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Abstract

Central pattern generators (CPGs) have traditionally been modeled as sets of coupled
bistable oscillators (Marder and Calabrese, Physiol. Rev. 76(3) (1996) 687}717). We present
a framework for constructing models which avoid the shortcomings of these traditional models,
while remaining biologically plausible. We demonstrate our approach by generating a novel
model of lamprey locomotion. However, we suggest that the methods presented here can be
more generally applied to modeling any neural system which produces and controls dynamic
patterns of forces. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Repetitive behavioral patterns such as swimming, #ying, chewing, breathing,
scratching and walking have long been a mainstay of motor research in neuroscience.
A pivotal concept in the analysis of such rhythmic behavior is that of the central
pattern generator (CPG) [3]. A CPG is a group of neurons that can produce rhythmic
patterns without sensory input. It has been observed that reciprocally connected
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networks with inhibitory weights (i.e. bistable oscillators) are able to produce CPG-
like rhythmic patterns. Traditionally, it has been assumed that because such networks
produce a behavior similar to that seen in CPGs, they are good models of CPGs.
However, there are number of di$culties with such phenomenological models. For
example, Marder et al. have shown that these networks in no way guarantee oscilla-
tions and often produce synchrony: a deadly result for an organism [1]. As well,
Wannier et al. have noted that it is di$cult to control the direction and frequency of
the oscillations arising from coupled networks of bistable oscillators * a common
model of leech and lamprey locomotion [6].

In the remainder of this paper, we present an alternative approach to modeling
CPGs. In the next section we describe a "ve step process which can be used as
a general methodology for constructing models of motor control systems. We then
apply this process to understanding lamprey locomotion. We argue that given the
strengths and successes of the resulting simulation, this methodology might prove
generally useful as a means of modeling neural systems which generate dynamic force
patterns.

2. A 5ve-step process used to model lamprey swimming

The iterative "ve-step process we apply in the remainder of this paper is as
follows:

(1) Determine the forces to be generated by the neural system; F(x, t)
(2) De"ne the representation to be used (via encoding and decoding rules);

F(x, t)"+
n
A

n
(t)U

n
(z).

(3) Create a set of dynamical equations that lead to the desired A
n
(t),

dA
dt

"G(A(t), U(t), t). (1)

(4) Implement and test the model; and
(5) Rede"ne the representation and repeat 2}4 until the system is de"ned in the space

of neuronal activities.

As we use this method to construct a model of lamprey locomotion, we indicate which
step we are currently engaged in with a label in bold (e.g. Step 1).

Step 1. A simpli"ed model of lamprey swimming leads to a model of the tension
given as

¹(z, t)"i[cos(ut!2pz/¸)!cos(ut))], (2)

where v"u¸/2p de"nes the velocity, ¸ is the length of the lamprey, and i is a scaling
parameter. This equation speci"es the tensions which must be generated by the
nervous system via the muscles. When the equation is satis"ed, the lamprey will swim
in an anguilliform mode (i.e. with a traveling wave).
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Step 2. We now de"ne a representation of this pattern of forces in terms of temporal
coe$cients, A

n
(t) and spatial harmonic functions U

n
(z).

¹(z, t)"i
N
+
n/0

A
2n

(t) cos(2pnz)#A
2n`1

(t) sin(2pnz), (3)

where A
0
(t)"!cos(ut), A

1
(t)"!sin(ut), A

2
(t)"cos(ut), AMn;2N(t)"0.

Step 3. Using this representation we create a set of dynamical equations that result
in the desired A

n
(t).

dA
dt

"M A(t)"[uMu#M
$
#;(t)M

4
] A(t). (4)

where

Mu"C
0 1 0 0

!1/2 0 1/2 0

0 !1 0 0

0 0 0 0D, M
$
"C

!a
0

0 !a
0

0

0 0 0 0

!a
0

0 !a
0

0

0 0 0 !aD, and

M
4
"C

1/2 0 !1/2 0

0 1 0 0

!1/2 0 1/2 0

0 0 0 0D.
This equation is a simpler form of the general control dynamics equation (1). We have
broken down the transformation matrix M to give us precise control over the
dynamics of the model. In particular, Mu controls the steady-state oscillatory swim-
ming dynamics; M

$
uses two rate constants, a

0
to force the "rst and third Fourier

amplitudes to be equal in magnitude and opposite in sign, and a to damp out high
spatial frequencies; and M

4
controls the start-up behavior of the lamprey by inducing

exponential growth in the desired amplitudes.
Step 4. Simulating this model results in the expected behavior. The lamprey swims

in steady state with a traveling wave whose temporal frequency is controlled by u. As
well, high-frequency harmonics are damped out and the wave's amplitude increases
exponentially to some desired value at startup as controlled by U(t).

Step 5. Now that we have a simple working model, (2)}(4), by projecting the current
representation to a more neurologically reasonable one.

Step 5.2. To begin, we know that the control of muscles by the neural system is
local along the length of the lamprey. This means, we have a spatially segregated
representation of the tension. To capture this aspect of lamprey anatomy, we de"ne
a spatially segregated representation. We use Gaussian functions to represent the
tension over local regions (+p

'
) along the length of the lamprey.

¹(z, t)"i +
m

a
m
(t)/

m
(z)"i +

m

a
m
(t) exp(!(z!m dz)2/p2

'
), (5)
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where a
m
(t) is the amplitude of the mth Gaussian centered at the point

z
m
"m dz.
We can now construct the projection operator C by projecting our previously

constructed Fourier basis, U
n
(z), onto our new Gaussian basis, /

m
(z) (i.e.

C
nm

":U
n
(z)/

m
(z)dz). This projection operator allows us to `move betweena the two

representational spaces we have constructed.
Step 5.3. Next, we take advantage of C to transform the dynamical equations for the

Fourier amplitudes A(t) into dynamical equations in the space of the Gaussian
amplitudes a(t). We can write:

da(t)

dt
"m a(t) where m"C~1MC. (6)

Because of the presumed redundancy in the Gaussian representation, C~1 is the
pseudoinverse of C.

Step 5.4. We can now simulate the lamprey's swimming in the Gaussian space using
(6). Not surprisingly, the lamprey swims just as it did before. However, the coupling
weights are more global than one might expect given the length of projections in the
lamprey [2]. It is possible, however, to de"ne the transformation Mu using the
gradient of the tension in z, which makes the coupling more local in the Gaussian
space. This allows us to match the known neural projection data from the lamprey.

Step 5.5.2. We can now perform a second iteration of steps 2}4 by introducing
a neuronal representation of the Gaussian amplitudes, a

m
(t):

c
mk

"F
mk

[a
m
(t)] (encode), (7)

a
m
(t)"+

k

a
mk

c
mk

(t) (decode). (8)

Here,F
mk

[ ] is the nonlinear spike generation process that encodes a
m
(t) into the "ring

rate of the neuron indexed by m, k. The a
mk

decode the "ring rate back to a Gaussian
amplitude [4,5]. In this paper, we de"ne the encoding process as
F

mk
[a

m
(t)]"[g

mk
a
m
(t)#b

mk
]
`

, where [ ]
`

stands for recti"cation. The response of
the neuronal population is de"ned by assuming a plausible set of encoding para-
meters, g

mk
(gain) and b

mk
(bias), and then "nding the optimal weights a

mk
using

a procedure such as singular value decomposition to minimize the square error of the
decoding. Notably, this kind of analysis also works well for more complex forms of
encoding, like that found in full conductance models of spiking neurons.

Step 5.5.3. The dynamics of the neuron "ring rates, c
mk

, can be found by "rst noting
that q

c
dc

mk
(t)/dt+!(c

mk
(t)!c

mk
(t#q

c
)) and then using the encoding and decoding

relationships (7) and (8) and the Gaussian dynamics (6) as follows:

c
mk

(t#q
c
)"F[a

m
(t#q

c
)]+Cam

(t)#q
c

da
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. (9)
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This results in

q
c

dc
mk

(t)

dt
"!Acmk

(t)!C+
l

X*/5
mkl

c
ml

(t)#+
nj

X#1-
mnkj

c
nj

(t)#b
mkD

`
B. (10)

The weights X*/5
mkl

"g
mk

a
ml

de"ne coupling weights internal to a population represent-
ing a particular Gaussian coe$cient. The weights X#1-

mnkj
"q

c
m

nm
g
mk

a
nj

, de"ne the
coupling between populations representing di!erent coe$cients and thus drive the
dynamics of the lamprey's swimming. The time constant q

c
de"nes the time scale of

the neuronal dynamics.
Step 5.5.4. Given the nature of this model, we can simply replace parts of the

Gaussian representation with a neural one. This has great computational advantages,
allowing us to simulate one section of the lamprey in great detail (i.e. at the neural
level) and concurrently simulate the other sections at a lower level of detail (i.e. the
Gaussian level). Our simulations have shown that representing the Gaussian coe$-
cients at the neural level does not adversely a!ect the model's performance.

3. Strengths of this model and method

The main advantages of this model over traditional oscillator models lie in the
model's controlability and stability. In contrast to traditional models, we have direct
control over the direction and frequency of swimming via the u parameter (which can
also be represented neurally). Adding other parameters is a simple matter of introduc-
ing them in the Fourier model and projecting them to the neural space. As well, unlike
bistable oscillator models, the stability of this model is guaranteed since the para-
meters are generated from an analytically stable model. In other words, we explicitly
construct a spatial-temporal attractor in neuronal space that meets the criteria of the
modeled CPG.

Incorporating more detail (e.g. more realistic muscle dynamics) does not pose an
insurmountable challenge or the possibility of unforeseen behaviors using this
method. The approach allows us to take into account data available from the
neurobiological system. In the case of the lamprey, we could incorporate constraints
such as observed connectivity, spatial wave length, and neuron response functions.
Additional constraints can be incorporated not ad hoc, but by following a procedure
similar to the one outlined here.

Perhaps, most important is the generality of this approach. Any periodic behavior,
including lamprey locomotion, can be thought of as a cyclic attractor in the system's
state space. Other attractors, such as line attractors and point attractors, capture
other kinds of natural behavior. For example, line attractors provide a good descrip-
tion of the neural integrator (which controls eye position) [4]. These `dynamical
systemsa descriptions are general ones. From this viewpoint, traditional CPG bistable
oscillators are only a special subset of the more general class of attractor motor
control circuits. The method presented here is applicable to all such circuits.
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