
fourth Sony CCD’s synch output. The three signals 
are fed directly into the separate R, G, and B inputs 
of the color framegrabber. The framegrabber digitizes 
the signals simultaneously and then stores the “color” 
image on the Pentium computer’s main memory using 
DMA over the K I  bus, that is capable of a transfer rate 
greater than 100Mbytes per second. This high trans- 
fer speed enables us to recover 8 bits of intensity for 
each “color,” or image while maintaining a frame up- 
date rate of 15 frames per second. However, memory 
access limitations under DOS reduced our processing- 
side frame update rate to 4 frames per second. 

In our experiments, we found that breaking the 
640 x 480 images into an 8 x 5 depth map provided for 
reasonable performance and sufficient granularity for 
the obstacle avoidance task. The depth map contains 
40 regions, each assigned 2, 1, or 0, corresponding to 
close, medium, and far, respectively. 

These three depth values represent less than two bits 
of depth information. How do we take advantage of 
such minimal information to successfully navigate in 
a dynamic world? The first step is to recognize that, 
from a naive perspective, there are two ways in which 
an obstacle can be differentiated from the expected 
world view. In one case, the obstacle is an object that 
is closer than expected. That is, the robot expects to 
see the floor three feet away but instead sees an object 
just 6 in away. This is, by definition, an obstacle to be 
avoided. The second case is that of an object that is 
further away than expected. If the robot expects the 
floor to be three feet away but instead detects an object 
(in the direction of the floor) ten feet away, then the 
robot is standing before a cliff or ledge and must, by 
definition, avoid that obstacle as well. 

This expectation-based approach, then, is to posi- 
tion the cameras so that both convex and concave 
obstacles will cause a predictable disparity between 
the expected and observed three-value depthmap. This 
process involves a combination of choosing the proper 
downward pitch for the camera system while simulta- 
neously choosing the appropriate focus points for each 
of the three cameras so that the status quo image (that 
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of the floor with neither ledge nor convex obstacle) 
registers a ‘medium’ in a prescribed location of the 
depthmap. 

In the case of our particular robot, we adjusted the 
downward pitch of the camera system and the camera 
focus points so that an unobstructed view of the floor 
yields a depth map containing two bottom rows of 
‘medium’ and three top rows of ‘far’ categorization. 
If the depth map contains more than four ‘far’ values 
in the bottom two rows, there is strong evidence that 
there is an object farther away than the floor very near 
the robot (i.e. a dropoff of some sort). The robot stops 
in this circumstance, turns 180”, and begins moving 
again. Using the bottom two rows rather than just the 
bottom row enables the robot to stop earlier as it ap- 
proaches a step because the dropoff is first detected 
higher on the image. 

In the absence of a step, the algorithm first sets 
any ‘medium’ ’ (  1) values in the bottom two rows to 
‘far’ (0), and then sums the values in each of the 
eight columns. If any of these sums is larger than 1, 
then there must have been at least two ‘medium’ val- 
ues or one ‘close’ value in that column, and the con- 
trol system turns away from impending doom. The 
robot chooses the direction by comparing the sum of 
the left four columns with the sum of the right four 
columns. 

The robot’s rotational velocity in degrees per sec- 
ond is five times the sum of all depth map columns. 
The translational velocity in inches per second is 12 - 
(rn x 3 . 9 ,  where m is the maximum of the depth 
map column sums. The rotational velocity is gov- 
erned to remain in the range -30-30 while the trans- 
lational velocity is governed to remain between 0 and 
12. 

5. Experiments 

Initial mobile tests were conducted in several lecture 
rooms at the Computer Science Department. These 
rooms have bright, diffuse lighting and a variety of ob- 
stacles: chairs, tables, and people. The robot detected 
all obstacles in this setting and was able to move at a 
speed of 10 in per second reliably. We were surprised 
to discover that the robot, which is 19in wide, navi- 
gates easily through standard 33 in doorways -despite 
having only 6.5 in clearance on each side. 

Further indoor tests were conducted in the hall- 
ways and lounge areas of the Computer Science 
Department. These test were the most challenging: 
lighting conditions and wall texture vary greatly 
throughout the area. Additional risks included two 
open staircases and slow-moving students who ac- 
tively tried to confuse the robot into falling down the 
stairs. 

The robot performed extremely well in this complex 
indoor domain, avoiding the staircase as well as the 
students. The robot can reliably navigate from inside a 
classroom, through the doorway, into the hallway, past 
the stairs, and into the lounge with perfect collision 
avoidance in spite of moving students. We executed 
this 10 min sequence, then allowed the robot to wander 
the lounge for an additional 1Omin several times. In 
all three runs, the robot operated fully autonomously 
and the only environmental modification involved the 
removal of one coffee table in the lounge which was 
vertically beyond the field of view of the vision system. 
Average speeds in this domain were approximately 
8 in per second. 

The transition to outdoor test domains introduced 
novel environmental characteristics. The outdoor 
world contains extremely intense and direct lighting, 
forcing us to place sunglasses (neutral density filter 
gel) on the robot’s ‘eyes’ to preserve the shallow 
depth of field associated with a wide iris aperture. 

The outdoor environment also contains an abun- 
dance of single steps that have only 7in drops. For 
safety, the visual system would have to detect all such 
steps without error. Furthermore, the floor of the out- 
door arcade, where we ran our first outdoor tests, 
is composed of 12in tiles with discrete edges and a 
checkerboard coloring pattern rather than the homo- 
geneous texture of indoor carpeting. 

Testing at these outdoor steps proved that the step 
detection feature is extremely reliable and does not 
make assumptions about the homogeneity of floor tex- 
ture. The robot was able to detect the steps and stop 
safely in all cases, even during oblique approach an- 
gles of up to 60”. Over several weeks of testing, ac- 
cumulating more than 15 h of outdoor time, the robot 
detected dropoffs and static obstacles with 100% reli- 
ability. Furthermore, false positive detection of steps 
proved to be essentially nonexistent. 

Our final experimental result involved an out- 
door demonstration of the robot for members of the 

‘ 
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Fig. 4. The Robot during outdoor experimentation. 

Computer Science department and researchers from 
industry. On 12 June 1995, the robot was placed in 
Memorial Court. This concrete-floored “playground” 
is bordered by a dropoff along one edge, stairs lead- 
ing up along the opposite edge, and bushes and pillars 
along the other two edges. 

We invited participants of all ages to interact with 
the robot, stepping in its way and controlling its path 
by “herding” it. They were also instructed to herd the 
robot toward the dropoff to test its reliability there. 
During a continuous two-hour demonstration, the 
robot interacted completely autonomously with 20-40 
participants at a time. Children even held hands, suc- 
cessfully encircling the robot to play ‘ring around the 
roses’ (see Fig. 4). The robot approached the dropoff 
and the staircase more than 25 times, detecting them 
with 100% accuracy. 

The robot’s sensory and effectory loops were suffi- 
ciently fast that participants, including small children, 
were able to easily herd the robot from place to place 
simply by walking alongside it. The robot moved at a 
speed of loin per second, which is approximately a 
slow walking pace. Over the course of the demonstra- 
tion, the robot came in contact with no static obstacles 
and contacted a moving obstacle (i.e. a human) only 
once. 

6. Conclusion 

Experimental results demonstrate that this simple 
vision system enables robust obstacle avoidance in a 

wide variety of environments. Significantly, the imple- 
mentation does so with relatively inexpensive equip- 
ment and a highly granular but reliable depth map. A 
most important conclusion to be drawn from this work 
is that extremely coarse vision can provide sufficient 
depth information to enable reliable obstacle avoid- 
ance in real-world circumstances. Note that the low 
resolution of our resulting depth map, which would 
usually be considered a liability, is an asset in this 
case, because it simplifies both sensing and compu- 
tation while providing adequate information for real- 
world obstacle avoidance. 

Future work will extend the current set of exper- 
iments by implementing the Depth Categorization 
module on a robot with pan and tilt degrees of free- 
dom. This will significantly increase the robot’s field 
of view, enabling the construction of larger depth 
maps as well as the implementation of directed atten- 
tion approaches. 
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