MPEG4 Video Verification Model

MPEG-4 Video Verification Model:
A video encoding/decoding algorithm based
on content representation

Touradj Ebrahimi
Signal Processing Laboratory
Swiss Federal Institute of Technology - EPFL
CH-1015 Lausanne
Switzerland

Abstract

MPEG-4 video aims at providing standardized core technologies allowing efficient storage,
transmission and manipulation of video data in multimedia environments. This is a challenging task
given the broad spectrum of requirements and applications in multimedia. In order to achieve this
broad goal, rather than a solution for a narrow set of applications, functionalities common to
clusters of applications are under consideration. Therefore, video group activities in MPEG-4 aim
at providing solutions in the form of tools and algorithms enabling functionalities such as efficient
compression, object scalability, spatial and temporal scalability, and error resilience. The
standardized MPEG-4 video will provide a toolbox containing tools and algorithms bringing
solutions to the above mentioned functionalities and more.

The current focus of the MPEG-4 video group is the development of the Video Verification
Models. A Verification Model (VM) is a common platform with a precise definition of encoding

and decoding algorithms which can be presented as tools addressing specific functionalities. It
evolves through time by means of core experiments. New algorithms/tools are added to the VM
and old algorithms/tools are replaced in the VM by successful core experiments. So far, the
MPEG-4 video group has focused its efforts on a single VM which has gradually evolved from
version 1.0 to version 4.0, and in the process has addressed increasing number of desired
functionalities, namely, content based object and temporal scalabilities, spatial scalability, error
resilience, and compression efficiency.

This paper gives an overview of version 4.0 of the video VM in MPEG-4. In doing so, issues,
algorithms, and majors tools used in the development of this future video standard are discussed.

MPEG4 Video Verification Model

1 INTRODUCTION

The Motion Picture Expert Group (MPEG) has successfully introduced two standards for coding

of audiovisual information, known by acronyms MPEG-1 and MPEG-2. The first addresses the

storage of audiovisual information on CD-ROMSs [1], and the second handles the generic coding
of digital TV and HDTYV signals [2]. Both these standards have had tremendous impact on the

consumer electronics industry and their use in a number of today’'s applications is a witness of this
fact.

The consumer electronics industry, cable operators, broadcasters, telecommunication companies,
computer and software firms have developed a growing interest in a new form of communication
called multimedia This trend was accelerated by the increasing use of CD-ROMs, the World
Wide Web on Internet, and what is commonly called ittfermation superhighwayWhat is
multimedia and how to implement it? Very likely, each of the above players would give you a
different definition and a different strategy to establish multimedia communications as an extension
of their current core business. However, they would all agree that multimedia, whatever its
definition, can be seen as a platform for exchange of information coming from different sources of
possibly different nature. On this account, il aupport a very broad spectrum of applications.

Due to their inherent rigidity, current standards cannot adequately address the new expectations
and requirements that arise from such diverse applications.

The variety of applications makes the audiovisual data representation a challenging problem,
especially since most applications claiming to be multimedia possess the common feature of having
some sort of interactivity with the data. Applications impose sets of specifications which may
greatly vary from one to another. Diversity of applications implies diversity of collections of
specifications. Each application is characterized by: the type of data to be processed (still pictures,
video, stereo images, etc.), the nature of data (natural, synthetic, text, medical, graphics, etc.), the
targeted bitrate (low, medium, high), the maximum admissible delay (ranging from real time to off-
line), the type of communication (point to point, point to multi-point, multi-point to multi-point),

and the set of functionalities offered (scalability, object manipulation, progressive transmission,
editing, etc.).

The new work item known as MPEG-4 aims at providing a standard in order to cope with the
requirements of current and future multimedia applications. The MPEG-4 activity started in July
1993 as a pro-active action in order to propose a solution to challenges in multimedia
communications. A Working Draft of the standard is projected for November 1996 which will
become an International Standard by November 1998.

This paper describes the verification model of the video part of the MPEG-4 standard, in its
current version [3]. The paper is structured as follows. This section gives an overview of the video
standardization process in MPEG-4 and addresses the functionalities currently under
consideration. It also defines the concept of Verification Model (VM) and its evolution through
core experiments. Section 2 discusses the architecture of the video verification model, its data
structure, and the specific coding technique used for coding video content in form of occurrences
of video objects in time. Section 3 presents an overview of coding tools currently offered by the

MPEG4 Video Verification Model

video verification model, namely, shape coding, motion estimation and compensation, texture
coding, scalable coding, and error robustness. Section 4 concludes the paper.

1.1 General overview of video standardization process in
MPEG-4

The MPEG committee has set up a process in order to provide an efficient method to reach
adequate standards for audio-visual data communications. The goal of this section is not to
analyze or describe this process in detail, as a number of publications already give a good
description of this process [4, 5, 6]. However, a brief review of some key points is useful in
understanding the current activities for the definition of the video VM.

The standardization process for MPEG-1, MPEG-2, and MPEG-4 can be divided in a number of
steps [4], not necessarily in a successive order. Thesaegpgrements, competitive phase
selection of basic methqdsollaborative phaseworking draft and draft international standard
validationand finally theinternational standard

As far as the video part of the MPEG-4 is concerned, these steps have been implemented in the
following way. A study of the scope and requirements in MPEG-4 video started as early as in July
1993. After about two years of investigation, a series of seminars, and other related activities to
define MPEG-4 video issues, it became clear that the core technology of a number of multimedia
applications need two key components that are not explicitly present in any of the previous
standards. The first component is to base the technology on a content representation as opposed
to a pixel or frame based representation, to allow interactivity with content. The second is to
provide a certain degree of flexibility in the design of the final system so as to lead to an open yet
efficient standard. To this end, the notion of toolbox, already present in MPEG-2, was extended to
allow a flexible design of coding algorithms using tools selected based on the requirements of
specific applications.

For higher efficiency and in order to specify only the bare minimum in the standard, rather than
defining the system around specific applications, it seemed more judicious to search for the
functionalities needed for clusters of applications and to provide the core technology that can
fulfill these functionalities. Hence, functionality has become an important issue in the MPEG-4
standardization framework. These observations were reflected in the call for proposals that was
issued in 1994, to examine new technologies answering the needs expressed in terms of
functionalities. Dozens of proposals in the form of complete algorithms or specific tools were
presented and evaluated in November 1995 and January 1996 [9,10]. The first video VM was
created based on technologies proposed, in January 1996.

Since then, the experts committee has been continually evaluating new technologies fulfilling
existing or new functionalities through core experiments or other equivalent mechanisms. This has
led to four versions of the VM at the time of this writing, each either bringing a higher efficiency
for an existing functionality, or adding a new functionality to the verification model. The video
VM continues to evolve. A video Working Draft for MPEG-4 video is expected in November

MPEG4 Video Verification Model

1996. This vl in turn become the Draft International Standard, by Novenif#97. The
International Standard is expected by November 1998.

1.2 Functionalities addressed

As the MPEG-4 standard intends to support a wide range of multimedia applications, it will
certainly support functionalities such as security, low delay, synchronization, interworking, etc.
Some of these functionalities have already been or are being addressed by a number of other
current or emerging standards. The MPEG-4 standard will use similar or improved solutions in
order to address these functionalities under its scope.

Apart from the above, the MPEG-4 committee is seeking solutions for supporting eight key
functionalities that are thought not to be well-supported by existing or other emerging standards.
These new functionalities have been divided into three major non-orthogonal classes, based on the
requirements they support.

» Content-based interactivity : This class includes four functionalities focused on requirements
for applications involving some sort of interactivity between the user and the data, namely,
content-based multimedia data access toalsntent based manipulation and bitstream
editing hybrid natural and synthetic data codingndimproved temporal random access
Applications benefiting from these functionalities include data retrieval from on-line libraries,
interactive home shopping, and movie production and editing.

» Compression: This class is composed of two functionalitisaproved coding efficiencgnd
coding of multiple concurrent data streanThey essentially aim at applications requiring an
efficient storage or transmission of audio-visual information and their efficient synchronization.
These functionalities will enhance some existing applications such as information browsing over
Internet, and virtual reality.

* Universal access: The remaining two functionalities arerobustness in error-prone
environment@andcontent-based scalabilityrhese functionalities allow MPEG-4 encoded data
to be accessible over a wide range of media, and with various qualities in terms of temporal and
spatial resolutions for specific objects, which could be decoded by a range of decoders with
different complexities. Applications benefiting from these functionalities are wireless
communications, database browsing and access at different content levels, scales, resolutions,
and qualities.

1.3 Verification model and core experiments

An important phase of the MPEG-4 video standardization is that of development of a VM. A VM

is a completely defined encoding as well as decoding algorithm. It is composed of tools and
algorithms that serve as a reference to assess the performance of other tools, and algorithms. By
definition, a VM should be precise enough to allow multiple independent parties to produce
uniqgue and identical results.

MPEG4 Video Verification Model

So far, the MPEG-4 video group has focused its efforts on a single VM which has gradually
evolved from version 1.0 to version 4.0 and, in the process, has addressed an increasing number of
desired functionalities, namely, content based object, and temporal scalabilities, frame based spatial
scalability, error resilience, and compression efficiency.

The evolution of a VM to new versions is based cmne experimentsCore experiments are
performed to improve existing tools or algorithms in the VM, or to incorporate new ones. Core
experiments are proposed by one or more MPEG experts, and approved by consensus, provided
that at least two independent experts agree to carry out experiments. Besides the precise definition
of the algorithm or tool to be evaluated, a core experiment must also define the parameters and
other specifications of the framework under which the core experiment is to be carried out. This
would allow a comparison of the results of independent experimenters.

In the past year, dozens of core experiments have been established, evaluating hundreds of new
tools and algorithms. Some of the tools and algorithms have been included into the video VM as a
result of this process. There are currently eight classes of core experiments in the video MPEG-4
examining tools and algorithms in 43 distinct core experiments. They cover tools and algorithms
for prediction, texture coding, entropy coding, rate control, shape and alpha channel coding,
object/region texture coding, error resilience, bandwidth and complexity scaling, multi-view
coding, model manipulation, as well as pre-, mid-, and post-processing.

In the future, as the video VM reaches more maturity, the number of core experiments and thus
the tools and algorithms to evaluate is expected to decrease.

MPEG4 Video Verification Model

2 GENERAL STRUCTURE OF VERIFICATION MODEL

In the previous section, the objective of MPEG-4 video was described as providing standardized
core technologies allowing efficient storage, transmission and manipulation of video data in
multimedia environments. This is a challenging task, given the broad spectrum of requirements and
applications in multimedia. We also saw that, in order to achieve this goal, functionalities common
to clusters of applications are under consideration. Therefore, video activities in MPEG-4 aim at
providing solutions in the form of tools and algorithms enabling functionalities such as efficient
compression, object scalability, spatial and temporal scalability, and error resilience. The MPEG-4
video standard will provide a set of tools and algorithms bringing solutions to the above
mentioned functionalities and more.

To this end, the approach taken in MPEG-4 relies on a content based representation of visual data.
In contrast to current state-of-the-art techniques [1,2,7,8], MPEG-4, considers a scene to be a
composition of Video Objects (VO) with intrinsic properties such as shape, motion, and texture. It
Is believed that such a content based representation is key for interactivity with objects for a
variety of multimedia applications. In such applications, a user can access arbitrarily shaped
objects in the scene and manipulate them.

The process by which a VO is formed (or extracted from a scene) depends on the application and
on the exact environment in which the system is used. In the particular case of the video data
stream (such as those coded by current standards) a VO is simply the set of rectangular frames of
a given size (depending on its format) in the video sequence. In other situations, a VO may
represent a 2D or 3D synthetic object generated by a computer which evolves in time. As a third
example, one could consider a VO as frames representing a foreground object extracted from a
scene by automatic, semi-automatic or supervised segmentation, or even a blue screen process.

The process by which a VO is formed need not be standardized. This is similar to MPEG-2 video
standard where, for instance, the process for the computation of the motion vectors in predictive
coding is not defined. In contrast, the role of the standard is to provide the representation model
of the VO (or the motion vectors in the MPEG-2 example), such that this convention can be used
by all decoders in order to decode the VO (or the motion vectors).

Although the process for the definition of the VO is not being standardized, the situation is slightly
different for the video VM. By definition, the video VM should be unique and should detail the
exact methods of encoding and decoding. Therefore, at least the VO should be clearly defined in
the VM. Currently, the following method is used in MPEG-4 video to define the VOs. For all the
test sequences used in MPEG-4 video, the VO is defined by either considering the entire video
sequence as one single VO, or by providing frames of segmented objects (and their eventual shape
or transparency data) each considered as a different VO.

Figure 1 shows the block diagram of the MPEG-4 video encoder. The most important feature of
this encoder is the intrinsic representation based on VO when defining a visual scene. In fact, a
user, or an intelligent algorithm may choose to encode the different VOs composing a source data
with different parameters, different coding methods, or may even choose not to code some of
them at all.

MPEG4 Video Verification Model

In most applications, each VO represents a semantically meaningful object in the scene. In order to
maintain a certain compatibility with available video materi@ach uncompressed VO is
represented as a set of Y, U, and V components plus information about its shape, stored frame
after frame in predefined temporal intervals. It is important to note that although in MPEG-4 video
test sequences the VO were either known by construction of the sequences (hybrid sequences
based on blue screen composition or synthetic sequences) or were defined by semi-automatic
segmentation, this is done only due to practical considerations. The same approach remains valid
for any objects (synthetic or natural) and any dimensionality (2D or 3D), and even any
representation model used per VO.

Another important feature of the video VM is that no temporal frame or frame rate is explicitly
defined by this approach. This means that the encoder and decoder can therefore function in
different frame rates which do not even need to be constant throughout the video sequence.

Interactivity between user and the encoder or the decoder can be conducted in different ways. The
user may decide to interact at the encoding level, either in coding control to distribute, for
instance, the available bitrate between different VOs, or to influence the multiplexing to change
parameters such as composition script at the encoder. In cases where no back channel is available,
or when the compressed bitstream already exists, the user may interact with the decoder by either
acting on the compositer to change the position of a VO or its blending order. The user can also
influence the decoding at the demultiplexer by requesting the processing of a portion of the
bitstream only, such as shape.

Figure 2 shows the block diagram of the decoder in the video VM. The structure of the decoder is
basically similar to that of encoder in reverse, except for the composition block at the end. The
exact method of composition (blending) of different VOs depends on the application and the
method of multiplexing used at the system level. The current VM uses a recursive solution in
which blending is performed sequentially with two planes at a time [3].

One important issue that will not be addressed in this paper is that of synchronization among
different VOs and other entities such as audio data. The multiplexing and synchronization will be
handled by the system level of MPEG-4 standard [11].

2.1 Data structure of the VM

In order to fulfill the required functionalities of the video VM, besides a flexible and powerful
representation based on the VO concept, the data structure used in the syntax of encoder/decoder
should be designed carefully. The current video VM uses the following classes in its syntax to
allow an easy and efficient implementation of functionalities described in section 1.2.

The following hierarchy of classes is used in the video VM syntax:
* VideoSession (VS)

VS is an entity embedding the other three classes. A complete video sequence may be
formed of several Video Sessions.

* VideoObiject (VO)

MPEG4 Video Verification Model

VO is a class defining specific objects in a scene. This class reflects the notion of Video
Object as described in previous sections. Object scalability is achieved through the use of the
VideoObject class.

* VideoObjectLayer (VOL)

VOL is a class that enhances the temporal or spatial resolution of a VO. This class is closely
related to notions of spatial and temporal scalabilities.

* VideoObijectPlane (VOP)

VOP is an occurrence of a VO at a given time. Two different VOPs may belong to the same
object at two different times and not necessarily to two different objects.

In summary, a Video Session is a collection of one or more Video Objects each of which can
consist of one or more layers and each layer consists of an ordered sequence of snapshots in time
in the form of VOPs. Thus there can be several VOs (VOO0, VO1,..) in a VS asacfoNO there

can be several layers (VOLO, VOL1,..) aedch layer consists of a time sequence of VOPs
(VOPO, VOP1,..), which are basically snapshots in time. A VO can be of arbitrary shape
(rectangular is a special case). For single layered coding only one VOL (VOLO) exists per VO.
Figure 3 shows the hierarchical structure of the syntax.

Currently, due to the lack of 3D/4D data in the MPEG-4 video test data, as well as the lack of
appropriate technology for their representation, manipulation and coding, the MPEG-4 video VM
is based on Video Object Planes and therefore is limited to the manipulation of 2D objects.

The exact method of multiplexing these different entities depends on the application and coding as
well as decoding environments. Multiplexing is described in the MPEG-4 systems working draft.

2.2 VOP based encoding

Figure 4 represents the structure of the VOP encoder. In a given session, the same encoding
scheme is applied when coding all the VOPs.

The encoder is composed of two main parts: shape coding and the traditional motion and texture
coding applied to the same VOP. Texture coding as well as motion estimation and compensation
parts of the encoder are similar in principle to those used in other state-of-the-art standards, where
care has been taken in order to extend their respective tools to objects of arbitrary shape. The truly
novel component in the coding scheme is that of shape coding which will be described in more
detail in the next section.

Although the coding algorithm of the VM is designed to handle arbitrarily shaped objects, all

current tools are based on the concept of macroblock. This allows a certain compatibility with

other standards and a more straightforward insertion of tools developed for such environments. In
order to take advantage of both macroblock and other arbitrarily shaped object coding tools, the
multiplexing of the bitstream generated from the coding tools can be made in separate or
combined motion-shape-texture modes. In the combined motion-shape-texture mode, the
bitstreams of all these features are combined together on a macroblock basis and put in the final

MPEG4 Video Verification Model

bitstream macroblock after macroblock, per VOP. In separate motion-shape-texture mode, the
bitstreams generated for motion, shape or texture of the entire VOP are multiplexed in the final
bitstream, each occupying a contiguous portion of the latter.

Moreover, in applications where the shape information is not required (for example a classical
rectangular frame based video coding), the shape coding can be disabled.

For very low bitrate applications, where blocking effect may occur, a deblocking filter may be
used in the coding loop.

The following section describes the details of some of the major tools used for the coding of the
VOPs. Emphasis is given to the coding of the luminance component. Chrominance components
are basically treated in a similar way by appropriate subsampling operations except for their
motion estimation where the rescaled values of luminance motion vectors are used.

MPEG4 Video Verification Model

3 CURRENT TOOLS IN THE VIDEO VERIFICATION MODEL

3.1 Shape coding

In the past, the problem of shape representation and coding has been thoroughly investigated in
the fields of computer vision, image understanding, image compression and computer graphics.
However, this is the first time that a standardization effort is adopting a shape representation and
coding technique within its scope.

In the current MPEG-4 VM, two kinds of shape information are considered as inherent
characteristics of a video object. These are referred to as binary and grey scale shape information.
By binary shape information one means a label information that defines which portions (pixels) of
the support of the object belong to the video object at a given time. The binary shape information
IS most commonly represented as a matrix with the same size as that of the bounding box of a
VOP. Every element of the matrix can take one of the two possible values depending on whether
the pixel is inside or outside the video object.

The grey scale shape information has a similar corresponding structure to that of binary shape with
the difference that every pixel (element of the matrix) can take on a range of values (usually O to
255) representing the degree of the transparency of that pixel. The grey scale shape corresponds to
the notion of alpha plane used in computer graphics, in which O corresponds to a completely
transparent pixel and 255 to a completely opaque pixel. Intermediate values of the pixel
correspond to intermediate degrees of transparencies of that pixel. By convention, a binary shape
information corresponds to a grey scale shape information with values of 0 and 255.

In its canonical form, a binary or grey scale shape is represented as a matrix of binary or grey scale
values called bitmap or alpha plane. However, for the purpose of compression, manipulation, or a
more semantic description, one may choose to represent the shape in other forms such as using
geometric representations or by means of its contours.

Since its beginning, the video VM has adopted a bitmap based compression technique for the
shape information. This is mainly due to the relative simplicity and higher maturity of such
techniques. Core experiments have shown that bitmap based techniques offer good compression
efficiency with relatively low computational complexity. In future developments of the video VM

or MPEG-4 coding toolbox, based on the results of other core experiments, it is possible that at
least one alternative shape coding technique based on representation models allowing a more
semantic description finds its way into the final standard.

This section describes the coding methods for binary and grey scale shape information. Binary
shape information is encoded by a motion compensated block based technique allowing both
lossless and lossy coding of such data. Grey scale shape information is encoded using a block
based motion compensated DCT similar to that of texture coding, allowing lossy coding only. The
grey scale shape coding also makes use of binary shape coding for coding of its support. In the
current VM, the shape of every VOP is coded along with its other characteristics. To this end, the
shape of a VOP is bounded by a rectangular window with a size of multiples of 16 pixels in
horizontal and vertical directions. The position of the bounding rectangle is chosen such that it

10

MPEG4 Video Verification Model

contains the minimum number of blocks of size 16x16 with non transparent pixels. The samples in
the bounding box and outside of the VOP are set to O (transparent). The rectangular bounding box
is then partitioned into blocks of 16x16 samples (hereafter referred to as shape blocks) and the
encoding/decoding process is performed block by block.

3.1.1 Binary shape coding

The binary shape coding technique used in the VM is a motion compensated block based
technique applied to consecutive VOPs belonging to the same VO. Figure 5 shows an example of
a VOP lllustrating its bounding box and showing how it is partitioned into shape blocks of size
16x16 as the first step for its encoding process.

Each shape block is then coded by detecting its color-changing pixels (from opaque 255 to
transparent 0, and vice versa), and by calculating the distances between successive changing
pixels. If all the pixels in a shape block are of the same color, the coding is not carried out. In this
case only a flag is transmitted to the decoder informing it that the shape information for that shape
block is either all transparent or all opaque. Figure 6 shows an example of the binary shape coding
for a given shape block illustrating the changing pixels positions.

The distance between consecutive changing pixels are coded as a result of this algorithm. Three
modes are used in order to represent this distance, namely, horizontal mode, vertical pass mode,
and vertical mode. Each mode corresponds to a different way of representing the distance between
changing pixels inside the shape block and their respective binary codewords [3].

The binary shape information can be size converted (subsampled) if a lossy mode is to be used for
the binary shape coding. The current down conversion ratios are 4:1 and 16:1, respectively.

The influence of a lossy shape coding on the total bitrate cannot be estimated directly, as a lossy
shape influences the amount of the bits required to represent the texture and motion for a lossy
reconstructed VOP. This is an important issue to be aware of when designing rate control
mechanisms at the encoding stage. The influence of the lossiness of the shape on the motion and
the texture coding parts of the VM is currently under investigation.

3.1.2 Binary shape coding with Motion Compensation(MC)

In order to improve the compression efficiency of the binary shape coding, the motion vectors of
texture macroblocks in a VOP are used to reduce the temporal redundancy of consecutive VOP
shapes. In this case, the shape blocks are either intra- or inter-coded with motion compensation.
No residual error is coded in inter-coding of binary shape information.

The motion compensation is applied to binary shape with the same scheme as for luminance
macroblocks, except that no padding and overlapping operations are performed. The selection of
intra- or inter-coding depends on the shape prediction error and on the coding mode (intra/inter)
of the texture macroblocks at the same spatial position of the shape block.

11

MPEG4 Video Verification Model

3.1.3 Grey scale shape coding

In this technique, the grey scale shape information is coded by separately processing its support as
a binary shape, and the transparency value of its pixels as luminance values. The support function
Is encoded by the same binary shape coding technique that was described above. The transparency
values are encoded as luminance macroblocks of size 16x16 with the same technique which is used
for the coding of the texture information of VOPs. Figure 7 illustrates the principle behind grey
scale shape coding method used in the video VM.

3.2 Motion estimation and compensation

Motion estimation and compensation have been introduced in the video VM in order to exploit the
temporal redundancies existing in most video sequences. The principle behind temporal
redundancy reduction in the MPEG-4 video VM is similar to those used in other standards [1, 2,
7, 8].

The main differences arise from the fact that these motion estimation and compensation techniques
need to be extended to deal with arbitrarily shaped objects which are represented as VOPs. This
has become possible by dividing the arbitrarily shaped VOPs into macroblocks of size 16x16, and
by means of two new tools called padding and modified block (polygon) matching motion
estimation. Every VOP can be coded in three possible ways, namely, I-VOP, P-VOP and B-VOP,
depending on whether the VOP is coded completely independently (Intra, 1-VOP), or it is
predicted from a previous VOP (Predictive, P-VOP), or interpolated from a past and a future
VOP (Bi-directional interpolation, B-VOP). Figure 8 illustrates an exampleach of these

coding modes.

The motion estimation is performed by first dividing the bounding box of the VOP into
macroblocks of size 16x16 pixels. For macroblocks completely outside of the VOP but inside its
bounding box, no motion estimation is performed (see Figure 9). For macroblocks entirely inside a
VOP, the motion estimation is carried out in a manner similar to other standards by means of
block matching for macroblocks of size 16x16 as well as for their respective 4 subblocks of size
8x8 pixels, resulting in one motion vector per macroblock and one for each of the 4 subblocks,
with a half sample accuracy. The reference pixels used for the motion estimation are those of a
previous or future decoded I-VOP or P-VOP. Various decision modes are used in order to choose
between the inter- or intra-coding for each macroblock as well as for the number of motion
vectors assigned to it.

The motion estimation for macroblocks only partially inside the VOP is performed using a
modified block (polygon) matching technique. In this technique, the matching error is computed as
the sum of absolute value differences formed by those pixels of the current macroblock that are
inside of the VOP shape, and that of the corresponding pixels in the reference VOP (see Figure 9).
As some of the reference pixels used in the matching may be outside of the reference VOP, a
block based repetitive padding is performed in order to extrapolate the value of these pixels from
those inside of the reference VOP. A similar padding scheme is used to extend the reference VOP
beyond its bounding box. This improves efficiency, by allowing more possibilities when searching

12

MPEG4 Video Verification Model

for candidate pixels for prediction at the boundary of the reference VOP. This latter procedure is
known as unrestricted motion vector search [3,8].

When a VOP is inter-coded, the motion vectors for its prediction have to be transmitted in the

bitstream to the decoder. The motion vector components (horizontal and vertical) are differentially
coded by predicting its value from up to three neighboring motion vectors already transmitted.

The codeword used to code the differential motion vector data depends upon the range of the
vectors when performing the motion estimation. This maximum range is determined at the encoder
and transmitted to the decoder in a way similar to the one used in the MPEG-2 standard [2].

In order to improve the prediction quality, a technique called overlapped motion compensation is
used in the video VM. This approach is similar to the overlapped motion compensation used in
H.263 technique. For each block within a macroblock to be predicted, the motion vector from
immediately above, below, left or right, as well as the one associated to the current block are used
in order to obtain up to five estimates of the current block from the reference VOP. These
estimates are then in turn averaged according to predefined weighting factors in order to obtain
the final result for the predicted current block.

3.3 Texture coding

Texture corresponds to the pixel values in the case of an intra-coded VOP (I-VOP) or to the
residual error after the prediction in the case of an inter-coded VOP (P-VOP or B-VOP). The
texture coding technique used in the video VM is similar in several aspects to those used in other
state-of-the-art standards [1,2,7,8]. Due to its simplicity and rather good performance, and also in
order to incorporate in a straightforward manner functionalities such as error resilience into the
current VM, the texture coding of the video VM is chosen to be a block based technique, where
special care is taken in order to extend the block based approach to handle arbitrarily shaped VOP
coding.

Again, the bounding box of an intra-coded VOP or its corresponding motion compensated residual
error is split into a number of macroblocks of size 16x16.

The intra VOP macroblocks and the residual macroblocks after motion compensation are coded
one after the other using a Discrete Cosine Transform (DCT) scheme. DCT is performed
separately on each of the luminance and chrominance planes in a given macroblock, totaling 6
blocks of size 8x8. Similarly to motion estimation and compensation, three types of macroblocks
may be encountered in a VOP bounding box: those that lie completely inside the VOP shape;
those completely outside of the VOP but inside the bounding box; and those that partially cover
the VOP. The macroblocks that are completely outside of the VOP are not coded at all. Those
macroblocks that lie completely inside the VOP are coded using a conventional DCT scheme. The
8x8 blocks of macroblocks lying partially on the VOP are first padded using repetitive padding as
for the motion estimation, with the difference that for residue blocks, the region outside of the
VOP within the blocks are padded with zero values. If all the pixels in an 8x8 block are
transparent, their values are replaced by zero. These blocks are then coded in a manner identical to
the blocks inside of the VOP. Figure 10 illustrates typical cases of texture coding in an arbitrary
shape context.

13

MPEG4 Video Verification Model

The DCT coefficients are quantized, zig-zag scanned, and entropy coded by run-length Huffman
method. The quantization step can be based on one of the two following alternatives. The first,
similar to that of recommendation 263, uses a quantization parameter that is exploited to
quantize the AC coefficients in the DCT. This value may change based on a desired quality or a
targeted bitrate, on a macroblock by macroblock basis. The second alternative for quantization is
similar to that used in MPEG-2 where the quantization step size may vary depending on the
position of the AC coefficient in the frequency domain according to a quantization matrix. The
default quantization matrix used is flat with a value of 16 except for the DC value. This
guantization matrix can be overwritten by downloading different intra or non-intra quantization
matrices. In all cases the DC coefficients are quantized with a step size equal to 8.

For a higher compression efficiency, the DC as well as the first row and first column of the AC
coefficients in the intra-coded macroblocks can be differentially coded using an adaptive predictive
method. The prediction value used is chosen as the corresponding value of the block above or
immediately to the left of the current block. This adaptive selection is based on comparison of
horizontal and vertical gradients of corresponding DC values of already coded neighboring blocks.

3.4 Scalable coding

Content based spatial and temporal scalability capabilities are two important functionalities
required by a number of applications. The video VM therefore supports both spatial and temporal
scalabilities using the VOL structure. The following describes how such functionalities can be
achieved.

A bitstream is scalable if at least one subset of the bitstream is sufficient for generating a useful
presentation. Scalable video coding involves generating a coded representation in a manner which
facilitates the derivation of video of more than one resolution/quality by scalable decoding.
Bitstream scalability is the property of a bitstream that allows decoding of appropriate subsets of a
bitstream to generate complete pictures of resolution and/or quality commensurate with the
proportion of the bitstream decoded. If a bitstream is truly scalable, decoders of different
complexities, from low to high performance, can coexist and while low performance decoders may
decode only small portions of the bitstream producing basic quality, high performance decoders
may decode much more and produce significantly higher quality results from the same bitstream.

Each type of scalability involves more than one VOL. In the following, we limit ourselves to two
layers only. In the case of two layers consisting of a lower layer and a higher layer, the lower layer
is referred to as the base-layer and the higher layer is called the enhancement-layer. Traditionally,
these scalabilities are applied to frames of video such that in the case of spatial scalability, the
enhancement-layer frames enhance the spatial resolution of base-layer frames, while in temporal
scalability, the enhancement-layer frames are temporally multiplexed with the base-layer frames to
provide video with higher temporal resolution. Many MPEG-4 applications are however even
more demanding and necessitate not only traditional frame based scalabilities but also scalabilities
of VOPs of arbitrary shapes.

The scalability framework of the video VM is referred to as generalized scalability and includes
spatial and the temporal scalabilities. In the case of temporal scalability, theupfdrss both
frames (rectangular VOPs) as well as arbitrary shaped VOPs. However, in the case of spatial

14

MPEG4 Video Verification Model

scalability, only rectangular VOPs are presentigported. Figure 11 shows a generalized codec
structure for the two-layer scalability in the video VM.

VOPs are input to a scalability pre-processor. If spatial scalability is to be performed with the
base-layer at lower spatial resolution and the enhancement-layer at higher spatial resolution, the
pre-processor performs spatial downsampling of the input VOPs to generate a first base-layer
which forms the input to the MPEG-4 VOP encoder in Figure 4. The reconstructed VOPs from
the base-layer are then fed to the mid-processor which in this case performs a spatial upsampling.
The other output of the pre-processor corresponds to the higher spatial layer VOPs and forms the
input to the MPEG-4 enhancement-layer encoder which is similar in structure but different in
strategy to that of the base-layer encoder. The method for the encoding of the enhancement-layer
is described below. The base- and enhancement-layer bitstreams are multiplexed by the MPEG-4
system multiplexer. The decoder is similar to the encoder in the reverse order with the difference
that the scalability post-processor performs agessary operations such as spatial upsampling of

the decoded base-layer for display.

When the generalized codec is used to introduce temporal scalability, the scalability pre-processor
performs temporal demultiplexing of a VO into two substreams of VOPs, one of which is input to
the MPEG-4 base-layer encoder and the other to the MPEG-4 enhancement-layer encoder. In this
case, mid-processor does not perform any spatial resolution conversion and simply allows the
decoded base-layer VOPs to pass through. These VOPs are used for temporal prediction while
encoding of enhancement-layer. The operations of MPEG-4 system multiplexer and demultiplexer
are exactly the same as in case of spatial scalability. The decoding of base- and enhancement-layer
bitstreams occurs in the corresponding base- and enhancement-layer decoders as shown in Figure
11. At the decoder, the post-processor simply outputs the base-layer VOPs without any
conversion, but temporally multiplexes the base and enhancement-layer VOPs to produce a higher
temporal resolution enhancement-layer.

The video VM allows two types of enhancement mechanisms:

* Enhancement type 1.The enhancement-layer increases the resolution of a portion of the base-
layer.

» Enhancement type 2:The enhancement-layer increases the resolution of the entire base-layer.

Figure 12 illustrates an example of a scene containing several regions, which is coded as a base-
layer with lower spatial or temporal resolution. In the case of an enhancement of type 1, the car is
enhanced in either spatial or temporal resolution. In this case, the entire frame has been coded as
as one VO in VOLO and the car only as enhancement-layer VOLL1. In the case of an enhancement
of type 2, either the entire scene or the car is enhanced in temporal or spatial resolution and coded
as a VOL1 layer, depending on whether the VOLO represents the entire frame or the car only, in
its base-layer.

3.4.1 Spatial Scalability

As mentioned earlier, for spatial scalability, the base-layer and the enhancement-layer have
different spatial resolutions. If needed, a downsampling process is performed by the scalability pre-
processor. The VOP in the base-layer is encoded with exactly the same technique as described for

15

MPEG4 Video Verification Model

the non-scalable case in the previous sections. The VOP in the enhancement-layer is encoded as
either P-VOP or B-VOP. The relationship between the VOP in the base-layer and that of the
enhancement-layer is illustrated in Figure 13. The VOP that is temporally coincident with an I-
VOP in the base-layer is encoded as a P-VOP. The VOP that is temporally coincident with a P-
VOP in the base-layer is encoded as a B-VOP. In case of the spatial scalability, a decoded VOP in
the base-layer is used as a reference for the prediction, after upsampling. The temporally
coincident VOP in the reference layer (base-layer) must be coded before the encoding of the VOP
in the enhancement-layer.

3.4.2 Temporal Scalability

In temporal scalability, the temporal resolution of a selected object is enhanced such that it has a
smoother motion than the remaining area.

Figure 14 shows the example of a temporal scalability of enhancement type 1 where VOLO is an
entire frame with both an object and a background, while VOLL1 represents a particular object in
VOLO. VOLO is coded with a low frame rate, while VOL1 is coded to achieve a higher temporal
resolution. In this example, frames 2 and 4 are predicted from the base-layer frame 0 followed by
overlapping the object of the enhancement-layer onto the combined frames 0 and 6. The combined
frame is formed using background composition [3]. In this case, forward prediction is used to
form P-VOPs. Figure 15 shows another example of temporal scalability of enhancement type 1
which uses bi-directional predictions to form B-VOPs in the enhancement-layer.

Figure 16 shows an example of a temporal scalability with enhancement type 2, where VOO
represents a sequence of a rectangular background without any enhancement-layer. Moreover,
VO1 represents a sequence of a particular object coded with two layers, VOLO and VOL1. VOL1
represents the same object as VOLO and is coded as an enhancement-layer to achieve a higher
temporal resolution with respect to the base-layer VOLO. Note that the VOO may not have the
same frame rate as other VOs.

3.5 Error robustness

A very important feature of the video VM is its robustness to errors in adverse environments such
as wireless networks. Robustness is achieved by inserting resynchronisation marker-fields in the
bitstream with approximately constant spacing. The resynchronisation marker-field should be

inserted by the encoder before the first macroblock, and also if the number of output bits since the
last resynchonisation exceeds a predetermined value.

The insertion of synchronization markers for error robustness can be disabled when such
functionality is not needed. When enabled, the recommended configuration of the VM is in the
combined shape-motion-texture coding, with the AD/DC prediction in intra block texture coding
disabled.

16

MPEG4 Video Verification Model

4 CONCLUSIONS

This paper gives an overview of the MPEG-4 Video VM version 4.0. It is important to note that,
by the time of publication of this paper, other versions of the MPEG-4 Video VM will have been
issued. These versions will be different from the one described in this paper (version 4.0) for some
of the tools but not for its basic approach.

The architecture of the VM and related data structures allowing efficient coding and manipulation

of arbitrary shape content are described. In particular, the coding algorithms and major tools
included in the video VM are discussed. Currently, work is in progress, through core experiments,
to improve the algorithms and associated tools in the VM. In addition, new tools are foreseen that
will add new functionalities. Current core experiments in the MPEG-4 have been rather focused on
applications requiring low to medium quality images. However, work has started to extend this

scope to higher quality applications, as a certain maturity is being reached in the former.

Concrete results show that MPEG-4 video coding based on a content representation architecture
and providing novel functionalities such as content-based interactivity, is now a reality. Only the
future will tell the impact that MPEG-4 standard will have in the emergence of the multimedia
applications. However what has been achieved so far, and the increasing interest on the activities
of the MPEG-4 standardization are very encouraging signals that this impact will be very positive.

Acknowledgments

The author would like to acknowledge all the MPEG-4 members, especially those in the video and
verification model development for their insights, fruitful collaborations and inputs which led to
the definition of the video VM, and also this paper. Without their collaborative efforts, as well as
their commitment and endless work, the MPEG-4 would have not been as it is today. The author
also wishes to especially thank Fernando Pereira and Sushil Bhattacharjee for careful reading of
this paper and their valuable comments and suggestions.

17

MPEG4 Video Verification Model

Biography

Touradj Ebrahimi was born on July 31965. He received his M.Sc. and Ph.D., both in Electrical
Engineering, from the Swiss Federal Institute of Technology, Lausanne, Switzerland, in 1989 and
1992 respectively. From 1989 to 1992, he was a research assistant at the Signal Processing
Laboratory of the Swiss Federal Institute of Technology (EPFL). During the summer 1990, he
was a visiting researcher at the Signal and Image Processing Institute of the University of
Southern California, Los Angeles, California. In 1993, he was a research engineer at the Corporate
Research Laboratories of Sony Corporation in Tokyo, where he conducted research on advanced
video compression techniques for storage applications. In 1994, he served as a research consultant
at AT&T Bell Laboratories working on very low bitrate video coding. He is currently at the Signal
Processing Laboratory of EPFL, where he is involved with various aspects of Digital Video and
Multimedia applications and in charge of the Digital TV group. In 1989, he was the recipient of
the IEEE and Swiss national ASE award. He is also the head of Swiss delegation to MPEG and
JPEG and represents the Swiss national body at ISO/IEC JTC1/SC29. His research interests are
multidimensional signal processing, image processing, information theory, and coding. He is the
author or the co-author of more than 70 research publications, and 6 patents.

Dr. Ebrahimi has been involved in MPEG-4 standardization activities since its beginning. He is
currently acting as the chair of the ad-hoc group on video VM editing.

18

MPEG4 Video Verification Model

5 REFERENCES

[1] ISO/IEC JTC1 CD11172, « Information Technology - Coding of Moving Pictures and
Associated Audio for Digital Storage Media up to about 1.5 Mbit/s - Part 2: Coding of Moving
Picture Information », International Organization for Standardization, 1991.

[2] ISO/IEC DIS 13818-2, « Information Technology - Generic Coding of Moving Pictures and
Associated Audio Information - Part 2: Video », International Organization for Standardization,
1994.

[3] MPEG Video Group, «MPEG-4 Video Verification Model Version 4.0 ». ISO/IEC
JTC1/SC29/WG11/M1380, Chicago meeting, October 1996.

[4] R. Schaeffer and T. Sikora, « Digital Video Coding Standards and Their Role in Video
Communications », Proceedings of tB&E, Vol. 83, No. 6, June 1995.

[5] L. Chiariglione, « The development of an integrated audiovisual coding standard: MPEG »,
Proceedings of th€EEE, Vol. 83, No. 2, February 1995.

[6] F. Pereira, « MPEG-4:. a New Challenge for the Representation of Audio-Visual
Information », Proceedings of Picture Coding Symposium’96, Melbourne, March 1996.

[7] CCITT SG XV, « Recommendation H.261 - Video Codec for Audiovisual Services at px64
kbit/s », COM XV-R37-E, International Telecommunication Union, August 1990.

[8] ITU-T Draft, « Recommendation H.263 - Video Coding for low bitrate communication »,
International Telecommunication Union, November 1995.

[9] T. Alpert, V. Baroncini, D. Choi, L. Contin, R. Koenen, F. Pereira and H. Peterson,
« Subjective Evaluation of MPEG-4 Video Codec Proposals: Methodological Approach and Test
Procedures », in this issue.

[10] J. Ostermann, « Methodologies Used for Evaluation of Video Tools and Algorithms in
MPEG-4 », in this issue.

19

MPEG4 Video Verification Model

[11] O. Avaro,et al. « The MPEG-4 Systems and Description Languages: A Way ahead in Audio
Visual Information Representation », in this issue.

20

MPEG4 Video Verification Model

VO 0
Coding

VO 1
Coding

Video
Information VO

—(Coding

— Formation
control

VON
Coding

! User
interaction

Figure 1: General structure of the encoder in the MPEG-4 video VM.

21

MUX

Bitstream

(r—

MPEG4 Video Verification Model

VOO
| Decoding
VO 1
_ | Decoding
Bitstream
— DEMUX
— = = o=
VO N
| Decoding
A
' User
U . .
interaction

Figure 2: General structure of the decoder in MPEG-4 video VM.

22

VO Output
—® Composition[—>
A

MPEG4 Video Verification Model

VideoSession VSO vsS1 ...

VideoObject VOO0 vol ...
VideoObjectLayer VOLO voLl ...
VideoObjectPlane IVOPO VOP1 | IVOPO VOP1 |

Layer O Layer 1

Figure 3: Hierarchy of the data structure classes in the MPEG-4 video VM.

23

MPEG4 Video Verification Model

VOP_of arbitrary_shap

Shape 0 Shape
Coding information v

1
- -

r)
| ﬁo_lt—: _n_\._«_'w - - VOP_of arbitrary_shapg, .- :
information MUX Bufier N

" A R
Y 1 ¥
Motion | | Motion Texture N
Estimation Compensatiol Coding
I I
- : Texture
Previous Reconstruc informatio
VOP |
deblocking

filter

Figure 4: Video Object Plane based encoder structure in the MPEG-4 video VM.

Video Obiject bounding box
Plane

Figure 5: Shape coding procedure of a Video Object Plane.

24

MPEG4 Video Verification Model

current shape
block

R

R I PR

F = ="
[}
[}
[}
[}
[}
P

|
|
L

1
1
——t--t--1--4

changing pixel

/

video object
plane

|
|
|
|
|
|
|
|
|
|
L

|
|
_——b Lo L__L__3}_,/ 1
|
|
bbb L__L__3__4
|
|
L

Figure 6: Binary coding of a shape block, based on changing pixels.

Grey scale shape
coding

o

Support Transparency
value

Binary Texture Coder
Shape Coder

Figure 7: Grey shape coding technique used in the video VM.

25

MPEG4 Video Verification Model

Figure 8: VOP coding modes in the video VM.

reference b di
P-VOP or ounding

B box
I-VOP \ /

padded reference
pixels for

unrestricted
block matching

P-VOP
B-VOP

conventional
block matching

padded referen
pixels for block
matching

reference VOP
pixels for block
matching

or

modified block
polygon) matching

=

AN

no
/' matching

Figure 9: Motion estimation for arbitrarily shaped VOPs.

26

MPEG4 Video Verification Model

macoblock

partially outside VOP
(blocks entirely outside
the VOP are coded
as zero blocks)

VOP

macroblock

entirely inside

VOP

(coded by macroblock
conventional -4, entirely ouside
DCT scheme) VOP (not coded)

)

Figure 10: Macroblock based texture coding for arbitrarily shaped VOPs.

MPEG4][] MPEG4
» Enhancement » Enhancement [J
Layer Encoder Layer Decoder
kS
¥ =]
=M T
Scdabilit —'J)‘E | Scadabilit el
> y MdProcesssor 27 |2 MdProcesssor Y
PreProcessor | = @ —| PostProcessor
MPEG4 MPEG4
— Baxe Layer -’_ _“’ Base Layer [
Encoder Decoder

Figure 11: Coding and decoding structure for a two-layer scalability in the video
VM.

27

MPEG4 Video Verification Model

Base layer Enhancement layer
Enhancement type 1 : %‘ 2
VOLO : entire frame VOLl/: car
Enhancement type 2
VOLO : entire frame VOL1 : entire frame
VOLO : car VOL1 : car

: region to be enhanced by an enhancement layer

Figure 12: Example of enhancement types in scalable coding.

Enhancement layer E— —_—

Base layer III > IEI > IEI

Figure 13: Coding of the enhanced layer for spatial scalability.

MPEG4 Video Verification Model

0 2 4 6 8 10 12 frame number
I I I I I I I
VOL1 Enhancement
Layer
q 6 12 frame number
\ |
VOLO

Base Layer

Figure 14: Temporal scalability of enhancement type 1 with P-VOPs.

0 2 4 6 8 10 12 frame number
I I I I I I I
VOLL . Enhancement
Layer

12 frame number
|

9 8
|

VOLO
Base Layer

Figure 15: Temporal scalability of enhancement type 1 with B-VOPs.

29

MPEG4 Video Verification Model

0 3 6 9 12 » frame number
\ \ I I I 7
VOL1 Enhancement
L
of VO1 ayer
0 6 1 frame number
\
VOLO Base Layer
of VO1
q 6 12 frame number
\ \ | i
VOO0

Figure 16: Temporal scalability of enhancement type 2.

30

