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Abstract

The synchronization of neural signals has been proposed as a tem�
poral coding scheme in distributed cortical networks� Theoretical
studies in that direction mainly focused on the synchronization of cou�
pled oscillatory subsystems� In the present work we show that several
complex types of synchronization previously described for graded re�
sponse neurons appear similarly also in biologically realistic networks
of spiking and compartmental neurons� This includes synchronized
complex spatio�temporal behavior� partial and generalized synchro�
nization� The results suggest a similarly rich spatio�temporal behavior
in real neural systems and may guide experimental research towards
the study of complex modes of synchronization and their neuromod�
ulation�

� Introduction

The synchronization of neural signals has been proposed as a temporal cod�
ing scheme expressing the cooperated computation in distributed cortical
networks ��� ��� Theoretical studies in that direction mainly focused on the
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synchronization of coupled oscillatory subsystems ��� �� �� 	�
 they usually
neglected more complex dynamical modes� that are known to exist already
on the single�unit level ��� 	�� Recently we described synchronization phe�
nomena � considerably more complex than synchronized oscillations � in two
small mutually coupled recurrent networks comprising graded response neu�
rons ��� 
�� For instance� we observed that ��� attractors of the coupled
system can contain completely synchronized periodic� quasiperiodic or even
chaotic orbits
 ��� the synchronization can also be only partial� referring to
a situation where subsets and not all of the neurons in each subnetwork
synchronize
 ��� or it can be generalized� meaning that a non�trivial func�
tion maps the state of one subsystem onto that of the other �a special case
of this situation is p�q�locking�� Moreover� ��� attractors of di�erent types�
dynamic complexity and degree of �partial� synchronization can coexist for
the same set of parameters� and ��� any single attractor can comprise cells
that are asynchronous� partially synchronized� or synchronized in the gen�
eralized sense� Finally� �
� all this is possible even if the coupled networks
have di�erent architectures or a di�erent number of neurons
 especially� even
non�identical systems can often synchronize perfectly� The type of synchro�
nization depends in an intricate way on external stimuli� modulatory signals�
the history and connectivity of the network as well as other parameters�

These results were obtained in ��� for networks comprising arti�cial time�
discrete graded response neurons� The present work now aims to demon�
strate that phenomena very similar to those in ��� appear also in biologi�
cally more plausible spiking neuron networks� This suggests a similarly rich
spatio�temporal behavior in real neural systems and may guide experimental
research towards the study of complex modes of synchronization and their
neuromodulation�

� Example with integrate�and��re neurons

We �rst demonstrate di�erent types of synchronization in a network of
integrate�and��re neurons� This should also make our conceptual approach
clear� The dynamics of an integrate�and��re neuron reads �cf� e�g� ��� ���

�i
dxi

dt
�t� � �xi�t� � Ii�t� �

NX
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Here� xi�t� is the membrane potential of neuron i and �i is its membrane
time constant� Ii�t� is some external input and the sum represents input
from other cells� The wij are synaptic weights and zj�t� is the output of
cell j� Neuron i emits a Dirac�spike� zi�t� � ��t � tf �� at time tf when its
potential reaches a �xed �ring threshold �i � � at that time� In addition�
right after �ring the potential is reset to zero� i�e� xi�tf�� � ��

Using these standard equations� spikes arriving at a target cell� say neuron
i� evoke a discontinuos jump in the potential xi� This discontinuity is an
artefact of the simple model� but it has intricate implications on the time�
order of spikes in the network� In especially� it destroys the possibility for
stable synchrony in networks of excitatorily connected identical integrate�
and��re cells �cf� ����� Arguments for this conjecture are given in ��� and are
not repeated here� To resolve this problem� we proceed as in ��� �� �� and
extend the standard update scheme by the following rule� if a neuron has
�red at time t� then spikes that appear immediately afterwards but virtually
at the same time t� have no impact on the membrane potential� �Such spikes�
for instance� may stem from neurons that are raised above threshold by the
�ring of the cell itself�� This rule implements some kind of refractoriness ����

Figure � shows an example simulation� On the left side the network archi�
tecture is depicted showing a ��ring coupled to a ��chain �i�e� � subnetworks
of di�erent architecture are coupled�� Complete synchronization of complex
�ring patterns in a ring�chain architecture has been demonstrated in ���� The
four frames on the right hand side of �gure � show a more complicated mode
of synchronization� Displayed in each frame are the potential values of two
neurons sampled whenever anyone of the 
 neurons in the network �res� The
upper left frame displays potentials of cells � and � inside the ring�subnetwork
�denoted by an A�� Apparently� there is no obvious functional relationship
between both neurons� which indicates that the �ring pattern inside the ring
is complex �perhaps chaotic� but we cannot rule out the possibility that it is
cyclic with an extremely long period�� The lower left plot shows potentials
for neurons � in module A and B respectively� Because the plot is con�ned
to the main diagonal these two neurons are perfectly synchronous� In con�
trast� neurons � in module A and B are essentially asynchronous� although
the respective plot �upper right� shows some structure� Accordingly� the
synchronization of the whole system is only partial� Furthermore� neurons �
in A and B give an example for generalized synchronization� They are not
perfectly synchronous �i�e� con�ned to the diagonal�� but the potential value
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Figure �� Di�erently synchronized neurons in a network of integrate�and��re
cells� Left� Network architecture� Right� Example simulation�

xB� can be predicted with high accuracy from xA� � Neuron � in A �res two
spikes� when the corresponding neuron in B �res only a single spike�

� Biological examples

For demonstration purposes the previous section gave a still somewhat tech�
nical example of complex synchronization� We now brie�y discuss some ex�
amples� where comparable phenomena may appear in real neural systems�

Complete synchronization has� of course� often been demonstrated in the
context of binding by synchronization using networks of oscillatory subunits
�e�g� ��� �� �� and many more��

Generalized synchronization most easily appears� when the cells in the
network are not identical� For instance� Traub et al� ��� considered a network
of excitatory and inhibitory compartmental neurons where the excitatory
cells received di�erently strong input currents� The network revealed collec�
tive oscillations in the gamma�range� but less input current delayed �ring of
the excitatory cells relative to the collective oscillation� Accordingly� their
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Figure �� Example for partial synchronization in a network of ��� Pinsky�
Rinzel neurons �	�� The slow variables q of two �arbitrary� neurons are almost
synchronous �left side� but the fast sodium spikes are not �right side��

�ring times were related by some static functional relationship �up to noise��
and thus� the cells were synchronized in the generalized sense�

An example for �approximate� partial synchronization is shown in �gure ��
where we simulated a network of ��� excitatorily connected two�compartment
Pinsky�Rinzel�neurons� The network was virtually identical to that described
in �	�� Each cell had � independent intrinsic variables including fast currents
responsible for sodium spiking on a soma�like compartment and slower cal�
cium and calcium�mediated currents on a dendrite�like compartment� Iso�
lated neurons revealed several �ring modes in response to input currents�
regular spiking at moderate and high currents� di�erent kinds of bursting at
low inputs� and apparently chaotic dynamics in between �cf� �	��� When the
cells were synaptically coupled� Pinsky and Rinzel observed a collective dy�
namical mode of burst�synchronization� where all cells �red brief� regular and
roughly synchronized high�frequency bursts of spikes� This dynamical state
is analyzed more closely in �gure �� where the �fast� soma�potentials� Vs� of
two neurons are plotted against each other on the right hand side and the
slow intrinsic variables q of these neurons on the left hand side� Apparently�
the slow burst�mediating variables are almost con�ned to the main diago�
nal� indicating near synchrony� but the fast variables responsible for sodium
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spiking remain asynchronous �presumably chaotic�� This can be viewed as
partial synchronization of the slow� but not the fast variables�

� Discussion

In summary we have shown that several generalized types of synchronization
previously described for networks of arti�cial time�discrete graded response
neurons ��� 
� appear similarly also in biologically realistic networks of spiking
neurons� Beyond the often considered synchronization of identical oscillators�
complete synchronization can also be reached in complex spatio�temporal
states of non�identical subsystems� Furthermore� the synchronization can be
con�ned to only subsets of the dynamical variables of the coupled systems
�partial synchronization�� and it can be generalized� i�e� the relation between
synchronized variables must not be the identity�

As in �
� we expect that external signals can easily switch the network
behavior between di�erent types of stable or unstable synchronization� or
di�erent degrees of synchrony� Neuromodulation should have similar e�ects
by either in�uencing the intrinsic complexity of the single�cell dynamics or
the e�ective connectivity structure of whole networks �cf� e�g� ����� This
way� the synchronization behavior of distributed networks may be changed
dynamically also in real neural systems�
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