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Abstract

A good approximation to the integrate-and-"re model with di!usive noise can be obtained
using a noisy threshold model. This allows the response of a population of noisy neurons to
a current transient to be described using a linear "lter. Here we apply these analytical results
to the peristimulus time histogram (PSTH) of a single neuron. The e!ect of the noise on the
PSTH in our model is similar to that seen in experimental "ndings of Poliakov et al. (J. Physiol.,
Part 1,495 (1996) 143}157) on hypoglossal and cat lumbar motoneurons and could help in
interpreting their results. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Random synaptic inputs to a neuron causes its membrane potential to #uctuate.
These random inputs are commonly modeled using di!usive noise. Di!usive noise
added to an integrate-and-"re model can elicit &spontaneous' activity even when the
neuron is nominally operating below threshold. Intuitively, we expect this noise to
a!ect the ability of a neuron to transmit a pulse* but how? This question has been
studied experimentally in motoneurons and in this paper we attempt to provide
a theoretical explanation for the observed results.

Motoneurons receive convergent input and are thus subject to synaptic `noisea due
to the large number of (stochastically) arriving spikes. Measurements have been
made in motoneurons of the e!ect of synaptic noise on the membrane potential,
showing a roughly Gaussian distribution of the synaptic potential [1]. Input}output
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Fig. 1. In the absence of a signal, a neuron exhibits a constant level of activity A
0

due to synaptic noise.
When a current transient, I(t)"I

0
#*I(t) (top row) is applied, the neuron responds with an increased

spiking probability. The theoretical probability density P(spike), shown in the third and fourth traces (thick
lines), is related to the postsynaptic potential (PSP) *h(t) (second trace), its derivative *h@(t) (bottom trace),
and the noise level, p. (Traces are not shown to scale.) In experiments, P(spike) would be estimated by way of
the peristimulus time histogram (PSTH) (stepped lines, bottom two rows).

measurements have been performed experimentally on motoneurons by a number of
researchers and it has long been established that the PSTH pro"le is clearly related to
the PSP pro"le, its derivative, or both [9,2,14,15]. Gustafsson et al. [7] suggested that
the PSTH response of a motoneuron to smaller PSPs also depends on the level of
noise. Poliakov et al. [15] extensively studied the e!ect of noise on PSTH responses of
rat hypoglossal and cat lumbar motoneurons to small PSP-like current transients
injected into the soma. In another comprehensive study [14], they showed that linear
combination of the PSP pro"le and its derivative can generally be used to approxim-
ate a given PSTH pro"le, but the coe$cients are not constant for di!erent current
inputs and it is not clear how they might be determined by the noise except in certain
restrictive cases [12,10]. They also used white-noise analysis to derive Wiener kernels
up to second order [14]. Unfortunately, the Wiener}kernel description is di$cult to
interpret in terms of underlying mechanisms and does not allow predictions to be
made about how noise controls the shape of the PSTH pro"le.

Fig. 1 schematically summarizes the situation. A model neuron is subjected to
a constant level of background synaptic noise and "res stochastically at some baseline
rate A

0
. The neuron may now be tested with a &signal', a small pulse that generates

a PSP. In the "gure, a current pulse I(t) applied to the neuron results in the PSP *h(t),
which may or may not in turn elicit a spike. By repeatedly applying the same pulse
and measuring spike times, a PSTH is accumulated, giving an estimate of the
probability of a spike following the input pulse. The pro"le may be compared to the
PSP and its derivative, *h@(t). The analytical approach we present here aims to show
how the relative in#uences of the PSP and its derivative are controlled by the noise
level p.

Consider a homogeneous population of N noisy neurons initialized with random
initial conditions, all receiving the same input. If the neurons are not connected to
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each other, the activity of the population as a whole in response to a given stimulus is
equivalent to the PSTH compiled from the response of a single noisy neuron to
N repeated presentations of the same stimulus. Hence, we can apply theoretical results
for homogeneous populations to the PSTH of an individual neuron. The next section
summarizes the theory.

2. Theory

Our analytical approach will consist of two steps. First, we need a model of an
individual neuron that explicitly descibes noise, presented next in Section 2.1. The
second step will be to derive the expected PSTH response of the model neuron in
Section 2.2.

2.1. Spike response model and noise model

The spike response model [5] for the case of connectionless neurons describes the
response of a neuron in terms of a threshold, h; a response kernel e(t) that gives the
input potential h(t) generated in response to current input; and a refractory function,
g(t). The net input potential

h(t)"P
=

0

e(s)I(t!s) ds (1)

is the sum of the postsynaptic potentials caused by current input I(t). The membrane
potential u(t) is the sum of the refractory potential and the net input potential:

u(t)"g(t!tK )#h(t). (2)

We will use the exponentially decaying kernels e(s)"(1/q) exp[!(s/q)]H(s) and
g(s)"!exp(!s/q)H(s), where q is the membrane time constant and H(s) is the
Heaviside function. In this case, between "rings, the deterministic membrane potential
evolves according to

q
du

dt
"!u(t)#J

%95
I(t), (3)

where I(t) is the external current, J
%95

is a scalar coupling factor which we will set to 1,
and tK is the last "ring time of the neuron. This model is very similar to the well-known
integrate-and-"re model (for details, see [4]).

We now consider a model of noise in the spike generation process in which noise is
added to the thresholding process [6]. Here we speci"cally address only the below-
threshold regime. The probability of a spike at time t, o

h
(t), is determined by an escape

rate f [u] which is simply a function of the membrane potential u. f could be a
normal distribution for example, which would be consistent with a #uctuating,
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Gaussian-distributed threshold:

f [u]"
1

q
expC!

(u!h)2

2p2 D, (4)

where q is the membrane time constant, and p is the amplitude of the noise. The above
escape rate function was studied in [8]. The escape rate function we will use here,
known as the Arrhenius and Current model [13] (see also the paper by Plesser and
Gerstner in this proceedings volume) contains an additional term proportional to the
membrane potential derivative, u@:

f [u]"A
c

q
#

u@

pJ2pBexpC!
(u!h)2

2p2 D. (5)

The constant c is a parameter whose optimal value is 0.72 [13]. This modi"cation
gives an improved description of the response in case of strong transients. In the
below-threshold regime, this function corresponds to the intuitive idea that the chance
of a spike should decrease with increasing distance from threshold. The probability of
"ring depends implicitly on the time of a previous spike because of the refractory
function g(t) and the input potential h(t) inside u(t). The probability density for a spike
at time t, given a spike at time s, is

P
h
(tDtK )"P(spike at t)P(no "ring after tK until t)

"o
h
(t) expA!P

t

tK
o
h
(s) dsB, (6)

where o
h
"f [u(t)]"f [g(t!tK )#h(t)]. We contrast this model with the more stan-

dard integrate-and-"re neuron with di!usive noise [16,17], for which an analytic
expression for the above distribution is not known. Note that a number of di!erent
escape rate functions are possible; see [13] and the article by Plesser and Gerstner in
this proceedings volume for a comprehensive comparison.

2.2. Population activity

So far we have a description of an individual neuron subjected to noise. In order
to obtain a proper prediction of the shape of the PSTH, we need a way to represent
the activity of an ensemble of such neurons (equivalent to the PSTH as outlined in
Section 1). We will use the theory developed by Gerstner [3,6] describing the activity
A(t) of a homogeneous population of neurons in terms of (a) the net input potential
h(t) applied to the entire population, and (b) the previous activity of the population,
in the following integral equation:

A(t)"P
t

~=

P
h
(tDtK )A(tK ) dtK , (7)
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where

A(t)" lim
*t?0

1

*t

n
!#5

(t; t#*t)

N
(8)

is the proportion of active neurons in a population of size N; P
h
(tDtK ) is the probability

density describing the probability of "ring for each neuron at time t, given a spike in
the network at a previous time tK and resulting from the net input potential h(t). A(t)
thus corresponds to the PSTH expressed as a "ring rate.

By using the interval distribution P
h
(tDtK ) obtained in the previous section for the

spike response model with escape noise, we can perform a linear expansion of the
above integral equation to obtain the response to a small #uctuation. The "rst step is
to consider a population receiving a constant input potential h

0
. The mean activity

A
0

of the population is just the inverse of the mean interval, calculated from the
interval distribution P

h
(tDtK ).

Suppose now that we add a #uctuation to the input, a small synaptic current pulse
re#ected in the input potential as h(t)"h

0
#*h(t). (Thus the PSP is *h(t).) The

population activity will respond by undergoing a #uctuation re#ected in a peak in the
PSTH, i.e. A(t)"A

0
#*A(t); the shape of the peak *A(t) depends on the size (and

duration) of the pulse, the particular noise model, and the population activity itself:

change in activity"(in#uence of past perturbations)

#

d

dt
(a "ltered version of the potential)

or, after linear expansion of the population integral equation,

*A(t)"P
0

~=

dtK P
h
(tDtK ) *A(tK )#A

0

d

dtCP
=

0

dx¸(x) h
1
(t!x)D, (9)

where the "lter for our speci"c noise model is ¸(x)":=
x
f @[u(x(!x)]S

0
(x( ) dx( , where

S
0
(t!tK )"exp(!:t

tK
o(t@) dt@) is the survivor function in the unsynchronized state prior

to the pulse.

3. Results

We numerically calculated ¸ for various levels of noise and used these to predict the
responses to brief pulses of external input. The shape of ¸ varies according to the level
of noise; for low noise, it resembles a d-function while for high noise it becomes
a low-pass "lter. We simulated the responses of populations of spike-response neurons
using the exponential kernels and escape noise model described above, for various
levels of noise. Fig. 2 shows the responses to brief pulses for two di!erent noise levels,
together with the numerically calculated theoretical responses.

Next, we simulated the response of the same neurons but with di!usion noise
(Fig. 3). Remarkably, the theoretical results calculated for the noisy threshold are
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Fig. 2. Simulation results for a noisy threshold population responding to positive and negative square
pulses of duration 2.5 ms for two di!erent noise levels (solid line), and the theoretical responses (dashed).
Left: High noise, p"1. Right: Low noise, p"0.005. Parameters: time constant q"4 ms; thresholds
chosen to produce the same mean activity A

0
+31 Hz for both noise levels; input step size chosen to

produce peaks of comparable size, *A+6 Hz. Simulation step size 0.2 ms.

Fig. 3. Simulation results for a population of noisy integration neurons responding to positive and negative
square pulses of duration 2.5 ms for two di!erent noise levels (solid, stepped lines), compared with the
theoretical responses (dashed) calculated for the noisy threshold model. Left: Noisy integration, high noise,
p"1. Right: Noisy integration, low noise, p"0.005. The theory curve shown is the one calculated for the
noisy threshold model. Parameters: number of neurons, time constant, and input step size identical to the
ones used in Fig. 2; thresholds adjusted to produce the same mean activity A

0
+31 Hz; time step 0.1 ms

(averaged to 0.2 ms).

quite similar to the simulations with noisy integration, despite the fact that there are
no free parameters in the model (given that we use the value of c from Plesser and
Gerstner [13]).

4. Discussion

We have seen how the shape of the PSTH response A(t) to a pulse *h(t) may be
calculated analytically using population theory provided the interval distribution
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P
h
(tDtK ) is known. This distribution can be calculated using a spike-response neuron

with an escape-noise model. This gives us a way to analyze the e!ect of noise on the
form of a PSTH in response to a pulse. Here we have shown that a simple integrate-
and-"re-type model together with an intuitively appealing noise model (for the
subthreshold regime) can reproduce the e!ect of noise found experimentally in
motoneurons, usually modeled using the computationally inconvenient noisy integra-
tion model (integrate-and-"re with di!usive noise). Because the spike-response model
on which this approach is based is a very general model, the e!ect could also be
explored for more realistic neuron models (such as Hodgkin}Huxley) simply by
utilising the appropriate kernels [11].

In the simulations of the noisy threshold model and of the noisy integration model,
the shape of the PSTH response to a pulse depends on the noise level, as in the
motoneuron experiments. Both simulated responses are in good agreement with the
analytical prediction made using the noisy threshold (Arrhenius and Current) model
in the below-threshold regime: for low noise levels, the PSTH response is strongly
in#uenced by the derivative of the input pulse, while for higher noise levels, the PSTH
resembles the input pulse itself. Thus, for low noise and given a mean input h

0
that is

just below threshold, the e!ect of applying a pulse to a neuron is to force a spike
resulting in the main peak of the PSTH. Due to the noise it will again be possible for
the neuron to spike one typical period later, resulting in a secondary peak. In high
noise, synchrony between membrane trajectories is rapidly lost following the primary
peak and a secondary peak is not observed. The duration of this synchrony is related
to the length of time it takes for the survivor function S(tDtK )"1!:=

0
P
h
(sDtK ) ds to

decay towards 0 following tK .
The noisy threshold model predictions compare remarkably well to the observed

behavior of the noisy integration model. The only free parameter in the model is not
even really free, given that we use the optimized value from Plesser and Gerstner [13].
This shows how a population-based model can accurately incorporate the e!ect of
synaptic noise and provides a good basis for interpreting the results of the mo-
toneuron experiments of Poliakov et al.
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