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Abstract 

This paper presents an overview of some of the synthetic visual objects supported by MPEG-4 version-1, 
namely animated faces and animated arbitrary 2-D uniform and Delaunay meshes. We discuss both 
specification and compression of face animation and 2D-mesh animation in MPEG-4. Face animation allows to 
animate a proprietary face model or a face model downloaded to the decoder. We also address integration of the 
face animation tool with the text-to-speech interface (TTSI), so that face animation can be driven by text input. 

1. Introduction 
MPEG-4 is an object-based multimedia compression standard, which allows for encoding of different audio-
visual objects (AVO) in the scene independently. The visual objects may have natural or synthetic content, 
including arbitrary shape video objects, special synthetic objects such as human face and body, and generic 2-
D/3-D objects composed of primitives like rectangles, spheres, or indexed face sets, which define an object 
surface by means of vertices and surface patches. The synthetic visual objects are animated by transforms and 
special purpose animation techniques, such as face/body animation and 2D-mesh animation. MPEG-4 also 
provides synthetic audio tools such as structured audio tools and a text-to-speech interface (TTSI). This paper 
presents a detailed overview of synthetic visual objects supported by MPEG-4 version-1, namely animated 
faces and animated arbitrary 2-D uniform and Delaunay meshes. We also address integration of the face 
animation tool with the TTSI, so that face animation can be driven by text input. Body animation and 3-D mesh 
compression and animation will be supported in MPEG-4 version-2, and hence are not covered in this article. 

The representation of synthetic visual objects in MPEG-4 is based on the prior VRML standard [13][12][11] 
using nodes such as Transform, which defines rotation, scale or translation of an object, and IndexedFaceSet 
describing 3-D shape of an object by an indexed face set. However, MPEG-4 is the first international standard 
that specifies a compressed binary representation of animated synthetic audio-visual objects. It is important to 
note that MPEG-4 only specifies the decoding of compliant bit streams in an MPEG-4 terminal. The encoders 
do enjoy a large degree of freedom in how to generate MPEG-4 compliant bit streams. Decoded audio-visual 
objects can be composed into 2D and 3D scenes using the Binary Format for Scenes (BIFS) [13], which also 
allows implementation of animation of objects and their properties using the BIFS-Anim node. We recommend 
readers to refer to an accompanying article on BIFS for the details of implementation of BIFS-Anim. 
Compression of still textures (images) for mapping onto 2D or 3D meshes is also covered in another 
accompanying article. In the following, we cover the specification and compression of face animation and 2D-
mesh animation in Sections 2 and 3, respectively. 

2. Face Animation 
MPEG-4 foresees that talking heads will serve an important role in future customer service applications. For 
example, a customized agent model can be defined for games or web-based customer service applications. To 
this effect, MPEG-4 enables integration of face animation with multimedia communications and presentations 
and allows face animation over low bit rate communication channels, for point to point as well as multi-point 
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connections with low-delay. With AT&T’s implementation of an MPEG-4 face animation system, we can 
animate a face models with a data rate of 300 - 2000bits/s. In many applications like Electronic Commerce, the 
integration of face animation and text to speech synthesizer is of special interest. MPEG-4 defines an 
application program interface for TTS synthesizer. Using this interface, the synthesizer can be used to provide 
phonemes and related timing information to the face model. The phonemes are converted into corresponding 
mouth shapes enabling simple talking head applications. Adding facial expressions to the talking head is 
achieved using bookmarks in the text. This integration allows for animated talking heads driven just by one text 
stream at a data rate of less than 200 bits/s [22]. Subjective tests reported in [26] show that an Electronic 
Commerce web site with talking faces gets higher ratings than the same web site without talking faces. In an 
amendment to the standard foreseen in 2000, MPEG-4 will add body animation to its tool set thus allowing the 
standardized animation of complete human bodies. 

In the following sections, we describe how to specify and animate 3D face models, compress facial animation 
parameters, and integrate face animation with TTS in MPEG-4. The MPEG-4 standard allows using proprietary 
3D face models that are resident at the decoder as well as transmission of face models such that the encoder can 
predict the quality of the presentation at the decoder. In Section 2.1, we explain how MPEG-4 specifies a 3D 
face model and its animation using face definition parameters (FDP) and facial animation parameters (FAP), 
respectively. Section 2.2 provides details on how to efficiently encode FAPs. The integration of face animation 
into an MPEG-4 terminal with text-to-speech capabilities is shown in Section 2.3. In Section 2.4, we describe 
briefly the integration of face animation with MPEG-4 systems. MPEG-4 profiles with respect to face 
animation are explained in Section 2.5. 

2.1 Specification and Animation of Faces 
MPEG-4 specifies a face model in its neutral state, a number of feature points on this neutral face as reference 
points, and a set of FAPs, each corresponding to a particular facial action deforming a face model in its neutral 
state. Deforming a neutral face model according to some specified FAP values at each time instant generates a 
facial animation sequence. The FAP value for a particular FAP indicates the magnitude of the corresponding 
action, e.g., a big versus a small smile or deformation of a mouth corner. For an MPEG-4 terminal to interpret 
the FAP values using its face model, it has to have predefined model specific animation rules to produce the 
facial action corresponding to each FAP. The terminal can either use its own animation rules or download a 
face model and the associated face animation tables (FAT) to have a customized animation behavior. Since the 
FAPs are required to animate faces of different sizes and proportions, the FAP values are defined in face 
animation parameter units (FAPU). The FAPU are computed from spatial distances between major facial 
features on the model in its neutral state. 

In the following, we first describe what MPEG-4 considers to be a generic face model in its neutral state and 
the associated feature points. Then, we explain the facial animation parameters for this generic model. Finally, 
we show how to define MPEG-4 compliant face models that can be transmitted from the encoder to the decoder 
for animation. 

2.1.1 MPEG-4 Face Model in Neutral State 
As the first step, MPEG-4 defines a generic face model in its neutral state by the following properties (see 
Figure 1): 

• gaze is in direction of Z axis, 

• all face muscles are relaxed, 

• eyelids are tangent to the iris, 

• the pupil is one third of the diameter of the iris, 

• lips are in contact; the line of the lips is horizontal and at the same height of lip corners, 

• the mouth is closed and the upper teeth touch the lower ones, 

• the tongue is flat, horizontal with the tip of tongue touching the boundary between upper and lower teeth. 

A FAPU and the feature points used to derive the FAPU are defined next with respect to the face in its neutral 
state.  
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Figure 1: A face model in its neutral state and the feature points used to define FAP units (FAPU). 
Fractions of distances between the marked key features are used to define FAPU (from [14]). 

2.1.1.1 Face Animation Parameter Units 
In order to define face animation parameters for arbitrary face models, MPEG-4 defines FAPUs that serve to 
scale facial animation parameters for any face model. FAPUs are defined as fractions of distances between key 
facial features (see Figure 1). These features, such as eye separation, are defined on a face model that is in the 
neutral state. The FAPU allow interpretation of the FAPs on any facial model in a consistent way, producing 
reasonable results in terms of expression and speech pronunciation. The measurement units are shown in Table 
1. 

Table 1: Facial Animation Parameter Units and their definitions. 
IRISD0 Iris diameter (by definition it is equal to the distance 

between upper ad lower eyelid) in neutral face 
IRISD = IRISD0 / 1024 

ES0 Eye separation ES = ES0 / 1024 
ENS0 Eye - nose separation ENS = ENS0 / 1024 
MNS0 Mouth - nose separation MNS = MNS0 / 1024 
MW0 Mouth width MW=MW0 / 1024 
AU Angle unit 10E-5 rad 

2.1.1.2 Feature Points 

MPEG-4 specifies 84 feature points on the neutral face (see Figure 2). The main purpose of these feature points 
is to provide spatial references for defining FAPs. Some feature points such as the ones along the hairline are 
not affected by FAPs. However, they are required for defining the shape of a proprietary face model using 
feature points (Section 2.1.3). Feature points are arranged in groups like cheeks, eyes, and mouth. The location 
of these feature points has to be known for any MPEG-4 compliant face model. The feature points on the model 
should be located according to Figure 2 and the hints given in Table 6 in the Annex of this paper. 
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Figure 2: Feature points may be used to define the shape of a proprietary face model. The facial 
animation parameters are defined by motion of some of these feature points (from [14]). 

2.1.2 Face Animation Parameters 
The FAPs are based on the study of minimal perceptible actions and are closely related to muscle actions 
[2][4][9][10]. The 68 parameters are categorized into 10 groups related to parts of the face (Table 2). FAPs 
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represent a complete set of basic facial actions including head motion, tongue, eye, and mouth control. They 
allow representation of natural facial expressions (see Table 7 in the Annex). For each FAP, the standard 
defines the appropriate FAPU, FAP group, direction of positive motion and whether the motion of the feature 
point is unidirectional (see FAP 3, open jaw) or bi-directional (see FAP 48, head pitch). FAPs can also be used 
to define facial action units [19]. Exaggerated amplitudes permit the definition of actions that are normally not 
possible for humans, but are desirable for cartoon-like characters. 

The FAP set contains two high-level parameters, visemes and expressions (FAP group 1). A viseme (FAP 1) is 
a visual correlate to a phoneme. Only 14 static visemes that are clearly distinguished are included in the 
standard set (Table 3). In order to allow for coarticulation of speech and mouth movement [5], the shape of the 
mouth of a speaking human is not only influenced by the current phoneme, but also the previous and the next 
phoneme. In MPEG-4, transitions from one viseme to the next are defined by blending only two visemes with a 
weighting factor. So far, it is not clear how this can be used for high quality visual speech animation. 

The expression parameter FAP 2 defines the 6 primary facial expressions (Table 4, Figure 3). In contrast to 
visemes, facial expressions are animated by a value defining the excitation of the expression. Two facial 
expressions can be animated simultaneously with an amplitude in the range of [0-63] defined for each 
expression. The facial expression parameter values are defined by textual descriptions. The expression 
parameter allows for an efficient means of animating faces. They are high-level animation parameters. A face 
model designer creates them for each face model. Since they are designed as a complete expression, they allow 
animating unknown models with high subjective quality [21][22]. 

Using FAP 1 and FAP 2 together with low-level FAPs 3-68 that affect the same areas as FAP 1 and 2, may 
result in unexpected visual representations of the face. Generally, the lower level FAPs have priority over 
deformations caused by FAP 1 or 2. When specifying an expression with FAP 2, the encoder may sent an 
init_face bit that deforms the neutral face of the model with the expression prior to superimposing FAPs 3-68. 
This deformation is applied with the neutral face constraints of mouth closure, eye opening, gaze direction and 
head orientation. Since the encoder does not know how FAP 1 and 2 are implemented, we recommend using 
only those low-level FAPs that will not interfere with FAP 1 and 2. 

 

Table 2: FAP groups 
Group Number of FAPs 
1: visemes and expressions  2 
2: jaw, chin, inner lowerlip, cornerlips, midlip  16 
3: eyeballs, pupils, eyelids  12 
4: eyebrow  8 
5: cheeks  4 
6: tongue 5 
7: head rotation  3 
8: outer lip positions 10 
9: nose 4 
10: ears  4 
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Table 3: Visemes and related phonemes. 

Viseme # phonemes example 
0 none na 
1 p, b, m put, bed, mill 
2 f, v far, voice 
3 T,D think, that 
4 t, d tip, doll 
5 k, g call, gas 
6 tS, dZ, S chair, join, she 
7 s, z sir, zeal 
8 n, l lot, not 
9 r red 
10 A: car 
11 e bed 
12 I tip 
13 Q top 
14 U book 

 

Table 4: Primary facial expressions as defined for FAP 2. 
# Expression name textual description 
1 Joy The eyebrows are relaxed. The mouth is open and the mouth corners 

pulled back toward the ears. 
2 Sadness The inner eyebrows are bent upward. The eyes are slightly closed. 

The mouth is relaxed. 
3 Anger               The inner eyebrows are pulled downward and together. The eyes are 

wide open. The lips are pressed against each other or opened to 
expose the teeth.    

4 Fear         The eyebrows are raised and pulled together. The inner eyebrows are 
bent upward. The eyes are tense and alert. 

5 Disgust        The eyebrows and eyelids are relaxed. The upper lip is raised and 
curled, often asymmetrically. 

6 surprise          The eyebrows are raised. The upper eyelids are wide open, the lower 
relaxed. The jaw is opened.  

 

Anger

Joy

Disgust

Sadness
Fear

Surprise

 

Figure 3: Facial expressions. 
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2.1.3 Face Model Specification 
Every MPEG-4 terminal that is able to decode FAP streams, has to provide an MPEG-4 compliant face model 
that it animates (Section 2.1.3.1). Usually, this is a model proprietary to the decoder. The encoder does not 
know about the look of the face model. Using a FDP (Face Definition Parameter) node, MPEG-4 allows the 
encoder to completely specify the face model to animate. This involves defining the static geometry of the face 
model in its neutral state using a scene graph (Section 2.1.3.3), defining the surface properties and defining the 
animation rules using Face Animation Tables (FAT) that specify how this model gets deformed by the facial 
animation parameters (Section 2.1.3.4). Alternatively, the FDP node can be used to ‘calibrate’ the proprietary 
face model of the decoder (Section 2.1.3.2). However, MPEG-4 does not specify how to 'calibrate' or adapt a 
proprietary face model. 

2.1.3.1 Proprietary Face Model 
In order for a face model to be MPEG-4 compliant, it has to be able to execute all FAPs according to Sections 
2.1.1 and 2.1.2. Therefore, the face model has to have at least as many vertices as there are feature points that 
can be animated. Thus, an MPEG-4 compliant face model may have as little as 50 vertices. Such a model would 
not generate a pleasing impression. We expect to require at least 500 vertices for pleasant and reasonable face 
models (Figure 3).  

A proprietary face model can be build in 4 steps: 

1. We build the shape of the face model and define the location of the feature points on the face model 
according to Section 2.1.1 and Figure 2. 

2. For each FAP, we define how the feature point has to move. For most feature points, MPEG-4 defines only 
the motion in one dimension. As an example, we consider FAP 54, which displaces the outer right lip 
corner horizontally. Human faces usually move the right corner of the lip backward as they move it to the 
right. It is left up to the face model designer to define a subjectively appealing face deformation for each 
FAP. 

3. After the motion of the feature points is defined for each FAP, we define how the motion of a feature point 
affects its neighboring vertices. This mapping of feature point motion onto vertex motion can be done 
using lookup tables like Face Animation Tables (Section 2.1.3.4) [7], muscle-based deformation [2][9][10] 
or distance transforms [24]. 

4. For expressions, MPEG-4 provides only qualitative hints on how they should be designed (Table 4). 
Similarly, visemes are defined by giving sounds that correspond to the required lip shapes (Table 3). FAP 1 
and 2 should be designed with care since they will mostly be used for visually appealing animations. 

Following the above steps, our face model is ready to be animated with MPEG-4 FAPs. Whenever a face model 
is animated, gender information is provided to the terminal. MPEG-4 does not require using a different face 
model for male or female gender. We recommend that the decoder reads the gender information and, at a 
minimum, deforms its model to be male or female. This avoids the presentation of a female face with a male 
voice and vice versa. 

2.1.3.2 Face Model Adaptation 

An encoder may choose to specify the location of all or some feature points. Then, the decoder is supposed to 
adapt its own proprietary face model such that the model conforms to the feature point positions. Since MPEG-
4 does not specify any algorithm for adapting the surface of the proprietary model to the new feature point 
locations, we cannot specify the subjective quality of a face model after its adaptation. Face model adaptation 
allows also for downloading of texture maps for the face. In order to specify the mapping of the texture map 
onto the proprietary face model, the encoder sends texture coordinates for each feature point. Each texture 
coordinate defines the location of one feature point on the texture map. This does not allow for precise texture 
mapping at important features like eyelids or lips. Within the standard, this process of adapting the feature point 
locations of a proprietary face model according to encoder specifications is commonly referred to as ‘face 
model calibration’. As stated above, MPEG-4 does not specify any minimum quality of the adapted face model. 
Therefore, we prefer to name this process ‘face model adaptation’. 
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In [24], a method for face model adaptation is proposed using an iterative approach based on radial basis 
functions for scattered data interpolation. For each feature point of the proprietary model, a region of interest is 
defined. When a feature point moves, it deforms the model within this region of interest. In order to achieve 
smooth surfaces, an iterative algorithm was developed. 

MPEG-4 allows for a second method of face adaptation by sending an arbitrary mesh to the decoder in addition 
to feature points. Whereas a possible implementation of this approach is described in [17], MPEG-4 will not 
mandate a specific implementation in the decoder nor will MPEG-4 define any conformance points for this 
approach to face model calibration. Therefore, we expect most MPEG-4 terminals not to provide this feature. 

The advantage of face model adaptation over downloading a face model from the encoder to the decoder is that 
the decoder can adapt its potentially very sophisticated model to the desired shape. Since MPEG-4 does not 
define minimum qualities for proprietary face models and a good adaptation algorithm is fairly difficult to 
implement, we expect mostly disappointing results as also pointed out in [21]. In order to some what limit the 
shortcomings, we recommended that the encoder always sends the entire set of feature points for face model 
adaptation. Sending of partial data may result in completely unpredictable face representations. For applications 
that wants to specify exactly, how the contents is presented at the decoder, downloading a face model using a 
scene graph seems to be the preferred method (Sections 2.1.3.3 and 2.1.3.4). 

2.1.3.3 Neutral Face Model using a Scene Graph 
In order to download a face model to the decoder, the encoder specifies the static geometry of the head model 
with a scene graph using MPEG-4 BIFS. For this purpose, BIFS provides the same nodes as VRML. VRML 
and BIFS describe scenes as a collection of nodes, arranged in a scene graph. Three types of nodes are of 
particular interest for the definition of a static head model. A Group node is a container for collecting child 
objects: it allows for building hierarchical models. For objects to move together as a group, they need to be in 
the same Transform group. The Transform node defines geometric affine 3D transformations like scaling, 
rotation and translation that are performed on its children. When Transform nodes contain other Transforms, 
their transformation settings have a cumulative effect. Nested Transform nodes can be used to build a 
transformation hierarchy. An IndexedFaceSet node defines the geometry (3D mesh) and surface attributes 
(color, texture) of a polygonal object. Texture maps are coded with the wavelet coder of the MPEG still image 
coder [14]. 

Figure 4 shows the simplified scene graph for a face model. Nested Transforms are used to apply rotations 
about the x, y, and z-axis one after another. Embedded into these global head movements are the rotations for 
the left and right eye. Separate IndexedFaceSets define the shape and the surface of the face, hair, tongue, teeth, 
left eye and right eye, thus allowing for separate texture maps. Since the face model is specified with a scene 
graph, this face model can be easily extended to a head and shoulder model. The surface properties of the face 
can be specified using colors or still images to define texture mapped models. 

The shape of the face models may be generated using interactive modelers, scanners or image analysis software 
[16][17] 
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Figure 4: Simplified scene graph for a head model. The names of BIFS nodes are given in italic. 

2.1.3.4 Definition of Animation Rules using FAT 
FATs define how a model is spatially deformed as a function of the amplitude of the FAPs. Three BIFS nodes 
provide this functionality: FaceDefTable, FaceDefTransform and FaceDefMesh. These nodes are considered to 
be part of the face model. Using FaceDefTransform nodes and FaceDefMesh nodes, the FaceDefTable 
specifies, for a FAP, which nodes of the scenegraph are animated by it and how [7]. 

Animation Definition for a Transform Node 

If a FAP causes a transformation like rotation, translation or scale, a Transform node can describe this 
animation. The FaceDefTable specifies a FaceDefTransform node that defines the type of transformation and a 
scaling factor for the chosen transformation. During animation, the received value for the FAP, the FAPU and 
the scaling factor determine the actual value by which the model is transformed. 

Animation Definition for an IndexedFaceSet Node 

If a FAP like joy causes flexible deformation of the face model, the FaceDefTable node uses a FaceDefMesh 
node to define the deformation of IndexedFaceSet nodes. The animation results in updating vertex positions of 
the affected IndexedFaceSet nodes. Moving the affected vertices as a piece-wise linear function of FAP 
amplitude values approximates flexible deformations of an IndexedFaceSet. The FaceDefMesh defines for each 
affected vertex its own piece-wise linear function by specifying intervals of the FAP amplitude and 3D 
displacements for each interval (see Table 5 for an example). The VRML community started to define a 
Displacer Node that provides a similar functionality. However, the motion of a vertex is limited to a straight 
line. 

If Pm is the position of the mth vertex of the IndexedFaceSet in neutral state (FAP = 0) and Dmk is the 3D 
displacement that defines the piecewise linear function in the kth interval, then the following algorithm is used 
to determine the new position P’m of the same vertex after animation with the given FAP value (Figure 5): 

1.  Determine the interval listed in the FaceDefMesh in which the received FAP value is lying. 

2.  If the received FAP is in the jth interval [Ij, Ij+1] and 0=Ik ≤ Ij, the new position P’m of the mth vertex is given 
by: 

 P’m = Pm + FAPU * ((Ik+1-0) * Dm,k + (Ik+2-Ik+1) * Dm, k+1 + …(Ij - Ij-1) * Dm, j-1 + (FAP-Ij) * Dm, j). 

3.  If FAP > Imax, then P’m is calculated by using the equation given in 2 and setting the index j = max-1. 
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4.  If the received FAP is in the jth interval [Ij, Ij+1] and Ij+1 ≤ Ik=0, the new position P’m of the mth vertex is 
given by: 

P’m = Pm + FAPU * (( Ij+1 - FAP) * Dm, j + (Ij+2 - Ij+1) * Dm, j+1 + … (Ik-1 - Ik-2) * Dm, k-2 + (0 - Ik-1) * Dm, k-1). 

5.  If FAP < I1, then P’m is calculated by using the equation in 4. and setting the index j = 1. 

6.  If for a given FAP and ‘IndexedFaceSet’ the table contains only one interval, the motion is strictly linear: 

  P’m = Pm + FAPU * FAP * Dm1. 

Strictly speaking, these animation rules are not limited to faces. Using this technology, MPEG-4 allows for a 
very efficient mechanism of animating IndexedFaceSet and Transform nodes of arbitrary objects with up to 68 
FAPs. In Figure 6, we see a head and shoulder model that can be animated using 68 FAPs. Obviously, the 
interpretation of the FAPs by the model are partially not according to the standard, since the standard does not 
define a means for moving an arm. Therefore, this model should only be animated by an encoder that knows the 
interpretation of FAPs by this model. 
 

Figure 5: Piecewise linear approximation of vertex motion as a function of the FAP Value. 

FAP Value
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Figure 6: Using MPEG-4 face animation tools, face and body of this model can be downloaded and 
efficiently animated by the encoder that downloads the model to the decoder. 

Example for a FaceDefTable 

In Table 5, two FAPs are defined by children of a FaceDefTable, namely the FaceDefMesh and the 
FaceDefTransform: FAP 6, which stretches the left corner lip, and FAP 23, which manipulates the horizontal 
orientation of the left eyeball. 

FAP 6 deforms the IndexedFaceSet named Face. For the piecewise-linear motion function three intervals are 
defined:  [-1000, 0], [0, 500] and [500, 1000]. Displacements are given for the vertices with indices 50 and 51. 
The displacements for vertex 50 are: (1 0 0), (0.9 0 0) and (1.5 0 4), the displacements for vertex 51 are (0.8 0 
0), (0.7 0 0) and (2 0 0). Given a FAP amplitude of 600, the resulting displacement for vertex 50 would be: 

P’50 = P50+500*(0.9 0 0)T + 100 * (1.5 0 4)T = P50+(600 0 400)T. 

FAP 23 updates the rotation field of the Transform node LeftEyeX. The rotation axis is (0, -1, 0), and           the 
neutral angle is 0 radians. The FAP value determines the rotation angle. 

Figure 8 shows 2 phases of a left eye blink (plus the neutral phase) which have been generated using a simple 
animation architecture [7]. 

The creation of the FaceDefMesh nodes for large models can be time consuming. However, the process 
depicted in  

Figure 7 uses a FaceDefTable generator that computes these tables from a set of face models. The face model is 
described as a VRML file and read into the modeler. In order to design the behavior of the model for one 
animation parameter, the model is deformed using the tools of the modeler. The modeler may not change the 
topology of the model. The modeler exports the deformed model as a VRML file [12]. 
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Figure 7: FaceDefMesh Interface - The modeler is used to generate VMRL files with the object in 
different animated positions. The generator computes one FaceDefMesh for each animation parameter. 

The FaceDefMesh generator compares the output of the modeler with its input, the face model in its neutral 
state. By comparing vertex positions of the two models, the vertices affected by the newly designed animation 
parameter are identified. The generator computes for each affected vertex a 3D-displacement vector defining 
the deformation and exports this information in a FaceDefMesh table. The renderer reads the VRML file of the 
model and the table in order to learn the definition of the new animation parameter. Now, the renderer can use 
the newly defined animation as required by the animation parameters.  

 

Table 5: Simplified example of a FaceDefMesh and a FaceDefTransform. 

#FaceDefMesh 

FAP 6 (stretch left corner lip) 

 IndexedFaceSet: Face 

  interval borders:  -1000, 0, 500, 1000  

  displacements: 

   vertex 50  1 0 0, 0.9 0 0, 1.5 0 4  

   vertex 51  0.8 0 0, 0.7 0 0, 2 0 0 

#FaceDefTransform 

FAP 23 (yaw left eye ball) 

 Transform: LeftEyeX 

  rotation   scale factor: 0 -1 0 (axis)  1 (angle) 
 

FaceDefMesh
Tables

FaceDefMesh
GeneratorModeler Renderer

Face Model

Deformed
Face Models

FAP
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Figure 8: Neutral state of the left eye (left) and two deformed animation phases for the eye blink (FAP 
19). The FAP definition defines the motion of the eyelid in negative y-direction; the FaceDefTable defines 
the motion in one of the vertices of the eyelid in x and z direction. Note that positive FAP values move the 
vertices downwards (Table 7). 

2.2 Coding of Face Animation Parameters 
MPEG-4 provides two tools for coding of facial animation parameters. Coding of quantized and temporally 
predicted FAPs using an arithmetic coder allows for low delay FAP coding (Section 2.2.1). Alternatively, 
discrete cosine transform (DCT) coding of a sequence of FAPs introduces a larger delay but achieves higher 
coding efficiency (Section 2.2.2). 

MPEG-4 provides a special mode (def_bit) that allows downloading definitions of expressions and visemes 
(FAP 1 and 2) in terms of low-level FAPs. Although the syntax for this capability is defined, MPEG-4 does not 
require the decoder to store a minimum number of these definitions. Therefore we recommend not using this 
tool until MPEG-4 provides clarifications on this tool in a potential future revision of the standard. Instead, we 
recommend the use of the FAP Interpolation Table (FIT) as described in Section 2.2.3. 

2.2.1 Arithmetic Coding of FAPs 
igure 9 shows the block diagram for low delay encoding of FAPs. The first set of FAP values FAP0 at time 
instant 0 with is coded without prediction (intra coding). The value of a FAP at time instant k FAPk is predicted 
using the previously decoded value FAP'k-1. The prediction error e is quantized using a quantization step size 
QP that is specified in Table 7 multiplied by a quantization parameter FAP_QUANT with 
0<FAP_QUANT<31. FAP_QUANT is identical for all FAP values at one time instant k. Using the FAP 
dependent quantization step size QP,⋅FAP_QUANT assures that quantization errors are subjectively evenly 
distributed between different FAPs. The quantized prediction error e’ is arithmetically encoded using a separate 
adaptive probability model for each FAP. Since the encoding of the current FAP value depends only on one 
previously coded FAP value, this coding scheme allows for low-delay communications. At the decoder, the 
received data is arithmetically decoded, dequantized and added to the previously decoded value in order to 
recover the encoded FAP value. When using FAP_QUANT>15, the subjective quality of the animation 
deteriorates significantly such that we recommend not to increase FAP_QUANT above 15 [21]. 

x

y

y

z

FAP 19

0
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Figure 9: Block diagram of the low delay encoder for FAPs. 

In order to avoid transmitting all FAPs for every frame, the encoder can transmit a mask indicating for which 
groups (Table 2) FAP values are transmitted. The encoder can also specify for which FAPs within a group 
values will be transmitted. This allows the encoder to send incomplete sets of FAPs to the decoder. FAP values 
that have been initialized in an intra coded FAP set are assumed to retain those values if subsequently no update 
is transmitted. However, the encoder can also signal to the decoder that a previously transmitted FAP value is 
not valid anymore.  

The decoder can extrapolate values of FAPs that have been invalidated or have never been specified, in order to 
create a more complete set of FAPs. The standard provides only limited specifications on how the decoder is 
supposed to extrapolate FAP values. Examples are that if only FAPs for the left half of a face are transmitted, 
the corresponding FAPs of the right side have to be set such that the face moves symmetrically. If the encoder 
only specifies motion of the inner lip (FAP group 2), the motion of the outer lip (FAP group 8) has to be 
extrapolated in an unspecified way. Letting the decoder extrapolate FAP values may create unexpected results 
depending on the particular decoder. However, the encoder can always prevent the decoder from using 
extrapolation by defining all FAP values or defining FAP Interpolation Tables (Section 2.2.3). 

2.2.2 DCT Coding of FAPs 
The second tool that is provided for coding FAPs is the discrete cosine transform applied to 16 consecutive 
FAP values. This introduces a significant delay into the coding and decoding process. Hence, this coding 
method is mainly useful for applications where animation parameter streams are retrieved from a database. 
After computing the DCT of 16 consecutive values of one FAP, DC and AC coefficients are coded differently 
(Figure 10). Whereas the DC value is coded predictively using the previous DC coefficient as prediction, the 
AC coefficients are directly coded. The AC coefficient and the prediction error of the DC coefficient are 
linearly quantized. Whereas the quantizer step size can be controlled, the ratio between the quantizer step size 
of the DC coefficients and the AC coefficients is set to ¼. The quantized AC coefficients are encoded with one 
variable length code word (VLC) defining the number of zero-coefficients prior to the next non-zero coefficient 
and one VLC for the amplitude of this non-zero coefficient. The handling of the decoded FAPs with respect to 
masking and interpolation is not changed (see Section 2.2.1). 
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Figure 10: Block diagram of the FAP encoder using DCT. DC coefficients are predictively coded. AC 
coefficients are directly coded (from [23]). 

Figure 11 compares the coding performance of the DCT FAP coder and the arithmetic FAP coder. The PSNR is 
measured by comparing the amplitude of the original and coded FAP averaging over all FAPs. This PSNR does 
not relate to picture quality but to the smoothness of temporal animation. In contrast to the arithmetic coder, the 
DCT coder is not able to code FAPs with near lossless quality. At low data rates, the DCT coder requires up to 
50% less data rate than the arithmetic coder at the price of an increased coding delay. This advantage in coding 
efficiency disappears with increasing fidelity of the coded parameters. 
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Figure 11: Rate distortion performance of the arithmetic and DCT coding mode of FAPs for the 
sequences Marco30 (30 Hz) and Expressions (25 Hz) (from [21]). 

2.2.3 FAP Interpolation Tables 
As mentioned in Section 2.2.1, the encoder may allow the decoder to extrapolate the values of some FAPs from 
the transmitted FAPs [25]. Alternatively, the decoder can specify the interpolation rules using FAP 
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interpolation tables (FIT). A FIT allows a smaller set of FAPs to be sent for a facial animation. This small set 
can then be used to determine the values of other FAPs, using a rational polynomial mapping between 
parameters. For example, the top inner lip FAPs can be sent and then used to determine the top outer lip FAPs. 
The inner lip FAPs would be mapped to the outer lip FAPs using a rational polynomial function that is 
specified in the FIT. 

A FAP interpolation graph (FIG) is used to specify which FAPs are interpolated from other FAPs. The FIG is a 
graph with nodes and directed links. Each node contains a set of FAPs. Each link from a parent node to a child 
node indicates that the FAPs in a child node can be interpolated from those of the parent node. In a FIG, a FAP 
may appear in several nodes, and a node may have multiple parents. For a node that has multiple parent nodes, 
the parent nodes are ordered as 1st parent node, 2nd parent node, etc. During the interpolation process, if this 
child node needs to be interpolated, it is first interpolated from the 1st parent node if all FAPs in that parent 
node are available. Otherwise, it is interpolated from the 2nd parent node, and so on. An example of FIG is 
shown in Figure 12. Each node has an ID. The numerical label on each incoming link indicates the order of 
these links. 

Each directed link in a FIG is a set of interpolation functions. Suppose F1, F2, …, Fn are the FAPs in a parent set 
and f1, f2, …, fm are the FAPs in a child set. Then, there are m interpolation functions denoted as: f1 = I1(F1, F2, 
…, Fn), f2 = I2(F1, F2, …, Fn), fm = Im(F1, F2, …, Fn). Each interpolation function Ik () is in the form of a rational 
polynomial 
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where K and P are the numbers of polynomial products, ci and ib are the coefficients of the ith product. lij and 

ijm  are the power of Fj in the ith product. The encoder should send an interpolation function table which 

contains all K , P , ci , ib , lij , ijm  to the decoder for each link in the FIG. 
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Figure 12: A FIG example for interpolating unspecified FAP values of the lip. If only the expression is 
defined, the FAPs get interpolated from the expression. If all inner lip FAPs are specified, they are used 
to interpolate the outer lip FAPs. 
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Here, we provide some simple examples where the use of FIT can be useful to reduce the bit rate for 
transmitting FAPs: 

1. Precise specification of the extrapolation of FAPs from their counter parts on the other side of the face. If 
desired, this mechanism allows even for unsymmetrical face animation.  

2. Extrapolation of outer lip FAPs from inner lip FAPs.  

3. Extrapolation of eyebrow motion from FAP 34 (raise right middle eyebrow). This can be done with linear 
polynomials. 

4. Definition of facial expression (FAP 1 and 2) using low-level FAPs instead of using the def_bit. 

In order to specify the FITs for the examples, linear polynomials are usually sufficient. If it is desired to 
simulating the varying elasticity of skin for large FAP amplitudes, non-linear mappings might be useful. 
Following example 3, we might want the inner and outer eyebrows follow the middle eyebrow first roughly 
linearly and then to a lesser extend. This gives eyebrows with increasing curvature as the FAP amplitude 
increases. 

2.3 Integration of Face Animation and Text-to-Speech Synthesis 
MPEG-4 provides interfaces for a proprietary text-to-speech (TTS) synthesizer [15] that allow driving a talking 
head from text (see Figure 13) [5][6][8][18][1][2]. This section discusses the integration of face animation and 
TTS [3] allowing for animation of a talking face using a TTS synthesizer [22]. A key issue here is the 
synchronization of the speech stream with the FAP stream. Synchronization of a FAP stream with TTS 
synthesizers using the TTS Interfaces (TTSI) is only possible, if the encoder sends prosody and timing 
information. This is due to the fact that a conventional TTS system driven by text only behaves as an 
asynchronous source.  

Given a TTS stream that contains text or prosody in binary form, the MPEG-4 TTSI decoder decodes the 
gender, text and prosody information according to the interface defined for the TTS synthesizer. The 
synthesizer creates speech samples that are handed to the compositor. The compositor presents audio and if 
required video to the user. The second output interface of the synthesizer sends the phonemes of the 
synthesized speech as well as start time and duration information for each phoneme to the Phoneme/Bookmark-
to-FAP-Converter [22]. The converter translates the phonemes and timing information into face animation 
parameters that the face renderer uses in order to animate the face model. The precise method of how the 
converter derives visemes from phonemes is not specified by MPEG and left to the implementation of the 
decoder. This also allows using a coarticulation model at the decoder that uses the current, previous and next 
phoneme in order to derive the correct mouth shape. 

Most speech synthesizers do not have a synchronous behavior. This means that the time they require to speak a 
sentence in not predictable. Therefore, synchronizing the output of a TTS with facial expressions defined in a 
FAP stream is not possible. Bookmarks in the text of the TTS are used to animate facial expressions and non-
speech-related parts of the face [22]. The start time of a bookmark is derived from its position in the text. When 
the TTS finds a bookmark in the text it sends this bookmark to the Phoneme/Bookmark-to-FAP-Converter at 
the same time as it sends the first phoneme of the following word. The bookmark defines the start point and 
duration of the transition to a new FAP amplitude. Consequence: No additional delay, no look ahead in the bit 
stream but no precise timing control on when the amplitude will be reached relative to the spoken text.  

An example of a TTS stream with bookmarks is given in Figure 14 [22]. The renderer will generate the visemes 
associated with each word, following the timing information derived by the speech synthesizer. It will also start 
to deform the model to generate a smile with an amplitude of 40. To simulate a more natural expression, which 
typically goes through three phases (onset, climax, and relax), a desired temporal behavior [20][23] for a 
prescribed FAP can be specified in the bookmark. Three functions are defined: A linear interpolation function 
and a Hermite function can be used to specify the transition of a FAP from its current value to the target value. 
A triangular function can be specified to linearly increase the amplitude of a FAP to the target value and to 
decrease it back to its starting amplitude. The bookmark also specifies the desired duration to reach the FAP 
value in the bookmark. If another bookmark appears before this duration, the renderer starts to deform the face 
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according to the newly specified FAP information from the current position. This is illustrated in Figure 14 
using Hermite functions.  

Decoder Speeech
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Figure 13: Block diagram showing the integration of a proprietary Text-to-Speech Synthesizer into an 
MPEG-4 face animation system. 

<FAP 2 1 40 1  40  2000 3>.text.<FAP 2 1 63 1 63  600 3> ...........text.........<FAP 2 1 0 1 0  1000 3>...text.....
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in ms

FAP amplitude

20

40

63

1100 1700 2000 3000 4000

 
Figure 14: Example for text with bookmarks for one facial expression (joy) and the related amplitude of 
the animated FAP. The syntax of a bookmark is: <FAP 2 (expression) 1 (joy) amplitude 1 (joy) 
amplitude duration 3 (Hermite time curve)>. The amplitude of joy over time is computed according to 
the bookmarks (see Section 2.1.2). 
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2.4 Integration with MPEG-4 Systems 

In order to use face animation in the context of MPEG-4 systems, a BIFS scene graph has to be transmitted to 
the decoder. The minimum scene graph contains a Face node and a FAP node. The FAP decoder writes the 
amplitude of the FAPs into fields of the FAP node. The FAP node might have the children Viseme and 
Expression which are FAPs requiring a special syntax (see Section 2.1.2). This scene graph would enable an 
encoder to animate the proprietary face model of the decoder. If a face model is to be controlled from a TTS 
system, an AudioSource node is to be attached to the face node. 

In order to download a face model to the decoder, the face node requires an FDP node as one of its children. 
This FDP node contains the position of the feature points in the downloaded model, the scene graph of the 
model and the FaceDefTable, FaceDefMesh and FaceDefTransform nodes required to define the action caused 
by FAPs. Figure 15 shows how these nodes relate to each other. 

FaceSceneGraph

FDP

FaceDef
TransformFaceDefMesh

AudioSource

VisemeExpression
FaceSceneGraph

Face

FAP

FaceDefTable

TTSStream FAPStream

FIT

 

Figure 15: Nodes of a BIFS scene graph that are used to describe and animate a face. The 
FaceSceneGraph contains the scene graph of the static face. Here, it is assumed that the streams are 
already decoded. 

2.5 MPEG-4 Profiles for Face Animation 
MPEG-4 defines profiles to which decoders have to conform. A profile consists of objects defining the tools of 
the profile. Levels of a profile and object put performance and parameter limits on the tools. MPEG-4 Audio, 
Visual and Systems define parts of face animation.  

In Visual, the neutral face with its feature points and FAPs, the coding of FAPs as well as the 
Phoneme/Bookmark-to-FAP-Converter with its interface to TTSI are defined. The corresponding object type is 
called Simple Face. The Simple Face object allows animating a proprietary face model using a FAP stream or 
from a TTSI provided that the terminal supports MPEG-4 audio. Two levels are defined for this object: At level 
1, it requires to animate one face model with a maximum bit rate of 16 kbit/s and a render frame rate of at least 
15 Hz. At level 2, up to 4 faces can be animated with a total bit rate not to exceed 32 kbit/s and a render frame 
rate of 60 Hz shareable between faces. This Simple Face object is included in the following visual profiles: 
Hybrid, Basic Animated Texture, and Simple FA (Face Animation). Whereas the Simple FA requires only face 
animation capabilities, Basic Animated Texture adds scaleable texture coding and mesh-based animation of 
these textures. The Hybrid profile adds video decoding according to the Core profile (video and binary shape) 
[14].  

In MPEG-4 Audio, the TTSI with the bookmark identifiers for face animation as well as the interface to the 
Phoneme/Bookmark-to-FAP-converter is defined. It is part of all Audio profiles. Using a TTS, any Audio 
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profile and a Visual profile containing the Face object allows to define interactive services with face animation 
at extremely low data rates. Without using a TTS, any Audio profile and a Visual profile containing the Face 
object allows to play speech and animate the proprietary face model.  

In order to enable the specification of the face, the BIFS node FDP and its children have to be transmitted. This 
is possible for terminals that support the Complete Scene Graph profile and the Complete Graphics profile. 

3. 2D Mesh Animation 
MPEG-4 version-1 supports 2D uniform or content-based (nonuniform) Delaunay triangular mesh 
representation of arbitrary visual objects, that includes an efficient method for animation of such meshes. A 
simplified block diagram of an MPEG-4 encoder/decoder supporting the 2D-mesh object is depicted in Figure 
16, where the 2D-mesh object can be used together with a video object or a still-texture object encoder/decoder. 
We present the basic concepts of 2D-mesh representation and animation in Section 3.1. Mesh analysis, 
discussed in Section 3.2, refers to design or specification of 2D mesh data for video object editing or still-
texture animation. Section 3.3 describes 2D-mesh object coding in detail. Finally, applications of 2D mesh in 
video object editing and still texture animation are presented in Section 3.4. 
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Figure 16: Simplified architecture of an encoder/decoder supporting the 2D-mesh object. Mesh analysis 
module extracts the 2D mesh data, which is then encoded by the mesh encoder. The coded mesh 
representation is embedded in a BIFS elementary stream. At the receiver, the 2D-mesh decoder is 
invoked automatically by the BIFS-Anim node. 

3.1 2D Mesh Representation and Animation 

A 2D triangular mesh (or a mesh object plane) is a planar graph that tessellates (partitions) a video object plane 
or its bounding box into triangular patches. The vertices of each patch are called node points. A 2D mesh 
object, which consists of a sequence of mesh object planes (MOPs), is compactly represented by mesh 
geometry at some key (intra) MOPs and mesh motion vectors at all other (inter) MOPs. The mesh geometry 
refers to the location of the node points on the key mesh object planes. 2D mesh animation is accomplished by 
propagating the 2D mesh defined on key MOPs using one motion vector per node point per object plane until 
the next key MOP. Both mesh geometry and motion (animation) information are predictively coded for an 
efficient binary representation. The mesh topology is always either uniform or Delaunay, hence there is no need 
for topology compression. (The reader is referred to [28] for an introduction to Delaunay meshes.) 
Mesh-based motion modeling differs from block-based motion modeling (that is used in natural video object 
coding) in that the triangular patches overlap neither in the reference frame nor in the current frame. Instead, 
triangular patches in the current frame are mapped onto triangular patches in the reference frame, and the 
texture inside each patch in the reference frame is warped onto the current frame using a parametric mapping, 
such as affine mapping, as a function of the node point motion vectors. This process is called texture mapping, 
which is an integral part of mesh animation. The affine mapping between coordinates (x’,y’) at time t’ and (x, y 
) at time t is given by [27] 
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where ai are the affine motion parameters. The six degrees of freedom in the affine mapping matches that of 
warping a triangle by the motion vectors of its three vertices (with two degrees of freedom in each). 
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Furthermore, if proper constraints are imposed in parameter (node motion vector) estimation, an affine 
transform can guarantee the continuity of the mapping across the boundaries of adjacent triangles. Thus, 2D 
mesh modeling corresponds to non-uniform sampling of the motion field at a number of salient feature points 
(node points), from which a continuous, piece-wise affine motion field can be reconstructed. The fact that the 
mesh structure constrains movements of adjacent image patches has certain advantages and disadvantages: 
Meshes are well-suited to represent mildly deformable but spatially continuous motion fields. However, they do 
not allow discontinuities in the motion field; thus, cannot easily accommodate articulated motions and self-
occlusions. 

3.2 2D Mesh Analysis 
The design of the mesh data associated with a video object or animation is an encoder issue, and hence is not 
normative. This section discusses an example procedure for the reader’s information, where we design either 
uniform or content-based meshes for intra MOPs and track them to determine the inter MOPs. The block 
diagram of the procedure is depicted in Figure 17. The first box is explained in Section 3.2.1, and the next four 
in Section 3.2.2. 
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Figure 17: The 2D mesh design and tracking procedure. The feedback loop increments the frame 
counter. The process is re-initialized (i.e., a new intra MOP is inserted) if model failure region exceeds a 
threshold or a scene change is detected. 

3.2.1 Mesh Design for Intra MOPs 
Intra meshes are either uniform or content-based. A uniform mesh is designed over a rectangular region, which 
is generally the bounding box of the VOP. It is specified in terms of five parameters: the number of nodes in the 
horizontal and vertical directions, the horizontal and vertical dimension of each rectangular cell in half pixel 
units, and the triangle split code that specifies how each cell is divided into two triangles (see Section 3.3.1.1). 
As a rule of thumb, we target the total number of triangles over the bounding box to be equal to that of the 
macroblocks that would be obtained in natural VOP coding. A content-based mesh may be designed to fit 
exactly on the corresponding VOP. The procedure consists of three steps: i) Approximation of the VOP contour 
by a polygon through selection of Nb boundary node points; ii) selection of Ni interior node points; and iii) 
Delaunay triangulation to define the mesh topology. There are various methods for approximation of arbitrary 
shaped contours by polygons [33][35]. Interior node points may be selected to coincide with high-gradient 
points or corner points within the VOP boundary [33]. An example of a content-based mesh is depicted in 
Figure 18. 



     

 02/03/05 4:59 PM 22  

 
Figure 18: A content-based mesh designed for the “Bream” video object. 

3.2.2 Mesh Tracking 
Motion data of the 2D mesh may represent the motion of a real video object (for natural video object 
compression and manipulation applications) or may be synthetic (for animation of a still texture map). In the 
former case, the motion of a natural video object may be estimated by forward mesh tracking. The latter 
requires special purpose tools and/or artistic skills. In forward mesh tracking, we search in the current video 
object plane for the best matching locations of the node points of the previous (intra or inter) mesh, thus 
tracking image features until the next intra MOP. The procedure applies for both uniform and content-based 
meshes.  

Various techniques have been proposed for node motion estimation for forward mesh tracking. The simplest 
method is to form blocks that are centered around the node points and then employ a closed-form solution or 
block-matching to find motion vectors at the node points independently [27][29]. Alternatively, hexagonal 
matching  [30] and closed-form matching [31] techniques find the optimal motion vector at each node under the 
parametric warping of all patches surrounding the node while enforcing mesh connectivity constraints at the 
expense of more computational complexity. Another method is iterative gradient-based optimization of node 
point locations, taking into account image features and mesh deformation criteria[32]. Hierarchical tracking 
methods may provide significantly improved performance and robustness in enforcing constraints to avoid 
foldovers [34][36]. We also recently proposed a semi-automatic (interactive) tool for accurate mesh object 
tracking [37]. 

3.3 2D Mesh Object Encoding/Decoding 
Mesh data consists of a list of node locations (xn, yn) where n is the node index (n=0,…,N-1) and a list of 
triangles tm where m is the triangle index (m = 0, ..., M-1). Each triangle tm is specified by a triplet <i, j, k> of 
the indices of the node points that are the vertices of that triangle. The syntax of the compressed binary 
representation of intra and inter MOPs and the semantics of the decoding process is normative in MPEG-4. 
Each MOP has a flag that specifies whether the data that follows is geometry data (intra MOP) or motion data 
(inter MOP). A block diagram of the decoding process is shown in Figure 19. Mesh geometry decoding 
computes the node point locations and reconstructs a triangular mesh from them. Mesh motion decoding 
computes the node motion vectors and applies them to the node points of the previous mesh to reconstruct the 
current mesh. The reconstructed mesh is stored in the mesh data memory, so that it can be used in motion 
decoding of the next MOP. In the following, we first describe the decoding of mesh geometry, and then the 
mesh motion. We assume a pixel-based 2D coordinate system, where the x-axis points to the right from the 
origin, and the y-axis points down from the origin. 
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Figure 19: Simplified block diagram of 2D Mesh Object decoding. 

3.3.1 Encoding/Decoding of Mesh Geometry  

The flag mesh_type_code specifies whether the topology of an intra MOP is uniform or Delaunay. In either 
case, the coded geometry information, described in detail in the following, defines the 2D mesh uniquely so 
that there is no need for explicit topology compression. 

3.3.1.1 Uniform Mesh 
A 2D uniform mesh can be viewed as a set of rectangular cells, where each rectangle is split into two triangles. 
Five parameters are used to specify the node point locations and topology of a uniform mesh. The top-left node 
point of the mesh always coincides with the origin of a local coordinate system. The first two parameters 
specify the number of nodes in the horizontal and vertical direction of the mesh, respectively. The next two 
parameters specify the horizontal and vertical size of each rectangular cell in half pixel units. This completes 
the layout and dimensions of the mesh. The last parameter specifies how each rectangle is split to form two 
triangles: four choices are allowed as illustrated in Figure 20. An example of a 2D uniform mesh is given in 
Figure 21. 

triangle_split_code == ‘00’ triangle_split_code == ‘01’

triangle_split_code == ‘10’ triangle_split_code == ‘11’
 

Figure 20: Types of uniform mesh topology: Code 00 - top-left to right bottom; Code 01 - bottom-left to 
top right; Code 10 – alternate between top-left to bottom-right and bottom-left to top-right; Code 11 – 
alternate between bottom-left to top-right and top-left to bottom-right. 
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mesh_rect_size_hor

mesh_rect_size_vert

 
Figure 21: Example of a uniform 2D mesh specified by five parameters, where nr_mesh_nodes_hor is 
equal to 5, nr_mesh_nodes_vert is equal to 4, mesh_rect_size_hor and mesh_rect_size vert are specified 
as shown, and the triangle_split_code is equal to ‘00’. 

3.3.1.2 Delaunay Mesh 
A 2D Delaunay mesh is specified by the following parameters: i) The total number of node points N; ii) the 
number of node points Nb that are on the boundary of the mesh; and iii) the coordinates 

rp x yn n n= ( , ) , n=0, 
…, N-1, of all node points. The origin of the local coordinate system is assumed to be at the top left corner of 
the bounding box of the mesh. Note that the number of nodes in the interior of the mesh Ni can be computed as 

bi NNN −=       (3) 

The first node point,   
r 
p 0 = (x0, y0 ) , is decoded directly, where the coordinates x0  and y0 are specified with 

respect to the origin of the local coordinate system. All other node points are computed by adding the decoded 
values dxn  and dyn  to the x- and y-coordinates, respectively, of the last decoded node point as follows 

nnnnnn dyyydxxx +=+= −− 11    and      (4) 
The first Nb node point coordinates that are encoded/decoded must correspond to the boundary nodes in order to 
allow their identification without additional overhead. Thus, after receiving the first Nb locations, the decoder 
can reconstruct the boundary of the mesh by connecting each pair of successive boundary nodes, as well as the 
first and the last, by straight-line edge segments. This is illustrated with an example in Figure 22.  
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Figure 22: Decoded node points and reconstruction of mesh boundary.  

The next Ni coordinate values define the interior node points. Finally, the mesh is reconstructed by applying 
constrained Delaunay triangulation to all node points, where the boundary polygon forms the constraint. 
Constrained triangulation of node points  

r 
p n  contains triangles only to the interior of the region defined by the 

boundary segments. Furthermore, each triangle tk =
r
p l ,

r
p m ,

r
p n  of a constrained Delaunay triangulation 

satisfies the property that the circumcircle of tk  does not contain any node point   
r 
p r  visible from all three 
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vertices of tk . A node point is visible from another node point if a straight line between them falls entirely 
inside or exactly on the constraining polygonal boundary. An example of a mesh obtained by constrained 
triangulation of the node points in Figure 22 is shown in Figure 23. 
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Figure 23: Decoded triangular mesh obtained by constrained Delaunay triangulation. 

3.3.2 Encoding/Decoding of Mesh Motion  
An inter MOP is defined by a set of 2D motion vectors  

r 
v n = vxn,vyn( ) that are associated with each node 

point   
r 
p n  of the previous MOP. We can then reconstruct the locations of node points in the current MOP by 

propagating the corresponding node  
r 
p n  of the previous MOP. The triangular topology of the mesh remains the 

same until the next intra MOP. Node point motion vectors are decoded predictively, i.e., the components of 
each motion vector are predicted using those of two previously decoded node points determined according to a 
breadth-first traversal as described in Section 3.3.2.1. Section 3.3.2.2 describes the prediction process. 

3.3.2.1 Mesh Traversal 
The order in which the motion vector data is encoded/decoded is defined by a breadth-first traversal of the 
triangles, which depends only on the topology of the mesh. Hence, the breadth-first traversal needs to be 
computed once (and stored in the mesh data memory) for every intra MOP as follows:  

• First, we define the top left mesh node as the node n with the minimum xn + yn , assuming that the origin 
of the local coordinate system is at the top left. If there are more than one node with the same value of 
xn + yn , then we choose the one with the minimum yn among them. The initial triangle is the triangle that 
contains the edge between the top-left node of the mesh and the next clockwise node on the mesh 
boundary. We label the initial triangle with the number 0.  

• Next, all other triangles are successively labeled 1, 2, ..., M - 1, where M is the number of triangles in the 
mesh, as follows: Among all labeled triangles that have adjacent triangles which are not yet labeled, we 
find the triangle with the lowest label number. This triangle is called the current triangle. We define the 
base edge of this triangle as the edge that connects this triangle to the already labeled neighboring triangle 
with the lowest number. In the case of the initial triangle, the base edge is defined as the edge between the 
top-left node and the next clockwise node on the boundary. We define the right edge of the current triangle 
as the next counterclockwise edge of the current triangle with respect to the base edge; and the left edge as 
the next clockwise edge of the current triangle with respect to the base edge. That is, for a triangle 

  tk =
r 
p l ,

r 
p m ,

r 
p n , where the vertices are in clockwise order, if  

r 
p l

r 
p m  is the base edge, then  

r 
p l

r 
p n  is 

the right edge and   
r 
p m

r 
p n  is the left edge. Now, we check if there is an unlabeled triangle adjacent to the 

current triangle, sharing the right edge. If there is such a triangle, we label it with the next available 
number. Then we check if there is an unlabeled triangle adjacent to the current triangle, sharing the left 
edge. If there is such a triangle, we label it with the next available number.  

• This process continues until all triangles have been labeled.  
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3.3.2.2 Motion Vector Prediction 
The mesh motion bitstream is composed of prediction error vectors  

r 
e n = exn ,eyn( ), whose components are 

variable length coded. The ordering of the triangles defines the order in which the motion vector data of each 
node point is encoded/decoded, as described in the following. First, motion vector data for the top-left node n0 
of the mesh is retrieved from the bitstream. No prediction can be used in coding the motion vector of n0. Hence, 

00 nn ev rr
=       (5) 

Then, the prediction error vector en1 for the next clockwise node on the boundary with respect to the top-left 
node is retrieved from the bitstream. Note that only vn0 can be used to predict vn1. That is,  

 
r 
v n1

=
r 
v n0

+
r 
e n1       (6) 

We mark these first two nodes (that form the base edge of the initial triangle) with the label ‘done’. At this 
point the two nodes on the base edge of any triangle in the sequential order as defined in Section 3.3.2.1 are 
guaranteed to be labeled ‘done’ (indicating that their motion vectors have already been decoded and may be 
used as predictors) when we reach that triangle. Then, for each triangle, the motion vectors of the two nodes of 
the base edge are used to form a prediction for the motion vector of the third node. If that third node is not 
already labeled ‘done’, the prediction vector 

r
wn  is computed by averaging the two motion vectors, as follows: 

 
r 
w n = 0.5 ⋅( vxm + vxl + 0.5⎣ ⎦, vym + vyl + 0.5⎣ ⎦)     (7) 

and its motion vector is given by 

 
r 
v n =

r 
w n +

r 
e n        (8) 

Consequently, the third node is also labeled ‘done’. If the third node is already labeled ‘done’, then it is simply 
ignored and we proceed to the next triangle. Note that the prediction error vector is specified only for node 
points with a nonzero motion vector. Otherwise, the motion vector is simply   

r 
v n = 0,0( ). Finally, the 

horizontal and vertical components of mesh node motion vectors are processed to lie within a certain range, as 
in the case of video block-motion vectors. 

3.3.2.3 An Example 
An example of breadth-first traversal for motion vector prediction is shown in Figure 24. The figure on the left 
shows the traversal after five triangles have been labeled, which determines the ordering of the motion vectors 
of six node points (marked with a box). The triangle with the label ‘3’ is the ‘current triangle’; the base edge is 
‘b’; and the right- and left-edges are denoted by ‘r’ and ‘l’, respectively. The next two triangles that will be 
labeled are the triangles sharing the right and. left edges with the current triangle. After those two, the triangle 
that is labeled ‘4’ will be the next ‘current triangle.’ The figure on the right shows the final result, illustrating 
transitions between triangles and the final ordering of the node points for motion vector encoding/decoding. 
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Figure 24: Example for the breadth-first traversal of the triangles of a 2D mesh. 
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3.4 Integration with MPEG-4 Systems 
2D mesh geometry and motion data are passed on to an IndexedFaceSet2D node using the BIFS animation-
stream for rendering and/or texture mapping (see the paper on BIFS in this issue). BIFS animation is a general 
framework for streaming parameters to certain fields of some BIFS nodes. Suppose a node (describing an 
object) is below a Transform node in the scene description tree. We can then animate the position of this object 
using BIFS-Anim by streaming a sequence of x, y, z positions to the 'translation' field of the Transform node. In 
this case, the x, y, z positions are quantized and encoded by an arithmetic coder. Both 2D mesh animation and 
face animation are special cases of BIFS-Anim in that the coding of the respective animation parameters is 
specified in the Visual part of MPEG-4. These coded bitstreams are just wrapped into the BIFS-Anim stream. 

In order to use the BIFS-Anim framework, we need to define an AnimationStream node in the scene, which 
points to the encoded parameter stream using an object-descriptor (just like in the case of a video-stream). The 
animation-stream decoder knows where to pass this data by means of a unique node-ID, e.g., that of the 
IndexedFaceSet2D node, which must be specified when setting up the animation-stream. From the node-ID, the 
animation-stream decoder can infer the node itself and its type. If the type is IndexedFaceSet2D, then the 
animation stream decoder knows that it must pass the encoded data to the 2Dmesh decoder, which in turn will 
update the appropriate fields of the IndexedFaceSet2D node. Texture mapping onto the IndexedFaceSet2D is 
similar to that in VRML and is explained in the Systems part of the standard. 

3.5 Applications of the 2D Mesh Object 
Apart from providing the ability to animate generic still texture images with arbitrary synthetic motion, the 2D 
mesh object representation may also enable the following functionalities: 

1) Video Object Compression 

• Mesh modeling may yield improved compression efficiency for certain types of video objects by only 
transmitting the texture maps associated with a few intra MOPs and reconstruct all others by 2D mesh 
animation of these still texture maps. This is called self-transfiguration of a natural video object. 

2) Video Object Manipulation 
• 2D augmented reality: Merging virtual (computer generated) images with real video objects to create 

enhanced display information. The computer-generated images must remain in perfect registration with the 
real video objects, which can be achieved by 2D mesh tracking of video objects. 2D augmented reality 
application is demonstrated in Figure 25. 

• Editing texture of video objects: Replacing a natural video object in a clip by another video object. The 
replacement video object may be extracted from another natural video clip or may be transfigured from a 
still image object using the motion information of the object to be replaced (hence the need for a 
temporally continuous motion representation). This is called synthetic-object-transfiguration. 

• Spatio-temporal interpolation: Mesh motion modeling provides more robust motion-compensated temporal 
interpolation (frame rate up-conversion). 
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Figure 25: An example of 2D augmented reality: The letters “Fishy?” are synthetically overlaid on the 
video object “Bream” and they move in synchronization with the natural motion of Bream [35]. 

3) Content-Based Video Indexing 
• Mesh representation provides accurate object trajectory information that can be used to retrieve visual 

objects with specific motion. 
• Mesh representation provides vertex-based object shape representation which is more efficient than the 

bitmap representation for shape-based object retrieval. 

4. Conclusions 
MPEG-4 integrates synthetic and natural content in multimedia communications and documents. In particular, 
two types of synthetic visual objects are defined in version 1: animated faces and animated 2D meshes. MPEG-
4 defines a complete set of animation parameters tailored towards animation of the human face. In order to 
enable animation of a face model over low bitrate communication channels, for point to point as well as multi-
point connections, MPEG-4 encodes the facial animation parameters using temporal prediction. Face models 
can be animated with a data rate of 300 - 2000bits/s. MPEG-4 also defines an application program interface for 
TTS synthesizer. Using this interface, the synthesizer can be used to provide phonemes and related timing 
information to the face model. This allows for animated talking heads driven just by one text stream.  

2D meshes provide means to represent and/or animate generic 2D objects. MPEG-4 version-1 accommodates 
both uniform and Delaunay 2-D meshes. 2-D meshes with arbitrary topology can be realized as a special case 
of 3D generic meshes (which will become available in MPEG-4 version 2) and can be animated using the 
BIFS-Anim elementary stream. Experimental results indicate that coding efficiency of the 2D dynamic mesh 
representation (for uniform and Delaunay meshes) described in this paper is significantly better when compared 
to that of 2D generic mesh animation using BIFS-Anim. 

It is important to note that both face animation and 2D mesh animation may be used as representations of real 
video objects for highly efficient compression (model-based coding) or to generate completely synthetic video 
objects (virtual or augmented reality). Of course, the model-based coding application requires powerful video 
object analysis tools to estimate the animation parameters that would imitate real video objects. 
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6. Annex 

Table 6: Location of feature points on a face model (Figure 2). Recommended location constraints define 
for some or all coordinates of a feature point the value as a function of other feature points, i.e., feature 
points 2.1, 2.2, 2.3 and 7.1 have the same x-coordinate thus locating them in the same yz-plane. 

Feature points Recommended location constraints 

# Text description x y z 

2.1 Bottom of the chin 7.1.x   
2.2 Middle point of inner upper lip contour 7.1.x   
2.3 Middle point of inner lower lip contour 7.1.x   
2.4 Left corner of inner lip contour    
2.5 Right corner of inner lip contour    
2.6 Midpoint between f.p. 2.2 and 2.4 in the 

inner upper lip contour 
(2.2.x+2.4.x)/2   

2.7 Midpoint between f.p. 2.2 and 2.5 in the 
inner upper lip contour 

(2.2.x+2.5.x)/2   

2.8 Midpoint between f.p. 2.3 and 2.4 in the 
inner lower lip contour 

(2.3.x+2.4.x)/2   

2.9 Midpoint between f.p. 2.3 and 2.5 in the 
inner lower lip contour 

(2.3.x+2.5.x)/2   

2.10 Chin boss 7.1.x   
2.11 Chin left corner > 8.7.x and  < 

8.3.x 
  

2.12 Chin right corner > 8.4.x and < 
8.8.x 

  

2.13 Left corner of jaw bone    
2.14 Right corner of jaw bone    
3.1 Center of upper inner left eyelid (3.7.x+3.11.x)/2   
3.2 Center of upper inner right eyelid (3.8.x+3.12.x)/2   
3.3 Center of lower inner left eyelid (3.7.x+3.11.x)/2   
3.4 Center of lower inner right eyelid (3.8.x+3.12.x)/2   
3.5 Center of the pupil of left eye    
3.6 Center of the pupil of right eye    
3.7 Left corner of left eye    
3.8 Left corner of right eye    
3.9 Center of lower outer left eyelid (3.7.x+3.11.x)/2   
3.10 Center of lower outer right eyelid (3.7.x+3.11.x)/2   
3.11 Right corner of left eye    
3.12 Right corner of right eye    
3.13 Center of upper outer left eyelid (3.8.x+3.12.x)/2   
3.14 Center of upper outer right eyelid (3.8.x+3.12.x)/2   
4.1 Right corner of left eyebrow    
4.2 Left corner of right eyebrow    
4.3 Uppermost point of the left eyebrow (4.1.x+4.5.x)/2 or 

x coord of the 
uppermost point 
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of the contour 
4.4 Uppermost point of the right eyebrow (4.2.x+4.6.x)/2 or 

x coord of the 
uppermost point 
of the contour 

  

4.5 Left corner of left eyebrow    
4.6 Right corner of right eyebrow    
5.1 Center of the left cheek  8.3.y  
5.2 Center of the right cheek  8.4.y  
5.3 Left cheek bone > 3.5.x and < 

3.7.x 
> 9.15.y and < 
9.12.y 

 

5.4 Right cheek bone > 3.6.x and < 
3.12.x 

> 9.15.y and < 
9.12.y 

 

6.1 Tip of the tongue 7.1.x   
6.2 Center of the tongue body 7.1.x   
6.3 Left border of the tongue   6.2.z 
6.4 Right border of the tongue   6.2.z 
7.1 top of spine (center of head rotation)    
8.1 Middle point of outer upper lip contour 7.1.x   
8.2 Middle point of outer lower lip contour 7.1.x   
8.3 Left corner of outer lip contour    
8.4 Right corner of outer lip contour    
8.5 Midpoint between f.p. 8.3 and 8.1 in 

outer upper lip contour 
(8.3.x+8.1.x)/2   

8.6 Midpoint between f.p. 8.4 and 8.1 in 
outer upper lip contour 

(8.4.x+8.1.x)/2   

8.7 Midpoint between f.p. 8.3 and 8.2 in 
outer lower lip contour 

(8.3.x+8.2.x)/2   

8.8 Midpoint between f.p. 8.4 and 8.2 in 
outer lower lip contour 

(8.4.x+8.2.x)/2   

8.9 Right hiph point of Cupid’s bow    
8.10 Left hiph point of Cupid’s bow    
9.1 Left nostril border    
9.2 Right nostril border    
9.3 Nose tip 7.1.x   
9.4 Bottom right edge of nose    
9.5 Bottom left edge of nose    
9.6 Right upper edge of nose bone    
9.7 Left upper edge of nose bone    
9.8 Top of the upper teeth 7.1.x   
9.9 Bottom of the lower teeth 7.1.x   
9.10 Bottom of the upper teeth 7.1.x   
9.11 Top of the lower teeth 7.1.x   
9.12 Middle lower edge of nose bone (or 

nose bump) 
7.1.x (9.6.y + 9.3.y)/2 or 

nose bump 
 

9.13 Left lower edge of nose bone  (9.6.y +9.3.y)/2  
9.14 Right lower edge of nose bone  (9.6.y +9.3.y)/2  
9.15 Bottom middle edge of nose 7.1.x   
10.1 Top of left ear    
10.2 Top of right ear    
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10.3 Back of left ear  (10.1.y+10.5.y)/2  
10.4 Back of right ear  (10.2.y+10.6.y)/2  
10.5 Bottom of left ear lobe    
10.6 Bottom of right ear lobe    
10.7 Lower contact point between left lobe 

and face 
   

10.8 Lower contact point between right lobe 
and face 

   

10.9 Upper contact point between left ear and 
face 

   

10.10 Upper contact point between right ear 
and face 

   

11.1 Middle border between hair and 
forehead 

7.1.x   

11.2 Right border between hair and forehead < 4.4.x   
11.3 Left border between hair and forehead > 4.3.x   
11.4 Top of skull 7.1.x  > 10.4.z and < 

10.2.z 
11.5 Hair thickness over f.p. 11.4 11.4.x  11.4.z 
11.6 Back of skull 7.1.x 3.5.y  

 

Table 7: FAP definitions, group assignments, and step sizes. FAP names may contain letters with the 
following meaning: l = left, r = right, t = top, b = bottom, i = inner, o = outer, m = middle. The quantizer 
step-size is a scaling factor for coding as described in Section 2.2. 

# FAP name FAP description units Uni-
orBi
dir 

Pos  

motion 

G 
r 
p 

FDP  
subgr
p 
num 

Quan
t step 
size 
QP 

Min/Max 
I-Frame 
quantized 
values 

Min/Ma
x P-
Frame 
quantize
d values 

1 viseme Set of values 
determining the 
mixture of two 
visemes for this 
frame (e.g. pbm, fv, 
th) 

na na na 1 na 1 viseme_bl
end: +63 

viseme_b
lend: +-
63 

2 expression A set of values 
determining the 
mixture of two facial 
expression  

na na na 1 na 1 expression
_intensity
1, 
expression
_intensity
2: +63 

expressio
n_intensit
y1, 
expressio
n_intensit
y2: +-63 

3 open_jaw Vertical jaw 
displacement (does 
not affect mouth 
opening) 

MNS U down 2 1 4 +1080 +360 

4 lower_t_midlip  Vertical top middle 
inner lip 
displacement 

MNS B down 2 2 2 +-600 +-180 

5 raise_b_midlip  Vertical  bottom 
middle inner lip 

MNS B up 2 3 2 +-1860 +-600 
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displacement 
6 stretch_l_cornerlip Horizontal 

displacement of left 
inner lip corner 

MW B left 2 4 2 +-600 +-180 

7 stretch_r_cornerlip Horizontal 
displacement of right 
inner lip corner 

MW B right 2 5 2 +-600 +-180 

8 lower_t_lip_lm  Vertical  
displacement of 
midpoint between left 
corner and middle of 
top inner lip 

MNS B down 2 6 2 +-600 +-180 

9 lower_t_lip_rm  Vertical  
displacement of 
midpoint between 
right corner and 
middle of top inner 
lip 

MNS B down 2 7 2 +-600 +-180 

10 raise_b_lip_lm  Vertical  
displacement of 
midpoint between left 
corner and middle of 
bottom inner lip 

MNS B up 2 8 2 +-1860 +-600 

11 raise_b_lip_rm Vertical  
displacement of 
midpoint between 
right corner and 
middle of bottom 
inner lip 

MNS B up 2 9 2 +-1860 +-600 

12 raise_l_cornerlip Vertical  
displacement of left 
inner lip corner 

MNS B up 2 4 2 +-600 +-180 

13 raise_r_cornerlip Vertical  
displacement of right 
inner lip corner 

MNS B up 2 5 2 +-600 +-180 

14 thrust_jaw  Depth displacement 
of jaw 

MNS U forward 2 1 1 +600 +180 

15 shift_jaw Side to side 
displacement of jaw 

MW B right 2 1 1 +-1080 +-360 

16 push_b_lip  Depth displacement 
of bottom middle lip 

MNS B forward 2 3 1 +-1080 +-360 

17 push_t_lip  Depth displacement 
of top middle lip 

MNS B forward 2 2 1 +-1080 +-360 

18 depress_chin  Upward and 
compressing 
movement of the chin 
(like in sadness) 

MNS B up 2 10 1 +-420 +-180 

19 close_t_l_eyelid  Vertical displacement 
of top left eyelid 

IRISD B down 3 1 1 +-1080 +-600 

20 close_t_r_eyelid  Vertical displacement 
of top right eyelid 

IRISD B down 3 2 1 +-1080 +-600 

21 close_b_l_eyelid  Vertical displacement 
of bottom left eyelid 

IRISD B up 3 3 1 +-600 +-240 

22 close_b_r_eyelid  Vertical displacement 
of bottom right eyelid

IRISD B up 3 4 1 +-600 +-240 
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23 yaw_l_eyeball Horizontal 
orientation of left 
eyeball 

AU B left 3 na 128 +-1200 +-420 

24 yaw_r_eyeball Horizontal 
orientation of right 
eyeball 

AU B left 3 na 128 +-1200 +-420 

25 pitch_l_eyeball    Vertical orientation 
of left eyeball 

AU B down 3 na 128 +-900 +-300 

26 pitch_r_eyeball    Vertical orientation 
of right eyeball 

AU B down 3 na 128 +-900 +-300 

27 thrust_l_eyeball    Depth displacement 
of left eyeball 

ES B forward 3 na 1 +-600 +-180 

28 thrust_r_eyeball   Depth displacement 
of right eyeball 

ES B forward 3 na 1 +-600 +-180 

29 dilate_l_pupil    Dilation of left pupil IRISD B growing 3 5 1 +-420 +-120 
30 dilate_r_pupil Dilation of right 

pupil 
IRISD B growing 3 6 1 +-420 +-120 

31 raise_l_i_eyebrow Vertical displacement 
of left inner eyebrow 

ENS B up 4 1  2 +-900 +-360 

32 raise_r_i_eyebrow Vertical displacement 
of right inner 
eyebrow 

ENS B up 4 2 2 +-900 +-360 

33 raise_l_m_eyebrow Vertical displacement 
of left middle 
eyebrow 

ENS B up 4 3 2 +-900 +-360 

34 raise_r_m_eyebrow Vertical displacement 
of right middle 
eyebrow 

ENS B up 4 4 2 +-900 +-360 

35 raise_l_o_eyebrow Vertical displacement 
of left outer eyebrow 

ENS B up 4 5 2 +-900 +-360 

36 raise_r_o_eyebrow Vertical displacement 
of right outer 
eyebrow 

ENS B up 4 6 2 +-900 +-360 

37 squeeze_l_eyebrow Horizontal 
displacement of left 
eyebrow 

ES B right 4 1 1 +-900 +-300 

38 squeeze_r_eyebrow Horizontal 
displacement of right 
eyebrow 

ES B left 4 2 1 +-900 +-300 

39 puff_l_cheek          Horizontal 
displacement of  left 
cheeck 

ES B left 5 1 2 +-900 +-300 

40 puff_r_cheek          Horizontal 
displacement of right 
cheeck 

ES B right 5 2 2 +-900 +-300 

41 lift_l_cheek         Vertical displacement 
of left cheek 

ENS U up 5 3 2 +-600 +-180 

42 lift_r_cheek         Vertical displacement 
of right cheek 

ENS U up 5 4 2 +-600 +-180 

43 shift_tongue_tip     Horizontal 
displacement of 
tongue tip 

MW B right 6 1 1 +-1080 +-420 

44 raise_tongue_tip     Vertical displacement 
of tongue tip 

MNS B up 6 1 1 +-1080 +-420 
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45 thrust_tongue_tip     Depth displacement 
of tongue tip 

MW B forward 6 1 1 +-1080 +-420 

46 raise_tongue      Vertical displacement 
of tongue 

MNS B up 6 2 1 +-1080 +-420 

47 tongue_roll Rolling of the tongue 
into U shape 

AU U concave
upward 

6 3, 4 512 +300 +60 

48 head_pitch Head pitch angle 
from top of spine 

AU B down 7 na 170 +-1860 +-600 

49 head_yaw Head yaw angle from 
top of spine 

AU B left 7 na 170 +-1860 +-600 

50 head_roll Head roll angle from 
top of spine 

AU B right 7 na 170 +-1860 +-600 

51 lower_t_midlip _o Vertical top middle 
outer lip 
displacement 

MNS B down 8 1 2 +-600 +-180 

52 raise_b_midlip_o Vertical  bottom 
middle outer lip 
displacement 

MNS B up 8 2 2 +-1860 +-600 

53 stretch_l_cornerlip_o Horizontal 
displacement of left 
outer lip corner 

MW B left 8 3 2 +-600 +-180 

54 stretch_r_cornerlip_o Horizontal 
displacement of right 
outer lip corner 

MW B right 8 4 2 +-600 +-180 

55 lower_t_lip_lm _o Vertical  
displacement of 
midpoint between left 
corner and middle of 
top outer lip 

MNS B down 8 5 2 +-600 +-180 

56 lower_t_lip_rm _o Vertical  
displacement of 
midpoint between 
right corner and 
middle of top outer 
lip 

MNS B down 8 6 2 +-600 +-180 

57 raise_b_lip_lm_o Vertical  
displacement of 
midpoint between left 
corner and middle of 
bottom outer lip 

MNS B up 8 7 2 +-1860 +-600 

58 raise_b_lip_rm_o Vertical  
displacement of 
midpoint between 
right corner and 
middle of bottom 
outer lip 

MNS B up 8 8 2 +-1860 +-600 

59 raise_l_cornerlip_o Vertical  
displacement of left 
outer lip corner 

MNS B up 8 3 2 +-600 +-180 

60 raise_r_cornerlip _o Vertical  
displacement of right 
outer lip corner 

MNS B up 8 4 2 +-600 +-180 

61 stretch_l_nose  Horizontal 
displacement of left 
side of nose 

ENS B left 9 1 1 +-540 +-120 
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62 stretch_r_nose  Horizontal 
displacement of right 
side of nose 

ENS B right 9 2 1 +-540 +-120 

63 raise_nose  Vertical displacement 
of nose tip 

ENS B up 9 3 1 +-680 +-180 

64 bend_nose Horizontal 
displacement of nose 
tip 

ENS B right 9 3 1 +-900 +-180 

65 raise_l_ear      Vertical displacement 
of left ear 

ENS B up 10 1 1 +-900 +-240 

66 raise_r_ear      Vertical displacement 
of right ear 

ENS B up 10 2 1 +-900 +-240 

67 pull_l_ear    Horizontal 
displacement of left 
ear 

ENS B left 10 3 1 +-900 +-300 

68 pull_r_ear    Horizontal 
displacement of right 
ear 

ENS B right 10 4 1 +-900 +-300 

 


