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Abstract

The main idea in object tracking is to support the processing of incoming images
by predicting future object’s poses and features using the knowledge about the ob-
ject’s previous motion. In this paper we present a new method for the prediction
and adjustment of motion parameters to the current measurements using the quater-
nion representation for the orientation and the Gauss-Newton iteration on the unit
sphere S3. Unlike other trackers, our tracker searches for estimates directly in the
space of rigid body motions (represented by R

3 × S3) and takes into account the
differential and geometric properties of this space. We present some results showing
the successful tracking in synthetic and real image sequences.
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1 Introduction

Object tracking in long image sequences is an important issue in many robotic

applications and has been studied extensively in the past. Most of the pro-

posed approaches consist of the initialisation and the tracking phase. In the

initialisation phase, the object of interest must be found and its initial motion

parameters must be determined. In this paper we deal only with the tracking

phase, in which the information about the object’s previous motion is used to

calculate the next set of motion parameters. This is usually divided into four

steps: prediction, projection, measurement and adjustment. Tracking systems

usually use a variant of Kalman filtering to govern this process [3,6,10,11,13].
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The kinematics of any point P belonging to a rigid body is completely char-

acterised by v(t), the velocity of the point of the body coinciding with the

origin O of the body-fixed coordinate system, and ω(t), the angular velocity

of the point P around the origin of the reference coordinate system

vP (t) = v(t) + ω(t) ×−−→
OP . (1)

A closed form solution for this general motion is not known. A common ap-

proach in tracking is to assume that the acceleration of the origin of the

body coordinate system and the angular acceleration are both random with

expected value zero and with constant power spectra a and α, respectively,

E(v̇) = 0, E(v̇v̇T ) = aI, E(ω̇) = 0, E(ω̇ω̇T ) = αI, (2)

where I denotes the identity matrix. In this paper we show how to implement

the prediction and the adjustment phase based on the above motion model.

The velocity of the origin of the body coordinate system v should not be

mixed up with the spatial velocity of a rigid body vs, which is often used in

kinematics and describes the velocity of a (possibly imaginary) point of the

body coinciding with the origin of the reference coordinate system. They are

related by vs = −ω × −→
O + v. We prefer to use the velocity of the origin of

the body coordinate system to parameterise the rigid body motion because

the mapping describing the position of a rigid body undergoing motion with

constant spatial velocity is nonlinear – it is given by screw actions of a constant

twist multiplied by the time parameter [8,13].

2 Parameterisation of the orientation and the exponential map

While the position of an object can be represented by a 3-D vector, this is

not the case for the orientation because the set of all orientations does not

form a vector space. The set of all orientations, however, is a group and a real

three dimensional manifold [8]. It is well known that there exists no minimal,

i. e. three dimensional, representation of the orientation with the following two

properties: (a) the representation contains no singularities, i.e., a continuous

motion of the object whose orientation is represented always produces a con-

tinuous trajectory in the parameter space, and (b) the partial derivatives of
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the parameters with respect to any differential rotation, at any orientation, are

finite. On the other hand, there are many non-minimal representations which

fulfil these two requirements [3]. The most noticeable examples among them

are quaternions of unit norm and rotation matrices. Minimal representations

comprise Euler’s (or RPY) angles [7,10,11] and rotation vectors [13].

Despite all the deficiencies, minimal representations are currently a method

of choice rather than an exception in object tracking. The reason for this is

that a non-minimal parameter system fulfilling the two conditions above forms

a three dimensional manifold in a higher dimensional Euclidian space. Such

parameters must thus fulfil additional conditions, such as the unity of norm,

to be guaranteed to lie on the constraint manifold. This causes problems when

an optimisation criterion involving non-minimal parameters representing the

orientation should be minimised because optimisation methods are usually

based on the linearisation of the criterion function. However, linear corrections

applied to such a set of parameters can cause the parameters to depart from the

constraint manifold. This difficulty can be resolved by stating the problem as a

constrained optimisation problem, but such problems are significantly harder

to solve than their unconstrained counterparts. In this paper we propose a

better approach based on the properties of the manifold of rigid body motions.

A quaternion q = (w, u) is a four dimensional vector which can be considered

to consist of a real part w and a 3-D vector u. The quaternion multiplication

is defined by

q ∗ q′ = (ww′ − uT u′, wu′ + w′u + u × u′). (3)

Quaternions form a non-commutative group under the above multiplication.

The magnitude of a quaternion is defined as follows

|q| = √
q ∗ q =

√
w2 + uT u, q = (w,−u). (4)

A quaternion with a zero vector part is identified with a real number in (4).

A vector v′ ∈ R
3 rotated from a vector v ∈ R

3 by a rotation represented by

a unit quaternion q (see Eq. (7)) can be calculated by a simple quaternion

multiplication

v′ = q ∗ v ∗ q. (5)
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In this multiplication the 3-D vectors v and v′ are treated as quaternions with

a zero scalar component.

The set of unit quaternions can be viewed as a sphere S3 in R
4. We denote

the tangent space of S3 at q by Tq(S
3). In the following we shall need the

exponential map exp : T1(S
3) ≡ R

3 → S3, which is defined by [4]

exp(r) =


(
cos(‖r‖), sin(‖r‖) r

‖r‖
)

, ‖r‖ 
= 0

1 = (1, 0, 0, 0), r = 0

. (6)

To give a geometric meaning to the exponential map, we make use of geodesic

curves which are defined as the shortest paths connecting any two points on

the manifold. The exponential map transforms each tangent vector r ∈ T1(S
3)

into a point q ∈ S3, where q is the point at distance ‖r‖ from 1 along the

geodesic curve starting from 1 in the direction of r [5]. Such a geodesic curve

can be written as exp(tr). The exponential map can be also used to calculate

a unit quaternion representing the rotation by ϑ about a unit axis vector n

q(ϑ, n) =

(
cos

(
ϑ

2

)
, sin

(
ϑ

2

)
n

)
= exp

(
ϑ

2
n

)
. (7)

It turns out that for any quaternion q ∈ S3 and for any tangent vector rq ∈
Tq(S

3), we have rq ∗ q ∈ T1(S
3) ≡ R

3 and the exponential map at q, expq :

Tq(S
3) → S3, is given by [5]

expq(rq) = exp(rq ∗ q) ∗ q. (8)

Geodesic curves on the manifold of rigid body motions depend on a choice of

a metric. The metric giving rise to geodesic curves, which can be expressed

by the exponential map (6), does not take into account the dynamic proper-

ties of the observed body. Differential equations defining the shortest paths

with respect to a metric that does take into account the dynamic properties

of a rigid body can be found in [12]. Unfortunately, a closed form solution

for these differential equations is not known. The absence of a closed form

expression makes this kind of geodesic curves much more difficult to compute

and therefore not suitable for our approach to tracking.

The exponential map plays a crucial role in our approach. We relied on the
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parameterisation of the constraint manifold by unit quaternions to define it.

Nevertheless, it is possible to define the exponential map using only the proper-

ties of the underlying manifold [8]. Thus the exponential map does not depend

on the parameterisation of the manifold. An equivalent approach to tracking

could be developed using rotation matrices and the exponential map given by

the Rodrigues’ formula (see Section 3). We prefer the unit quaternion repre-

sentation because of its intuitive interpretation as a sphere in R
4.

If we limit the domain of the exponential map to ‖r‖ < π, it becomes a one

to one mapping whose inverse function, which is the quaternion logarithm,

log : S3/(−1, 0, 0, 0) → R
3 ≡ T1(S

3), can be calculated by

log(q) =


arccos(w)

u

‖u‖ , u 
= 0

(0, 0, 0), u = 0

=


arctan

(‖u‖
w

)
u

‖u‖ , w 
= 0

π

2

u

‖u‖ , w = 0

, (9)

where q = (w, u). The second definition is valid only for ‖r‖ = ‖ log(q)‖ ≤
π/2. The logarithmic map can be used to define the angular metric on S3

d(q1, q2) = 2


‖ log(q1 ∗ q2)‖, q1 ∗ q2 
= (−1, 0, 0, 0)

π, otherwise

, (10)

which gives us the length of a geodesic curve connecting the points q1 and q2.

3 Prediction of the state vector and error modelling

We turn now to the problem of object tracking. Our aim is to estimate at every

measurement time instant ti the state vector (pi, qi, vi, ωi), which consists of

the object’s pose and velocity, and the covariance matrix Si of the state vector

using the measurements provided by a vision system and the motion model

(2). Let us assume that after processing the i-th set of measurements, the state

vector and its covariance matrix are known. Since the expected values of the

acceleration of the origin of the body coordinate system and of the angular

acceleration are equal to zero, we can predict the pose and the velocity of the

object at the next time instant ti+1 as follows
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p̂i+1 =pi + (ti+1 − ti)vi, (11)

q̂i+1 = qi,i+1 ∗ qi, (12)

v̂i+1 = vi, (13)

ω̂i+1 =ωi, (14)

where qi,i+1 = exp ((ti+1 − ti)ωi/2) . Predictions (11)-(14) would be exact if

the acceleration was equal to zero on the time interval [ti, ti+1].

While the differences between the measured and the true values for position,

velocity of the body coordinate system and angular velocity can be modelled

as additive, i. e.

pi = p′
i + up

i , vi = v′
i + uv

i , ωi = ω′
i + uω

i , (15)

where up
i , uv

i , uω
i are the corresponding errors, this is not the case for the

difference between the measured orientation qi and the true orientation q′
i.

This error can be written as

qi = exp(uq
i ) ∗ q′

i, (16)

where uq
i ∈ R

3 is the error in the orientation. Error in the orientation is

a vector only for differential errors because the equation exp(r1 + r2) =

exp(r1) ∗ exp(r2) is true only for differential values of r1 and r2. Note that

for a differential rotation error dr we have exp(dr) ≈ (1,dr), thus our model

can be viewed as a generalisation of a more common orientation error model

which assumes small orientation errors. To find the relationship between the

orientation errors at the time instants ti and ti+1, respectively, we make the

following crucial observation

qi+1 =qi,i+1 ∗ qi = qi,i+1 ∗ exp(uq
i ) ∗ q′

i = qi,i+1 ∗ exp(uq
i ) ∗ qi,i+1 ∗ qi,i+1 ∗ q′

i

=exp
(
qi,i+1 ∗ uq

i ∗ qi,i+1

)
∗ q′

i+1. (17)

Hence the error propagated from ti to ti+1 is given by

qi,i+1 ∗ uq
i ∗ qi,i+1 = R(∆tiωi)u

q
i , (18)

where ∆ti = ti+1 − ti and the rotation matrix R(∆tiωi) is given by the Ro-

drigues’ formula
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R(∆tiωi)= I + sin (∆ti‖ωi‖)X

(
ωi

‖ωi‖
)

+ (1 − cos (∆ti‖ωi‖))X
(

ωi

‖ωi‖
)2

,

X(r)=X(rx, ry, rz) =


0 −rz ry

rz 0 −rx

−ry rx 0

 .

Errors in the predicted orientation are caused also by errors in the estimated

angular velocity. Let ωt be the error in the angular velocity at the time instant

t, t ∈ [ti, ti+1]. This error has the following effect on the error in the orientation

at the time instant ti+1 (compare with (18))

R((ti+1 − t)ωi)ωtdt. (19)

Using the fact that differential rotation vectors may be summated and as-

suming that the overall error is small and that the angular velocity error is

constant over the time interval [ti, ti+1], i. e. ωt = uω
i , we obtain the follow-

ing approximation for the error in the orientation caused by the error in the

angular velocity

ti+1∫
ti

R((ti+1 − t)ωi)u
ω
i dt =

 ∆ti∫
0

R(tωi)dt

uω
i = Giu

ω
i . (20)

The integration of (20) results in (see also [3])

Gi = ∆ti


(1 − c)n2

1 + c (1 − c)n1n2 − sn3 (1 − c)n1n3 + sn2

(1 − c)n1n2 + sn3 (1 − c)n2
2 + c (1 − c)n2n3 − sn1

(1 − c)n1n3 − sn2 (1− c)n2n3 + sn1 (1 − c)n2
3 + c

 , (21)

where

n =
ωi

‖ωi‖ , s =
2

∆ti‖ωi‖ sin2

(
∆ti‖ωi‖

2

)
,

c =
2

∆ti‖ωi‖ sin

(
∆ti‖ωi‖

2

)
cos

(
∆ti‖ωi‖

2

)
.
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Assuming that errors (18) and (20) are small, they may be considered as

physical vectors and the overall orientation error is given as their sum.

The calculation of the combined error in position and in both velocities is

much simpler because, unlike the orientation error, these errors are physical

vectors. The predicted error in all parameters can be written as

ûp
i+1

ûq
i+1

ûv
i+1

ûω
i+1


= J i



up
i

uq
i

uv
i

uω
i


, J i =



I 0 ∆tiI 0

0 R(∆tiωi) 0 Gi

0 0 I 0

0 0 0 I


. (22)

The values of up
i , uq

i , uv
i , and uω

i are of course unknown in practice, but the

above transformation is important for the calculation of the covariance matrix

of predictions (11)-(14).

In (2) we have introduced the plant noise in form of random acceleration in

order to account for deviations of the actual object motion from the assumed

motion model. While the expected value of the plant noise is zero and thus

does not affect predictions (11)-(14), it does have an impact on the covariance

matrix of these predictions. Let Si be the covariance matrix of the error vector

combining the errors in the pose and velocity of the observed object at the

time instant ti and let Ŝi+1 denote the covariance matrix of the error in the

predicted values (11)-(14). Using the usual covariance propagation rules we

obtain the following relationship

Ŝi+1 =J iSiJ
T
i +



1
3
a∆t3i I 0 1

2
a∆t2i I 0

0 1
3
α∆t3i I 0 1

2
α∆t2i I

1
2
a∆t2i I 0 a∆tiI 0

0 1
2
α∆t2i I 0 α∆tiI


, (23)

where J i is as in (22). The second term in the above equation describes the ef-

fect of the random acceleration on the predicted covariance matrix. Its deriva-

tion can be found in [1]. It should be noted at this point that predictions

(11)-(14) and (23) are the same as the ones proposed by Gennery [3]. How-
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ever, our treatment of errors in the orientation differs from Gennery’s. This

is important for the adjustment of the predicted values to the new measure-

ments, which is presented in the next section.

4 Adjustment of the predicted state vector to the measurements

Lets assume now that the correspondences between the measured image fea-

tures yi+1
jk and the model features mk, k = 1, . . . , N, at the time instant ti+1

are given. In our experiments we used line segments as features and represented

them by a reduced mid-point parameter set which consists of the middle point

and the angle of a segment. A good estimate for the current state vector, which

is consistent with both the measurements and the predicted state vector, can

be calculated by minimising the following nonlinear criterion

1

2

M∑
j=1

N∑
k=1

(
yi+1

jk − gjk(p, q)
)�
Σi+1

jk

−1
(
yi+1

jk − gjk(p, q)
)
+

1

2



p − p̂i+1

log(q ∗ q̂i+1)

v − v̂i+1

ω − ω̂i+1



T

Ŝ
−1

i+1



p − p̂i+1

log(q ∗ q̂i+1)

v − v̂i+1

ω − ω̂i+1


,

(24)

where gjk is the map which projects the k-th model feature onto the j-th

image plane and thus depends among others on the camera calibration. Σi+1
jk

are the positive definite covariance matrices of the measured image features

at the time instant ti+1. In our experiments we made use of the formula given

in [2] to calculate the covariance matrices for the parameters representing the

line segments. The summation over j accounts for the fact that more than one

camera can be used. Obviously, the criterion (24) can be rewritten as

1

2

3MN∑
k=1

hk
i+1(p, q, v, ω)2 =

1

2
hi+1(p, q, v, ω)Thi+1(p, q, v, ω). (25)

The minimisation of (25) over (p, q, v, ω) would be a classic nonlinear least

squares optimisation problem if we could treat q as an element of R
4 and not

of S3. Since this is not the case, the classic approach would be to add the

9



constraint |q| = 1 to the above criterion. In the following we propose a better

solution.

To define an iteration on the unit sphere we note that the neighbouring points

of a unit quaternion q on the sphere S3 are given by exp(r) ∗ q, r ∈ R
3 [5].

Eq. (8) guarantees us that in this way we cover all directions starting from

q. Let (pl
i+1, q

l
i+1, v

l
i+1, ω

l
i+1) be the approximation for the state vector at the

time instant ti+1 on the l-th step of the iteration. Then we can write the

optimisation criterion (24) or, equivalently, (25) as

Fl
i+1(p, r, v, ω)=

1

2

3MN∑
k=1

hk
i+1

(
pl

i+1 + p, exp(r) ∗ ql
i+1, v

l
i+1 + v, ωl

i+1 + ω
)2

=gl
i+1 (p, r, v, ω)T gl

i+1 (p, r, v, ω) /2. (26)

Fl
i+1 can be viewed as a map from R

12 to R. Taking (0, 0, 0, 0) as a current

approximation for the minimum of (26) and denoting the (3MN + 12) × 12

Jacobian matrix of gl
i+1 at (0, 0, 0, 0) by Dl

i+1, we employ the Gauss-Newton

iteration [9] to calculate a new estimate for the minimum of criterion (26)

[
∆pl T

i+1 ∆rl T
i+1 ∆vl T

i+1 ∆ωl T
i+1

]T
= −(Dl T

i+1D
l
i+1)

−1Dl T
i+1g

l
i+1(0, 0, 0, 0). (27)

Using these corrections we can calculate the next estimate for the minimum

of criterion (25)



pl+1
i+1

ql+1
i+1

vl+1
i+1

ωl+1
i+1


=



pl
i+1 + ∆pl

i+1

exp(∆rl
i+1) ∗ ql

i+1

vl
i+1 + ∆vl

i+1

ωl
i+1 + ∆ωl

i+1


. (28)

While the corrections in the position and both velocities are linear, this is not

the case for the correction in the orientation; the next approximation for the

orientation lies along the geodesic curve starting at the current approximate

ql
i+1. The direction of this curve and the length of the step are determined by

the Gauss-Newton method.
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The iteration can be initialised by setting p0
i+1 = p̂i+1, q0

i+1 = q̂i+1, v0
i+1 =

v̂i+1, ω0
i+1 = ω̂i+1. The iteration is stopped when the norm of the gradient is

small enough

‖∇Fl
i+1(0, 0, 0, 0)‖ = ‖Dl T

i+1g
l
i+1(0, 0, 0, 0)‖ < ε. (29)

The last estimate is taken to be a new state vector. The covariance matrix of

the new state vector is given by

Si+1 =
(
Dl T

i+1D
l
i+1

)−1
, (30)

where l is the step at which iteration (28) has been stopped.

5 Experimental results and conclusions

We developed a new method for object tracking. Using the properties of the

exponential map and the unit quaternion representation of the orientation,

we showed how to model the errors in the orientation and how to propagate

them between different measurement time instants. Based on these results we

formulated the adjustment of the predictions to the measurements as an un-

constrained nonlinear least squares optimisation problem in R
3×S3×R

3×R
3.

An important contribution of this paper is a new method for the calculation

of the adjustment based on the Gauss-Newton iteration in R
3 × S3 ×R

3 ×R
3.

The main advantage of our approach over other approaches, like for instance

the one proposed by Gennery [3], who developed a technique similar to ours, is

that our method fully takes into account the nonlinearity of the optimisation

problem and searches for the optimal position and orientation directly in the

space of rigid body motions. Hence no normalisation step to force the result-

ing parameters representing the orientation towards the constraint manifold

is needed with our approach.

To test the performance of the tracker we carried out several experiments with

both synthetic and real data. Here we present the performance of the tracker

in ideal conditions, i. e. when the motion model (2) is correct. We simulated

a camera (only one camera was used in this experiment) with 480 lines by

640 pixels per line, with the image size 6.6 mm by 8.8 mm and with the fo-

cal length 10 mm. The imaginary object used in this experiment was a cube
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Fig. 1. Linear (first row) and angular (second row) velocity estimated by the pro-
posed filter (simulation results)

with 500 mm long edges, which were used as features. The synthetic images of

this object moving along trajectory given by p(t) = [−300
√

3, 300
√

3, 2800] +

t100
√

3[1,−1, 1]T in millimeters and q(t) = exp(tπ/(12
√

3)[1, 1,−1]T /2) ∗
(0, 0.8,−0.6, 0) were generated for 6 seconds with a frequency of 30 images

per second. This process simulated a constant velocity motion with ‖v‖ = 300

mm/s and ‖ω‖ = 15 deg/s. Additive normally distributed Gaussian noise with

standard deviation 7 pixels in the direction of a line segment and 1 pixel in

the direction perpendicular to a line segment was added to the two end-points

of each line segment. These noisy end-points were then digitised and the re-

sulting line segments were used as measurements. The smoothing parameters

a and α from (2) were set to 2.0 and 0.0002, respectively. The filter (state

vector and its covariance matrix) was initialised by calculating the pose of

the object and its covariance matrix in the first image of a sequence using a

pose estimation algorithm and by setting the linear and angular velocity to

zero and the corresponding diagonal elements of the state covariance matrix

to large values (108).

Since the initial values for the velocity were quite far from the true values,

the tracker needed some time to adapt the motion parameters to the true

values (see Fig. 1). The computed accuracy of the tracking (mean values of

the error norm) for the second part of the image sequence (3 ≤ t ≤ 6), when

the tracker was already well adapted to the underlying object’s motion, were

1.65 mm in position, 0.41 degree in orientation, 0.86 mm/s in linear velocity
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Table 1
Convergence of the method (see Eq. (28) and (29) for definitions of parameters)

‖∆pl
i+1‖ 2‖∆rl

i+1‖ ‖∆vl
i+1‖ ‖∆ωl

i+1‖ ‖∇Fl
i+1(0, 0, 0, 0)‖2

2.658889e+05

6.635401e-01 1.259752e-02 1.610356e+0 1.065318e+0 3.440169e+01

6.678278e-02 8.998415e-05 1.724678e-01 1.687343e-01 3.695909e-04

1.409111e-04 8.215723e-07 3.660243e-04 3.603225e-04 2.299708e-08

1.780821e-06 6.842665e-09 4.644085e-06 4.551428e-06 1.551377e-12

1.389029e-08 5.793137e-11 3.620987e-08 3.551121e-08 1.103704e-16

and 0.37 deg/s in angular velocity. The average errors in the predicted values

for position and orientation were 1.66 mm and 0.42 degree, respectively. The

predicted values were very accurate and differed only little from the adjusted

ones. The convergence of the method is shown in Tab. 1.

We used the constant acceleration model for the motion of the origin of the

body coordinate system. It is possible to use higher order polynomial models

for this motion without making the tracker more complicated. This is not

the case for the rotational portion of motion because closed form solutions

for higher order rotational motions are not known. The amount of smoothing

applied to the parameters describing the motion model is governed by the

amount of system noise, which is modelled by parameters a and α from (2),

and by the amount of measurement noise, which is modelled by covariance

matrices Σi+1
jk from (24) (see [2] for the case of line segments). The smaller the

system noise is, the more weight the predictions (11)-(14) get and the larger the

amount of smoothing is. The converse relationship holds for the measurement

noise. The parameters specifying the amount of system and measurement noise

must be determined experimentally in the current version of the tracker.

The presented method was employed successfully for the analysis of human

demonstrations recorded by a stereo camera. A linear procedure was used for

the calibration of both cameras. A special real-time image processing board

was utilised to extract line segments. The resulting edges were sent to a work-

station for further processing. Object models were made available by a CAD

system. Using the predicted state vector, the model edges were matched with

13



Fig. 2. Six images from a stereo image sequence consisting of 250 image pairs taken
at different time instants. There are three images taken with the same camera in
each row. The edges of the tracked object were projected from the estimated poses
onto the detected edges.

the detected edges at each measurement time instant. Some of the images

recorded in one of our experiments and the projections of the tracked object

from the calculated poses are shown in Fig. 2. Even with a fairly bad initial

approximation, the method still converged. This shows that there is no need to

use more globally convergent techniques like the Levenberg-Marquardt method

to solve the problem of model-based object tracking. However, the presented

iteration can be easily modified into a Levenberg-Marquardt type iteration if

necessary. This might be necessary in the presence of significant measurement

errors because the Gauss-Newton iteration often does not work well when the

criterion function does not tend to zero. We observed in our simulations that

the convergence of the method deteriorates when the amount of measurement

noise increases.
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A Calculation of the Jacobian

The Jacobian matrix needed to calculate the adjustment (27) can be calculated

by a successive application of the chain rule: d(F ◦ G)|x = dF|G(x) · dG|x.
Problematic is the calculation of dexp at r = 0 and dlog at q = 1 because of

the singularities in the analytical forms describing these maps. The calculation

of dexp is described in [4]. The Jacobian of the logarithm is given by

dlog|q=(w,u) =

−x
x2

‖u‖2
(w − a) + a

xy

‖u‖2
(w − a)

xz

‖u‖2
(w − a)

−y
xy

‖u‖2
(w − a)

y2

‖u‖2
(w − a) + a

yz

‖u‖2
(w − a)

−z
xz

‖u‖2
(w − a)

yz

‖u‖2
(w − a)

z2

‖u‖2
(w − a) + a


,

(A.1)

where u = (x, y, z) and

a =
1

‖u‖ arctan

(‖u‖
w

)
.

The application of the l’Hopital’s rule yields the Jacobian of the logarithm at

q = 1 = (1, 0, 0, 0)

dlog|(1,0,0,0) =


0 1 0 0

0 0 1 0

0 0 0 1

 . (A.2)
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