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Abstract

Models containing recurrent connections amongst the cells within a population can account
for a range of empirical data on orientation selectivity in striate cortex. However, existing
recurrent models are unable to veridically encode more than one orientation at a time.
Underlying this inability is an inherent limitation in the variety of activity pro"les that can be
stably maintained. We propose a new recurrent model that can form a broader range of stable
population activity patterns. We demonstrate that these patterns preserve information about
multiple orientations present in the population inputs. This preservation has signi"cant com-
putational consequences when information encoded in several populations must be integrated
to perform behavioral tasks, such as visual discrimination. ( 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

An important debate in computational neuroscience centers on the origin of
selectivities in populations of cortical cells. A focus of this debate has been an
extensive set of empirical data on orientation selectivity in primary visual cortex.
A central question concerns how the observed sharp tuning of striate cells arises from
the broadly tuned purely excitatory LGN input that grows monotonically with
contrast. One class of network models posits that the sharp tuning is primarily due to
the e!ects of recurrent connections within the striate population. These recurrent
models can account for a wide range of the empirical data (reviewed in [5]).
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Carandini and Ringach [1] studied a recurrent model* a simpli"ed version of an
earlier model proposed by Somers et al. [4] * that replicates many observed
characteristics of a hypercolumn of striate cells. The core of their model is a single
equation implementing a feedback "lter with a center-surround weighting function.
Their model successfully and succinctly captures a range of results, including sharp
orientation tuning and contrast-invariant tuning width. However, when the input to
the cell population contains two orientations, their model exhibits peculiar responses:
if the two orientations di!er by less than 453, the model responds as if the input
contained a single orientation at the mean of the two values; if the angular di!erence
between the two orientations exceeds 453, the model responds as if they were nearly
orthogonal. The model also cannot signal the presence of three orientations, and
creates spurious orthogonal orientations to noisy single orientation inputs. These
authors analyzed their model and showed that these e!ects of attraction and repulsion
between orientations are unavoidable in a broad class of recurrent models of orienta-
tion selectivity.

This model thus makes strong predictions about the visual response of cortical
neurons to stimuli containing multiple orientations. Relevant empirical data are
scarce. DeAngelis et al. [2] found that the response of a striate cell to its optimal
orientation is reduced when the stimulus contains a second orientation. Cell responses
to pairs of non-optimally oriented stimuli are not known. Nonetheless, the predictions
of the model appear dubious: it predicts that the neurons will be unable to veridically
encode multiple orientations, even when the orientations di!er by nearly 453. The aim
of the model presented here is to explore if a broader range of activity patterns could
be maintained in the population for multiple-orientation stimuli. We also studied the
decoding of these patterns to determine whether information about the orientations is
preserved.

2. Methods

The dynamics in our model are very similar to the Carandini}Ringach (C}R)
model, with two modi"cations. Both models contain a group of cortical neurons
identical except in preferred orientation (!903, 903), where the response of neurons
with preferred orientation / to a stimulus containing orientation h depends only on
(h!/). Their model is governed by the following equation:

qd</dt#<"<LGN#<EXC!<INH (1)

where <(h, t) is the membrane potential of cells in orientation column h at time t, q is
the membrane time constant, <LGN is the excitatory input from LGN, and <EXC and
<INH represent intra-cortical excitation and inhibition. These latter two quantities are
obtained by convolving the responses of the cells with a narrowly tuned set of
excitatory, and a broader pro"le of inhibitory weights, respectively. The combination
of these two sets of weights produces a center-surround pro"le. Finally, each cell's
response R is a recti"ed linear function of its potential <.
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Our model utilizes

(1) optimized recurrent weights, both excitatory and inhibitory. The optimization
procedure uses a set of examples, each consisting of the LGN input appropriate to
a stimulus containing 1, 2, or 3 bars (or gratings) at random orientations, and
target output values for the model striate cells. The weights are modi"ed such that
the targets are the stable activity pro"les of the di!erential state update equation
(Eq. (1)). The target outputs are obtained by convolving each cell's tuning
function, i.e., its expected response to a single-bar stimulus as a function of its
orientation, with the set of orientations present in the stimulus. These targets are
based on the assumption that a cell's response to a stimulus containing a pair of
oriented bars is a scaled sum of its response to the individual bars; this assump-
tion applies to MT cell responses to multiple-direction stimuli [6,7].

(2) nonlinear activation function. We used the function proposed by Zhang [9]:
R"a log(1#exp(b (<#c)))d (where a, b, c, and d are constants) because
it is easy to analytically invert, which facilitates the weight optimization
procedure.

A third important addition to our model involves a di!erent way of interpreting the
activities of the striate cells. In order to determine what information about orientation
is present in the model cell responses, we apply a statistical decoding method that
can naturally handle multiple-valued inputs [8]. This method takes into account
the cells' tuning functions in "nding the set of inputs most likely to have generated
the observed responses. A key feature of this method is that unimodal response
pro"les do not necessarily indicate that only one value is present in the input;
instead, a broad unimodal pro"le is consistent with a stimulus containing two
nearby orientations.

3. Results

The response of the model to stimuli containing two orientations, of varying
angular di!erence, is shown in Fig. 1. Our model forms di!erent stable activity
patterns to all three pairs, and the decoding method accurately recovers the original
orientations present in the stimulus. In contrast, the C}R model is unable to veridi-
cally encode any of these stimuli.

Our model is also able to maintain a stable response pro"le for stimuli containing
three orientations, as well as a clean unimodal response to noisy single-orientation
stimuli (see Fig. 2). In both cases, the decoding method reconstructs the orientations in
the stimulus.

The primary di!erence between the models is highlighted in Fig. 3, which represents
their responses to all possible two-orientation stimuli. Each horizontal slice represents
the response to a particular stimulus, and the angular spread between the two
orientations increases from 03 to 903 along the y-axis. The C}R model contains
a discontinuity near 453, as the population response jumps from uni- to bimodal,
while our model contains a smooth transition from one to two orientations.
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Fig. 2. The response of both models to inputs containing three orientations (lines labeled as in Fig. 1), and
a single orientation plus noise is shown above, and the decoding of our model below.

The optimized recurrent weights in our model (see Fig. 4) have a similar shape to
the center-surround weights used by most recurrent models. The wiggles in the
surround of the weights gives them some power at higher frequencies. We are
currently analyzing these di!erences in greater detail. A crucial di!erence not appar-
ent in this "gure is that the relative strength of the recurrent versus feedforward
weights is smaller in our model than the C}R model. This di!erence likely underlies
our model's reduced ability to remove noise and remain strongly contrast invariant,
but enhanced ability to encode multiple orientations.

4. Discussion

We have proposed a novel model of orientation selectivity in striate cortex that can
support a variety of response pro"les, and veridically encodes multiple orientations.
Our model can replicate the cross-orientation e!ects observed in one of the only
empirical investigations into primary visual cortex responses to multiple orienta-
tions [2].
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Fig. 3. Summary of responses to all two-orientation stimuli for both models. The model striate units are
arranged according to their preferred orientation (PO). Each horizontal slice shows the unit activities to
a particular two-orientation stimulus. The vertical axis represents the di!erence between the two orienta-
tions in the stimulus, growing from 03 to 903 (maximally orthogonal) separation. Note that the C}R model
response is discontinuous near 453, while our model contains a smooth transition.

Fig. 4. The optimized recurrent connection strengths between pairs of model cells in our model are plotted as
a function of the di!erence in their preferred orientations (POs). Recurrent input is computed by convolving
this weight pro"le with the current "ring rates. The weights' center-surround pro"le sharpens the weak
orientation bias present in LGN input without destroying information about multiple orientations.

Our model makes a number of new predictions concerning responses of these cells
to stimuli containing multiple orientations: (1) a range of stable activity patterns will
be produced for stimuli containing two orientations with di!ering angular spread;
(2) inputs containing three orientations separated by 603 will produce trimodal
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activity patterns; and (3) noisy stimuli containing single orientations will only rarely
give rise to spurious bimodal response pro"les.

Each of these points di!er from predictions derived from the Carandini}Ringach
model. They also diverge from other models of orientation selectivity, such as that
proposed by Pouget et al. [3]. This model forms stable activity patterns in the
population such that simple decoding techniques, such as the population vector
method, closely approximate maximum likelihood estimation, which is the optimal
decoding technique. This model, however, responds to pure noise stimuli as if a single
orientation is present, and cannot encode multiple orientations simultaneously.

Finally, we are currently exploring the consequences of this information preserva-
tion on processing downstream from V1. It is known that V2 cells respond to illusory
contours and "gure-ground information, and we hypothesize that preserving informa-
tion about multiple orientations within individual V1 populations plays an important
role in V2 responses.
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