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Abstract 

This paper concerns tdae learning of basic behaviors in an autonomous robot. It presents a method to adapt basic reactive 
behaviors using a genetic algorithm. Behaviors are implemented as fuzzy controllers and the genetic algorithm is used to 
evolve their rules. These rules will be formulated in a fuzzy way using prefixed linguistic labels. In order to test the rules 
obtained in each generation of the genetic evolution process, a real robot has been used. Numerical results from the evolution 
rate of the different experiments, as well as an example of the fuzzy rules obtained, are presented and discussed. © 1998 
Elsevier Science B.V. All rights reserved. 
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1. Introduct ion 

Artificial Life has been defined as "a scientific dis- 
cipline that studies how behavior of  agents emerges 
and becomes intelligent and adaptative" [13]. Many 
experiments have been made in this sense using neu- 
ral networks, classifier systems, etc., showing how 
these behaviors can emerge. This paper presents the 
evolution of  the behavior of  a robot using a different 
paradigm: fuzzy logic. In this way, the evolution of  the 
control rules for an autonomous robot using a genetic 
algorithm is presented.. 

We have chosen fuzzy controllers as a symbolic 
representation for many reasons. First, because fuzzy 
rules and linguistic labels are close to the human 
way of  expressing behavior rules. This means that we 
can easily evaluate the rules that have been obtained 
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in a genetic way. Second, fuzzy controllers are very 
flexible, which makes them easily adaptative. Third, 
fuzzy sets theory is a well-suited paradigm that has 
shown its effectiveness in many autonomous systems. 
And finally, fuzzy theories are open to be shared 
among different agents [8], which is quite interesting 
in our further work. 

Fuzzy controllers have two main parts. The first one 
is made up by the linguistic labels, and the second one 
by the fuzzy rules. Linguistic labels can be viewed as 
low level ideas or symbolic concepts. These concepts 
can be interpreted in different ways. For instance, the 
concept near will not have the same physical meaning 
for a one meter diameter robot as for a 5 cm one. Fuzzy 
rules express the relations among these concepts. In 
this paper we present a method for adapting these rules 
using genetic programming. 

In our experiments, the robot starts up with no in- 
formation about the right rules to move around. From 
this situation, the genetic method is able to reach a set 
of  rules that represents the highest adaptability grade 
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to the information provided by sensors. The only given 
and fixed data are: the number of inputs (number of 
robot sensors), the partitions of the input domain (the 
range of the sensors), the number of outputs (number 
of robot motors) and the motors range, but it has no 
information about how do they relate to each other. 
This knowledge is obtained by the evolution process. 

The rest of this paper is organized as follows. 
Section 2 is concerned with the fuzzy description 
of the problem and the particularities of evolving a 
fuzzy controller. Section 3 deals with the description 
of our experiments. Finally, in Section 4 the result of 
these experiments is discussed and our future work is 
presented. 

2. Problem description 

Fuzzy controllers have been widely used to con- 
trol different kinds of autonomous robots in order to 
accomplish different tasks. For instance, in [11] the 
LIFIA architecture is presented. This is a hierarchy of 
layers, each one working asynchronously with its own 
level of data abstraction, where the navigation module 
consists of a reactive module based on fuzzy logic. 
Other example of an autonomous system controlled 
using fuzzy behaviors is given in [10]. This system 
consists of a car which navigates autonomously us- 
ing a group of fuzzy rules sets. Another classical 
one is the architecture of the Flakey robot [12]. This 
is an approach for integrating planning and control 
based on "behavior schemas", which link the phys- 
ical movements to abstract action descriptions by 
using the operations of multivalued logics, where 
goals and controllers can be combined to produce 
conjoint goals and complex controls. 

In order to present the bases of these systems and 
the learning mechanism used to adapt the fuzzy control 
rules, the basic concepts of the fuzzy logic controllers 
are introduced in the next section. In Section 2.2 the 
strategy of design is presented and in Section 3 the 
adaptation process is described. 

2.1. Fuzzy controller 

The first step in the design of a fuzzy controller 
should be to select adequate descriptions of the rel- 
evant inputs for the control, such as the distance to 

obstacles, similar to those formulated by humans when 
they describe the perceived features. So, given the 
numerical distance di to an obstacle perceived by a 
sensor, Di is defined as the range of all possible values 
of the computed distance di. To better cope with the 
intrinsic uncertainty that underlies the appearance of 
perceptual inputs (distorted after the acquisition pro- 
cess), the numerical values of the distances di can 
be mapped into qualitative symbolic labels through a 
fuzzification process [15], transforming the computed 
distances into linguistic variables. 

A linguistic variable [15] is a variable whose values 
are sentences in a natural or artificial language, that is, 
a concatenation of atomic terms: labels (adjectives), 
hedges (modifiers such as very, much, slightly, etc.), 
negation and makers (parentheses). The meaning of a 
linguistic variable is defined as the fuzzy subset for 
which the value of the linguistic variable serves as a 
label. A fuzzy subset A of a universe of discourse U 
is characterized by a membership function/z : U 
[0, 1] which associates with each element y of U a 
number/£a (Y) which represents the degree of mem- 
bership of y in A. The operation of fuzzification (appli- 
cation dependent) has the effect of transforming a non- 
fuzzy quantity into a fuzzy variable. The value of, for 
instance, a linguistic variable distance (a natural label 
such as near) represents a much less precise meaning 
than the numerical value of the inches to the obstacle. 

Using these concepts, for each distance sensor di, 
a linguistic variable Ldi is introduced together with 
a set of values Idil, ldi2 . . . . .  ldimi, whose cardinality 
is mi. Each Idij in the set labels a fuzzy subset in the 
universe of discourse Di (that is the range of possi- 
ble values returned by the sensor) with membership 
function ~ldij(di). Values of the membership func- 
tion of a label are related to the difficulty of attribut- 
ing this label to a numerical value di obtained from 
the sensors of the robot. The fuzzification operation 
adopted, affecting the numerical values di, will result 
in their transformation into a fuzzy singleton [15] or 
fuzzy subset whose support is a single point in Di, 
with membership function equal to one. 

After that, a fuzzy relational algorithm [15] (FRA) 
is used to store the knowledge required to control 
the autonomous robot through a fuzzy reasoning pro- 
cess, based on the linguistic labels of the inputs. The 
FRA is composed of a finite set of fuzzy conditional 
statements. Where the antecedent are conjunctions 
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Fig. 1. Robot  configuration. 

about the linguistic wtriables Ldi (linguistic variable 
defined over the distance measured by sensor di). 
Their consequents are also fuzzy conjunctions about 
Link (linguistic variahle defined over the speed that 
will be applied to motor ink), whose possible val- 
ues are lmkl, link2 . . . .  , lmkn. So, a rule of the fuzzy 
controller may be 

IF Ldl IS ldu AND Ld2 IS Id23 AND .. .  

AND Ldi IS ldij TI{EN Lml IS lml4 

AND .. .  AND Link IS Imkl 

An extension of the modus ponens rule is used as 
the inference mechanism to obtain the fuzzy subset 
induced in each Link by the fuzzy conditional state- 
ments. As there can be several conditional statements 
forming the FRA, the meaning of each Link is calcu- 
lated as the intersectkm of the intermediate meanings 
resulting from each application of the CRI. The fuzzy 
subset of Link is obtained after max-rain product [16] 
of discretized versions of tZldir (di). 

Finally, the adopted, defuzzification process on Link 
is a version of the center of gravity procedure. This 
method treats the rules separately. Each rule produces 
a level of activation, ).kt,in the output labels Imkl. Let 
CImu be the numerical representative of each label, 
Imkl (calculated using the method of the gravity cen- 
ter). Then, the output is taken as a type of weighted 
sum: 

sum : ( E  &kIClmkt)/ ( E  &kl). 

2.2. Designing an FRA 

The design of the rules to control an autonomous 
system using an FRA is not a trivial issue. Let us con- 
sider a system, similar to the robot we have used, with 
eight input signals (sensors) and two outputs (motors), 
codifying each one of the sensors inputs with only 
two linguistic labels (near, far), and each one of the 
outputs with five labels (very-forward, forward, stop, 
back, fast-back); the number of possible fuzzy roles 
is 6400. But if we use a high level of granularity in 
our system, for instance, if every variable is codified 
with five linguistic labels, the number of rules will be 
9 765 625. Using a typical eight linguistic labels for 
variable, the number of rules would be in the range of 
billions (1073 741 824). 

Of course, only a few rules are needed (typically 
less than a hundred) to get a sophisticated behav- 
ior. The problem is how to choose these rules. Until 
now, the most commonly used method has been ask- 
ing human experts the rules. But humans usually think 
in an antropomorphical way, which can cause some 
problems. 

Let us consider a simple autonomous robot such as 
the one in Fig. 1. This robot has only got two prox- 
imity sensors (sensorl and sensor2), and two motors 
(Motorl and Motor2). When a human is asked to write 
some rules to let the robot wander through the world 
without crashing, the obtained rules would be some- 
thing like IF sensorl IS near THEN Motorl IS fast. 
This means that when an obstacle is perceived by the 
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left sensor, the left motor speed is increased in order 
to go away from the obstacle by turning right. The 
symmetrical rule will be written in the same way. 

If  this group of rules is tested on a robot, it would 
be proved that the robot begins to continuously in- 
crease its speed trying to avoid obstacles till it bumps 
into an obstacle. The problem can be defined as a con- 
tinuous increase of entropy. It can be easily corrected 
by writing the rules in an opposite way - IF sensorl 
IS near THEN M2 IS slow - and adding a new rule 
to increase the speed when there are no obstacles - 
IF (sensor1 IS far AND sensor2 IS far) THEN (M 1 
IS forward AND M1 IS forward). We want to test 
whether this problem would appear if the rules were 
obtained using genetic evolution. 

Another problem with human rules is that they are 
designed in a theoretical world: the human mind. This 
means that the rules have to be tuned many times till 
they reach an acceptable performance. This is caused 
by the differences among sensors due to the differ- 
ences in the manufacturing process. So, another factor 
to consider in the evaluation of our method will be its 
tolerance to hardware constrains. The use of a fuzzy 
controller to evaluate rules provides a softer decline 
in the performance of the system by reducing the de- 
pendence between a concept and its representation. 

Another example appears in [6] where the application 
of this method to three different physical systems is 
presented: a liquid-level system, a pH system and 
a satellite-rendezvous system. In each of these ap- 
plications, the genetically designed fuzzy controllers 
outperforms the human designed ones. Fewer ex- 
periments have been made in the evolution of fuzzy 
linguistic labels. One of them is the genetic method 
presented in [7], which determines, in a TSK fuzzy 
model (where the output variables are computed as 
linear combinations of the input values), the member- 
ship functions, the number of fuzzy rules and the rule 
consequent parameters. This system is applied to the 
classical inverted pendulum control problem. 

Finally, some works have also been proposed in the 
evolution of fuzzy controllers applied to the control 
of autonomous vehicles. For instance, in [2] a gen- 
eral method for the evolution of rule-based fuzzy con- 
trollers is presented. Another methodology based in 
a hierarchical prioritized structure using a messy ge- 
netic algorithm is applied in [5] to the control of an 
autonomous vehicle. 

In the rest of this section we will briefly describe 
our approach, starting by the robot used in our exper- 
iments, and then we will discuss our work: genetic 
evolution of a fuzzy controller for the control of an 
autonomous robot. 

3. Adaptation of fuzzy behaviors 3.1. The mini-robot Khepera 

Different methods can be found in the literature 
about learning of fuzzy controllers. Most of them are 
based on the use of neural networks [3], but some use 
also genetic methods to learn plans for autonomous 
robots. For example, Ref. [1] presents a genetic 
method to formulate new sets of low-level decision 
rules for robot movements and pushing techniques. 
Each rule checks if certain conditions are true (ob- 
stacles detected, goal position, etc.), and it executes 
a number of corresponding operators (move forward, 
move backward, turn left or turn right). The genetic 
competition occurs among sets of behavior rules 
(plan) after testing the plans. The main problem in this 
approach is that it has only been tested on a simulator. 

Some works have also been made in the genetic 
evolution of fuzzy rules. For instance, in [14] a ge- 
netic algorithm for the design of the fuzzy rules is 
presented to center a cart by applying a single force. 

The robot that has been used is the mini-robot 
Khepera [9], which is a commercial mini-robot devel- 
oped at LAMI (EPFL, Lausanne, Switzerland). This 
robot has a circular shape with a diameter of 5.5 cm, 
a height of 3 cm and a weight of 70 g. It moves using 
two wheels and two small Teflon balls. The wheels 
are controlled by two motors that let the former move 
in both directions. The robot has also eight infra-red 
proximity sensors. 

The heart of the robot is the Motorola 68331 con- 
troller with 256Kbytes of RAM and 512Kbytes of 
ROM which manages all the input-output routines and 
can communicate via serial port with a host computer. 
It also has its own batteries which let it work au- 
tonomously. It is also possible for it to work attached 
to a workstation via the serial port. This lets the robot 
use workstation resources (such as the hard disk to 
store data). 
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Fig. 2. Experimental environment. 

We have preferred to use a real robot instead of a 
simulation for two reasons. First, because a perfect 
simulation of a simple robot as Khepera requires hard 
computations. For instance, the simulation of the sen- 
sors, taking care of the lab lightening, orientation of 
robot, etc; would require huge calculations. And sec- 
ond, even a very good simulation is unable to consider 
all the physical laws of a real robot such as inertia, 
friction, failures of the hardware, etc. 

3.2. Adaptation of fu:'~ rules 

Our first goal was to test if the rules obtained by 
means of genetic evolution were able to control suc- 
cessfully an autonomous robot as it has been probed 
in other environments, [6,14]. So, the robot was given 
some fixed concepts such as near, far, etc. for the sen- 
sors and slow and f~tst for the motors. The genetic 
program should be able to successfully combine these 
concepts. 

The robot was located in a simple environment. It 
consisted of a rectangular area with two obstacles sit- 
uated as shown in Fig. 2. The walls were made of 
cardboard and the floor was the surface of a wooden 
table. This table was situated in an artificially illumi- 
nated laboratory, without windows, in order to avoid 
variations in the lightning conditions. 

Each of the Khepera sensors returns an integer, 
whose range is an integer between 0 (no obstacle 
detected) and 1023 (an obstacle just in front of the 
sensor). The speed of both motors is also fixed by an 
integer. In this case, the range we have used goes from 
- 1 0  (maximum speed backwards) to 10 (maximum 
speed forward). In order to design the controller we 
have grouped the six frontal sensors into two groups 
(using a simple average of the values returned by each 
sensor), as shown in Fig. 1. So, the fuzzy controller 
will have four linguistic variables (sensorl, sensor2, 
motorl and raotor2). 

We have defined five fuzzy partitions for each one 
of the sensor and motor variables. These partitions 
are defined as is shown in Fig. 3. So, the behavior 
of an individual can be defined by two 5 x 5 tables, 
each one controlling one motor. Given a perceived 
situation, described in terms of the fuzzy partitions of 
the sensors, each table assigns a fuzzy partition of the 
motor variable to its corresponding motor. 

These tables will be the chromosomes [4] that will 
be optimized by the genetic algorithm. The alleles will 
be integers {0, 1, 2, 3, 4, 5} which correspond to the 
five membership functions Very-Backward, Backward, 
Stop, Forward, and Very-Forward previously defined, 
plus blank, which indicates that there is no relation 
between the two membership functions. Both tables 
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Fig. 3. Fuzzy partitions for sensors and motors. 
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Fig. 4. Genetic codification of the fuzzy controller. 

make up the genotype of each individual and its chro- 
mosome is consequently made up by 50 integer gens. 
This process is summarized in Fig. 4. 

The phenotype is the behavior that the fuzzy con- 
troller produces. The behavior is obtained applying 
the usual fuzzy operations: fuzzification, max- 
composition and centroid defuzzification. These phe- 
notypes are tested in the environment and the best one 
is promoted to the next generation. In order to mea- 
sure the performance of the phenotypes we should 
define a fitness function. 

The fitness criterion, 0 ,  was defined depending on 
three variables directly measured on the mini-robot 
Khepera, and a fourth one on the genotype, as 

V(1 - ~/~)(1 - I )  

where the variable I represents the normalized value 
of the sensor which presents the highest level of acti- 
vation: 

sensor 
I - -  - -  

1023 ' 

V is the rotation average speed of the two wheels: 

average 
V -  

10 

and D is the normalized absolute value of the differ- 
ence between the speed of the two wheels: 

I 131 - -  132 I 
D - -  

20 

This makes function O be maximized by obstacle 
avoidance, higher speed, straight direction, and fewer 
rules. rules 
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This function has been heuristically developed. The 
first attempt was built considering only the number 
of collisions. This value is given by the variable I 
(when the robot bumps into an obstacle one sensor gets 
its maximum activation value). The obtained behavior 
was that the robot tends to be quiet. Obviously, this is 
one of the best ways to avoid collisions. 

In order to make the robot move, the variable V was 
introduced. This variable evaluates the speed of the 
robot, that is, forces robot movements. Unfortunately, 
the phenotype obtained was that the robot moves, but it 
moves in circles over its position. Again, this is the best 
way of moving without bumping into any obstacle. 

The appropriate phenotype was achieved when the 
variable D was introduced. This variable penalize in- 
stant differences (turns) between the speeds applied to 
the wheels. This means that better fitness is obtained 
when the robot tries to move further. Finally, the num- 
ber of rules was introduced in order to reward pheno- 
types using a reduced set of rules. 

The evolutionary tJ:aining was a standard genetic 
programming process. It consists on 100 generations 
of 100 individuals each. The mutation operator was 
defined to change a fuzzy code of the chromosome, 
either up or down a level, including the blank code. 
The crossover operater used was a standard two-point 
crossover. The life time of each individual has been 
set to 20 s. This time let the robot go over most of the 
environment of Fig. 2. 

An elite strategy, meaning that the best individual 
is automatically promoted to the next generation, was 
used to generate new populations. The probability val- 
ues for the genetic operators were heuristically cho- 
sen and the following figures show how these factors 
influence on the learning process. 

3.3. Experimental discussion 

An example of the behaviors obtained is shown in 
Fig. 5. They were obl:ained using the following prob- 
abilities configuration: 

Obstacles 1 
Mutation 0.2 
Crossover 0.2 

At first sight, the :set of rules obtained looks OK. 
It deals properly with the entropy problem: the con- 
troller uses the label Very-Forward only when it does 
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Fig. 5. Fuzzy controller obtained. 
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Fig. 6. Average vs. best fitness. 

not detect any obstacle. Besides, the turns are made 
by reducing the speed of one the wheels instead of 
accelerating. However, some strange rules have been 
generated. For instance, there are some blanks. This 
means that no rule was generated for that situation. 
This is due to the fact that we are rewarding the reduc- 
tion in the number of rules. In fact, this is not a very 
interesting parameter and in our further experiments 
the number of rules would be probably removed from 
the fitness function. 

Another singular set of rules is, for instance, the one 
that makes the robot go backwards in some situations. 
There are two major causes. The first one is that back 
sensors are not being considered. The second one is 
that the fuzzy partitions of the sensors were not well 
defined. The main problem here is the sensibility of 
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Fig. 7. Average vs. best fitness. Fig. 8. Fitness vs. two main component factors. 

the sensors. The definition made in Fig. 3 assumes that 
sensors sensibility is linear. This is not true, sensors 
have higher sensibility in some distances. Anyway, the 
behavior of the robot was the desired one. The robot 
moves in its environment as shown in the right part 
of Fig. 5. This means that the robot learns rules for 
the specific labels given. In future experiments, the 
evolution of the labels should also be considered. 

Fig. 6 shows the evolution of the average fitness of 
each generation versus the fitness of the best individual 
of each generation for the same experiment. It can be 
appreciated that, although we allow 100 generations, 
around the 60th generation in most of the experiments, 
the population has learned to avoid obstacles. 

Fig. 7 shows the same factors using different prob- 
abilities for the genetic operators: 

Obstacles  1 
Mutat ion 0.4 
Crossover  0.4 

This figure shows that if both the probabilities of 
mutation and crossover rise, then the speed of the 
learning process increases. We have also made exper- 
iments increasing only one of these factors and modi- 
fying the number of individuals in each generation and 
the number of generations. In this case, the increase 
of the speed is lower. 

In Fig. 8 we show the contribution of the three 
different parts of the function ~9 versus the total fit- 
ness. Both values (parts and total) shown in Fig. 8 
correspond to the average of the individuals of each 

population. We have also tested the consequences of 
using a factor to improve one of the abilities, for in- 
stance, "to run faster" against "to keep safe". In these 
cases, the robot gets the behavior of avoiding obsta- 
cles but it gets an "specialized" behavior. This means 
that the robot, for instance in the case of keeping safe, 
develops rules that make it turn earlier. This makes 
this method of generating controllers really adaptable, 
so the only effort by the human designer is fixing the 
fitness function. 

4. Conclus ion 

In this paper we have proposed a method to evolve 
high level rules using classical genetic algorithms. 
Using these evolutionary processes the mini-robot 
Khepera has been able to develop an autonomous 
behavior which allows it to move in an unknown envi- 
ronment without bumping into the obstacles. The role 
of researchers has been limited to provide the survival 
criterion and the structure of the fuzzy controller. 

Artificial life community has not been very con- 
cerned about the emergence of symbolic concepts. On 
the other hand, the machine learning community has 
been mainly focussed on the improvement of the sym- 
bolic knowledge that a machine has about the word  
and how to operate in it. From this point of view, 
it has been forgotten how this symbolic knowledge 
can be obtained from raw data perceived in the real 
world. 
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The average set of rules of the individuals in the 

last generation shows flaat this method provides solu- 
tions that are similar to those designed by humans, or 
even better if the humans designers are not aware of 
problems like the increase of entropy. 

Our current work is aimed at using the same ap- 
proach in the emergence of the fuzzy membership 

functions and in the evolution of both parts of the 
fuzzy controllers at the same time. We are confident 

about the possibility of evolving both at the same time. 
We are also studying the possibility of mixing human 

designed controllers with genetically obtained ones. 
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