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Abstract

An integrative theory relating cognitive aging de"cits observed at the behavioral level with
age-related de"ciency in neuromodulation causing less distinctive cortical representations is
tested in a series of neural network simulations. Age-related attenuation of catecholaminergic
function is simulated by lowering the mean gain of the processing unit, which subsequently
reduces responsivity and raises intra-network activation variability. Age di!erences in learning
rate, asymptotic performance, interference susceptibility, complexity cost, intra- and inter-
individual variability, and ability dedi!erentiation can all be modeled. Together, the simula-
tions illustrate catecholamine's role in regulating the "delity of neural information processing
and subsequent e!ects leading to cognitive aging de"cits. ( 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Declines in basic mechanisms of cognition pervade the aging process. Behaviorally,
age di!erences in processing speed [26], learning rate [16], asymptotic performance
[4,27], interference susceptibility [16,18], complexity cost [17] and intra-individual
[11] as well as inter-individual variability [23] are robust e!ects. Biologically, brain
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Fig. 1. (A) The logistic activation function at di!erent values of G. The logistic function is strictly for all
value of G'0 and all values of the bias. Physiological evidence suggesting that the function relating the
strength of an input signal to a neuron's "ring rate is sigmoid, with its steepest slope around the baseline
"ring rate. In addition, small increments in excitatory signals produce greater changes in "ring frequency
than those produced by the same amount of increment in inhibitory signals. These properties can be jointly
captured by the logistic function with a constant negative bias [5,10]. The bias of the logistic function is set
to !1.0. Reducing G #attens the activation function such that a unit becomes less responsive: with
a decrease in G, the e!ect of the net input is decreased both for excitatory and inhibitory signals.
Subsequently, a G-reduced unit is also less responsive to the di!erence between signals. For instance, two
di!erent signals, #1 and !1, produce a much greater di!erence in output activation when G"1.0 (0.5 vs.
0.12) than when G"0.1 (0.29 vs. 0.25); and when G"0 (only as an example of the limiting case) the unit's
response remains always at its baseline activation. Given a same range of variability in Gs, reducing mean
G also increases the variability in output activation. (B) Reducing G and the temporal variability of
activation. Reducing mean G (0.8 and 0.3 for the `younga and `olda networks, respectively) increases the
temporal variability of a unit's response to an identical signal (was set to 4.0) across 1000 trials. (C) Internal
activation patterns across "ve intermediate units of one young (mean G"0.8) and one old (mean G"0.3)
network after learning four di!erent stimuli.

aging involves neuroanatomical and neurochemical changes [29]. Accounts postu-
lated at either the information-processing level assuming age-related reduction in
general processing resources [25] or at the biological level hypothesizing age-related
increase in neural noise [34] were proposed as mediating factors for cognitive de"cits
observed behaviorally. However, thus far data and explanations of cognitive aging
de"cits have been mostly con"ned within one (or two) of these levels.

As an attempt to facilitate integration, we o!er a cross-level theoretical conjecture
aiming at integrating "ndings of age-related decrements in catecholaminergic func-
tion, the functional properties of catecholaminergic modulation, catecholaminergic
e!ects on neural information processing, and various benchmark behavioral manifes-
tations of cognitive aging. Empirical evidences from di!erent levels are reviewed as we
unfold and evaluate our conjecture.

2. Aging, neuromodulation and information processing

The relationship between cognitive aging and age-related de"ciency in neuro-
modulation has recently become an important topic in aging research. Given their
roles in modulating prefrontal cortical (PFC) cognitive functions [2], age-related
depletion of catecholamine, consisting of dopamine (DA) and its metabolic products,
norepinephrine (NE) and epinephrine, is of speci"c interest. There is consensus of
age-related decline in dopaminergic function in the striatum, basal ganglia, and
prefrontal cortex (PFC) both in terms of transmitter contents and binding mecha-
nisms [8,12,13,29]. There is also evidence for functional relationships between age-
related de"cits in the catecholaminergic system and age-related decrements in di!er-
ent aspects of cognitive functioning, such as processing speed [21] and working
memory [28]. In the light of these "ndings, some researchers have suggested that
catecholamine mechanisms play important roles in cognitive aging [1,12,33].
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3. Modeling age-related attenuation of catecholaminergic function

Outside of cognitive aging research, there are quite a few formal models of
neuromodulation [7]. However, to our knowledge no research e!ort has yet
been devoted to instantiate formal models that link aging-induced changes in
catecholaminergic modulation with a broad class of human cognitive aging phe-
nomena at the behavioral level. In this study, we computationally investigate general
principles of neural mechanisms linking catecholaminergic modulation of cortical
neuron's responsivity to the distinctiveness of cortical representation and cognitive
aging de"cits.

Catecholamine's modulatory roles are manifold, depending on cortical regions,
receptor types, and the techniques and concentrations of drug admission. In some
cases, it has been found that catecholamine enhances a neuron's postsynaptic respon-
sivity to a!erent signal [6,9]. Or as suggested by more recent evidence, dopaminergic
modulation in the PFC can be extremely precise, a!ecting a speci"c component of the
PFC neuron's excitatory and inhibitory a!erent input, without altering the neuron's
general excitability [35]. These diversities notwithstanding, a general feature of
catecholaminergic modulation can be more abstractly conceptualized as altering the
signal-to-noise ratio of cortical information processing [6,9,30]. This general e!ect
can be modeled by adjusting the gain parameter (G) of the logistic activation function
of processing units in feedforward backpropagation networks [30].

In previous studies, once the value of G was reduced during the testing phase to
simulate attenuated catecholaminergic function underlying cognitive de"cits of
schizophrenia [30] or increased to simulate the e!ect of D-amphetamine on mecha-
nisms of selective attention [31], the same G was applied to all units in the presumably
a!ected module(s), and was kept constant across all processing steps. In order to
incorporate evidence of random #uctuations in transmitter substance caused by
probabilistic transmitter release [14,15], we propose that rather than having a static
G, each processing unit's G is to be randomly sampled at each processing step during
training and testing. Hence, the activation function of a unit is de"ned with a stochas-
tic G that varies its value slightly at each processing step:
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Age-related decline in catecholaminergic function can then be simulated by reduc-
ing the mean of the uniform distribution from which the Gs of the units are sampled,
while keeping the range of G constant.
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3.1. Reducing G reduces responsivity, raises variability, and reduces representational
distinctiveness

Reducing mean G #attens the logistic activation function, such that a unit's average
responsivity is reduced (Fig. 1A). Subsequently, a G-reduced unit becomes less
discriminative in responding to di!erences in inputs. In addition, reducing mean
G also increases the variability in the unit's output activation. Fig. 1B shows that for
a given unit, reducing mean G increases intra-network temporal variability. Similarly,
when the Gs of di!erent units in a network are randomly sampled, then the same
magnitude of variability in Gs produces a greater amount of variability in output
activation across units when the values of Gs are in a lower range. Conceptually, this
implements a larger amount of random spatial variability of activation across units.

Note that a given amount of variability in G, simulating random #uctuations in
transmitter substance, causes a greater amount of variability in output activation when
the values of G are in a lower range. It is a common view that cognitive aging de"cits are
associated with age-related increase in neuronal noise [34]; however, mechanisms for
age-related increase in neuronal noise are not explicated. The interaction between the
mean magnitude of G and the e!ect of stochastic variation in G on intra-network
variability computationally depicts a potential neurochemical mechanism for age-
related increase in neural noise: as aging attenuates the e$cacy of neuromodulation,
random #uctuations in transmitter substances due to probabilistic transmitter release
have a greater impact on the overall level of random variability in the aging brain.

Furthermore, reduced responsivity and increased intra-network variability sub-
sequently a!ect the distinctiveness of the network's internal representations. To
illustrate, activation patterns across the intermediate units of one `younga and one
`olda network after learning di!erent input}output pairs are plotted in Fig. 1C.
Clearly, the activation patterns of the old network in response to di!erent input
signals are less distinctive than the activation patterns of the young network.

Together these results show that reduced responsivity of the units and increased
intra-network variability as caused by mean G reduction subsequently give rise to less
di!erentiated (i.e., more inter-dependent) internal stimulus representations at the
intermediate layer. One potential biological implication of this property is that as
age-related catecholamine de"ciency drives down cortical neurons' responsivity and
raises the level of random variability during neural information processing, cortical
representations elicited by di!erent stimuli become less di!erentiable.

4. Simulations linking catecholaminergic modulation with behavioral data

The conjectured theoretical path from age-related decrement in catecholaminergic
function to higher levels of random variability in the aging brain then to less-
distinctive cortical representation and cognitive aging de"cits is examined with
respect to multiple constraints from benchmark behavioral data. The e!ects of mean
G reduction in accounting for typical cognitive aging phenomena are tested in a series
of simulations. To broadly sample di!erent aspects of the behavioral data, the
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simulations include age e!ects on mean performance (see 4.1}4.3), variability in
performance, and covariations between performances (see 4.4). All simulations involve
two groups of otherwise identical networks that diwered only in the mean values of
their Gs (mean G

:06/' /%5803,
"0.8 and mean G

0-$ /%5803,
"0.3; for additional imple-

mentation details refer to Li and Lindenberger [19] and Li et al. [20].

4.1. Aging, learning rate and asymptotic performance

Memory research shows that the number of trials required for learning paired-
associates (i.e., arbitrary word pairs, such as computer}violin) increases dramatically
with advancing age [16,22]. Fig. 2A shows that, like the older subjects, the `olda
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Fig. 2. (A) Negative age e!ect on learning paired-associates in human subjects [22] and simulations. In
neural network simulations it is often that one simulation cycle does not correspond exactly to one trial of
human learning. For the results reported here, exchange factor is 17 (one human learning trial "17
network cycles). The successive recall criterion is from 10% to 100% correct for humans, and retrieved
cosine from 0.90 to 0.99 for the networks. (B) Negative age di!erence in asymptotic performance in human
subjects [4] and simulations. In this simulation, the exchange factor is 25 (one human session"25 network
cycles, in the empirical study a session involves multiple learning trials). (C) Age-related increase in
susceptibility to PI in dual-list paired-associate learning in human subjects [18] and simulations. Exchange
factor used here was the same as Fig. 3A. The number of trials given for the "rst-list learning manipulated
the extent of PI. For the weak and strong PI conditions, the networks were trained on the "rst list for 50 and
200 trials, respectively. The criterion of the second-list learning was an average of cosine "0.95 across
di!erent study lists. (D) Di!erences between the young and old learning curves as a function of task
di$culty. Learning functions of young and old networks di!ered more in the more di$cult condition
(implemented here with longer list length; list length for the short and long lists were 3 and 8, respectively).
(E) Young}old functions based on the learning curves presented in panel D. The slope of the young}old
function is steeper in the condition with long lists, indicating a larger di!erence between the two groups of
networks when learning the more di$cult task.

networks (i.e., with reduced mean G) require more learning trials than the young
networks to reach increasingly strict recall criteria in paired-associate learning.

If old and young adults di!er only in their learning rates, then one could expect that
given enough practice old adults would eventually perform at the level of young
adults. Alas, ample data of aging and practice e!ects on skill acquisition show that
negative age di!erences often persist at asymptotes [4,27]. Fig. 2B shows that negative
age di!erences in learning paired-associates at asymptotes can also be accounted for
by reducing mean G.

4.2. Aging and interference susceptibility

Another prominent cognitive aging de"cit is older adults' increasing susceptibility
to interference [16,18]. For instance, it is usually found that older adults are more
susceptible to proactive interference (PI, the negative e!ect of previous learning on
subsequent learning) than young people. Fig. 2C shows that while the number of trials
required to learn the second list to criterion does not di!er for middle-aged partici-
pants under conditions of weak and strong PI, old adults need many more trials to
learn the second list when PI is strong. This age by degree of PI interaction can be
simulated by the networks with high and low Gs. In line with the empirical data, the
`olda networks show a disproportional increase in the number of trials required for
learning the second list in the strong PI condition. This e!ect of mean G reduction on
increasing interference susceptibility has also been demonstrated in a multidimen-
sional perceptual categorization paradigm [19].

4.3. Aging and complexity cost

One other robust empirical regularity of cognitive aging is the so-called age by
complexity (or di$culty) e!ect, referring to the global pattern of an increase in the
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Fig. 3. (A) The e!ect of mean G reduction on intra-network variability in performance level across di!erent
study lists in four conditions. (B) The e!ect of mean G reduction on inter-network variability. Across
conditions of list length, reducing mean G not only reduces mean-level performance, but also increases
inter-network variability. (In the condition with short lists, the SD of `younga and `olda networks are 2.85
and 5.62, respectively. In the condition with long lists, the SD of `younga and `olda networks are 3.51 and
6.92, respectively). (C) The e!ect of mean G reduction on covariation of performances. Reducing mean
G increases the correlation between performances with short and long lists. The correlation is stronger for
the `olda than for the `younga networks (r"0.66 vs. r"0.43, the di!erence between these two correlations
is statistically signi"cant, z"2.4).
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magnitude of negative age di!erences with increasing processing demands or task
di$culty [17]. To test whether mean G reduction can account for this broad class of
phenomena, we simulated this e!ect within the paired-associate learning paradigm,
using list length to manipulate task di$culty.

In line with the age by complexity e!ect, the di!erence between `younga and `olda
networks is larger in the condition of long lists (Fig. 2D). A more detailed approach to
examine the e!ect is to regress the number of trials required by the `olda networks to
reach a range of successive performance criteria on the number of trials required by
the `younga networks to reach the same criteria for both conditions. If indeed there is
an age by complexity interaction, then the slope of the regression line for the more
di$cult condition should be steeper than that of the easier condition [17]. The
corresponding young network}old network functions shown in Fig. 2E con"rm the
expectation.

4.4. Aging, performance variability and covariation of performance

In addition to negative age changes in levels, behavioral data also point to
age-related increments in both intra-individual [11] and inter-individual [23] varia-
bility. To examine the e!ect of mean G reduction on intra-network variability, the
coe$cient of variability was computed for each network based on its levels of
performance across di!erent study lists in the four conditions of paired-associates
learning described earlier. Averages based on the coe$cients of variability of each
network were then computed for the `younga and `olda networks. Across all condi-
tions, the average intra-network variability was larger in old networks (Fig. 3A).

With respect to examining the e!ect of mean G reduction on inter-network variabil-
ity, two groups of 100 networks were given the same amount of training to learn long
and short lists of paired-associates. Performances of all networks were standardized
across groups to a T-score metric (mean"50, SD"10). Results presented in Fig. 3B
show that across conditions of list length mean G reduction not only lowers the mean
levels of performance, but also raises inter-network variability.

Many psychometric studies conducted since the 1920s found that the correlation
coe$cients among subscales of intelligence tests are usually larger in older samples
[3,24]. To examine the e!ect of mean G reduction on the patterns of covariation,
T-scores of 100 networks after learning the long lists were correlated for each of the
two network groups with their own performances after learning the short lists. Fig. 3C
shows that the correlation between the performances with long and short lists is
stronger in `olda than in `younga networks (see [19] for additional related demon-
strations with respect to other experimental paradigms).

5. Conclusions

We have demonstrated with a series of simulations that a single-parameter manip-
ulation (i.e., reducing the mean G of the activation function) accounts for a wide range
of cognitive aging phenomena. Regarding unifying data and theories across levels, the
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simulations explicate a theoretical path from attenuated catecholaminergic function
to reduced neural responsivity and increased neural noise to less distinct cortical
representation in the aging brain to behavioral manifestations of age-related cognitive
de"cits. The interaction between the magnitude of G and its random variability on
intra-network variability illustrates a potential neurochemical mechanism for age-
related increase of neural noise involving the joint e!ect of age-related decline in
neuromodulation and probabilistic transmitter release. Further theoretical e!orts
should aim at specifying formalisms that address the relationships between the
distinctiveness of cortical representations and fundamental aspects of cognition, such
as working memory capacity and processing speed. Regarding the integration of
behavioral data across measurement dimensions, the demonstration that mean G re-
duction simultaneously accounts for age-related di!erences in mean, variability, and
covariation instantiates Spearman's [32] classical notion of general brain energy
being the joint cause for individual di!erences in these three aspects of behavior, and
the di!erentiation}dedi!erentiation hypothesis of ability structure across the lifespan
emerging from this notion [3,24].

In this study, we focus on catecholaminergic modulation because of converg-
ing evidence with respect to its functional properties and age-related changes. How-
ever, the computational formalisms demonstrated here should generalize to other
transmitter substances as long as they exhibit similar functional properties and age
gradients.
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