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Ghostbursting: the e"ects of dendrites
on spike patterns

Carlo R. Lainga ;∗, Brent Doirona;b , Andr-e Longtina , Len Malerb
aDepartment of Physics, University of Ottawa, 150 Louis Pasteur, Ottawa, Ont., Canada K1N 6N5

bDepartment of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road,
Ottawa, Ont., Canada K1H 8M5

Abstract

We present a two-compartment model of a pyramidal cell from the electrosensory lateral
line lobe of weakly electric 2sh. These cells undergo a complex form of bursting, previously
labeled “ghostbursting”, and our model reproduces many aspects of experimental recordings.
We analyze the e"ects of varying both the conductance between the somatic and dendritic
compartments in the model, and the ratio of somatic to whole-cell areas, and 2nd that both
must have moderate values for bursting to occur. This is explained in terms of the previously
elucidated burst mechanism. c© 2002 Published by Elsevier Science B.V.
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1. Introduction

Recently, a novel bursting mechanism was identi2ed in pyramidal cells in the elec-
trosensory lateral line lobe (ELL) of the gymnotiform weakly electric 2sh Apteronot-
nus leptorhynchus [2,3,10,14]. Experimental in vitro recordings from these cells [10,14]
show that under constant current injection they 2re regular bursts of action potentials.
One of the most striking aspects of these bursts is that the interspike intervals (ISIs)
decrease monotonically during a burst, i.e. the instantaneous frequency (reciprocal of
the current ISI) increases monotonically through the burst, and the burst ends with a
high-frequency doublet. This contrasts with many other types of bursting cells [8], in
which theoretical analysis [7] shows that ISIs either increase towards the end of a burst
or show no signi2cant trend either way.
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Biophysically based multicompartmental models [2,3] have been successful in re-
producing these observed bursts, and with the aid of experimental results [10,14], the
mechanism involved in bursting has been understood. In summary, the dendrite and
soma of the neuron are both capable of producing action potentials, but the refractory
period of the dendrite is longer than that of the soma. During a burst, the dendritic
action potentials (which follow the somatic ones via backpropagation) e"ectively pro-
vide a weak positive feedback to the soma which results in depolarizing afterpotentials
(DAPs) at the soma, and the sizes of these DAPs increase on a slow time scale, due
to slow inactivation of dendritic K+ channels—this is responsible for the increasing in-
stantaneous frequency at the soma. The burst terminates when a somatic ISI is smaller
than the refractory period of the dendrite, so the dendrite no longer 2res an action
potential in response to one at the soma, and the e"ect of the positive feedback is
rapidly removed, producing a long ISI that groups spike clusters into bursts. The burst
mechanism (labeled “ghostbursting”) is explained in greater detail in Refs. [2,3,10,14].
One consequence of this form of bursting is that if the magnitude of a DC current

injected to a pyramidal cell is slowly increased, the cell changes from quiescent to tonic
(periodic) 2ring of action potentials to bursting. The two bifurcations separating the
three types of behavior were determined in Ref. [2] to be a saddle-node bifurcation of
2xed points on a circle, and a saddle-node bifurcation of periodic orbits, respectively.
This sequence is in contrast to many other burst mechanisms, where the sequence is
quiescent → bursting → tonic 2ring, as applied current is increased. The “burst
threshold” in the ghostburster is demonstrated experimentally in Ref. [10] and discussed
further in Ref. [2]. This threshold is very important if these neurons are involved in
feature detection [6] and information processing [11], since information from other
cells will be manifested as a change in input current to a pyramidal cell, which may
then cause a change from periodic 2ring to bursting or vice versa.
In Ref. [3], a multicompartment model of an ELL pyramidal cell was presented, and

in Ref. [2] a simpli2ed version of this model was analyzed. Bifurcation analysis was
done using the injected current to the soma and the dendritic potassium conductance
as parameters. In this paper, we extend the bifurcation analysis using (a) the soma to
dendrite coupling conductance, and (b) the ratio of the somatic area to the area of the
whole cell, as parameters.

2. Model

The model consists of two isopotential compartments, representing the soma and den-
drite of the neuron. They are di"usively coupled through voltage, following
Refs. [12,13]. The equations, previously presented in Ref. [2], are

C
dVs
dt

= I − gNa;s[m∞;s(Vs)]2(h0 − ns)(Vs − VNa)− gK;sn2s (Vs − VK)

−gL(Vs − VL)− gc
�
(Vs − Vd); (1)
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dns
dt

=
n∞;s(Vs)− ns

0:39
; (2)

C
dVd
dt

=−gNa;d[m∞;d(Vd)]2hd(Vd − VNa)− gK;dn2dpd(Vd − VK)

−gL(Vd − VL)− gc
1− � (Vd − Vs); (3)

dhd
dt

= h∞;d(Vd)− hd ; (4)

dnd
dt

=
n∞;d(Vd)− nd

0:9
; (5)

dpd

dt
=
p∞;d(Vd)− pd

5
: (6)

Subscripts s and d refer to somatic and dendritic variables, respectively. m and h
are activation and inactivation of Na+, respectively, and n and p are activation and
inactivation of K+, respectively. The parameter values used are C=1; gNa;s=55; h0=1;
VNa = 40, gK;s = 20; VK = −88:5; gL = 0:18; VL = −70; gc = 1:0; � = 0:4; gNa;d =
5; gK;d = 15. I is the input current, gc is the coupling conductance, and � is the
ratio of the somatic area to the total area of the cell. gc and � are varied below. Other
functions are m∞;s(V )=1=[1+exp(−(V+40)=3)], n∞;s(V )=1=[1+exp(−(V+40)=3)],
m∞;d(V ) = 1=[1 + exp(−(V +40)=5)], h∞;d(V ) = 1=[1 + exp((V +52)=5)], n∞;d(V ) =
1=[1+exp(−(V+40)=5)], p∞;d(V )=1=[1+exp((V+65)=6)]. For details and derivation
of these equations, see Refs. [2,3].
In Ref. [2], we investigated the behavior of system (1)–(6) as both I and gK;d were

varied, and showed that if gK;d was decreased, the curve of saddle-node bifurcations of
2xed points (separating quiescent from tonic behavior) and the curve of saddle-node
bifurcations of periodic orbits (separating tonic 2ring from bursting) could be brought
together at a codimension-two point. In this paper, we investigate the e"ects of varying
� and gc (and I), as was done in Refs. [5,9,12], where they were shown to have strong
e"ects on 2ring patterns.

3. Results

3.1. Varying � (somatic to total area ratio)

In Fig. 1, we show the partial bifurcation set using the applied current, I , and the
ratio of the somatic area to the total area, �, as parameters. Previously [2] we set
� = 0:4. For a given �¿∼0:35, as I is increased the cell starts to 2re periodically as
a result of the saddle-node bifurcation of 2xed points on a circle (solid line). For �
between ∼0:35 and ∼0:5, this periodic 2ring ends due to a saddle-node bifurcation
of periodic orbits (dashed line), leading to (often chaotic) bursting. For �¿0:5, only
periodic 2ring occurs, and for �¡0:35, the neuron moves from quiescence to doublet
2ring as I is increased.
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Fig. 1. Bifurcation set using I and � as bifurcation parameters. The solid curve indicates a saddle-node
bifurcation of 2xed points on a circle, dashed is a saddle-node bifurcation of periodic orbits (one of which
is stable) marking the tonic to burst transition, and the dashed–dotted is a saddle-node bifurcation of periodic
orbits, both of which are unstable. gc = 1.

The behavior in Fig. 1 can be understood as follows: decreasing � increases the e"ect
of the last term in Eq. (1), leading to a bigger DAP at the soma, and is qualitatively
the same as decreasing gK;d. Decreasing gK;d was found in Ref. [2] to move the curve
of saddle-node bifurcations of periodic orbits closer to the curve of saddle-node bifur-
cations of 2xed points on a circle, such that they eventually meet at a codimension-two
point. For �¡∼0:35, the neuron switches from quiescence to doublets as I is increased,
in a similar way to that shown in Ref. [2] for small gK;d. As � is increased, the e"ect
of the dendrite on the soma decreases, and since it was determined in Ref. [3] that
slow cumulative inactivation of dendritic potassium is essential for ghostburster-type
bursting, it is clear that for large enough �, bursting will not occur. This explains the
observation in Fig. 1 that for �¿∼0:5, only quiescent or tonic behavior is seen.

3.2. Varying gc (soma–dendrite coupling conductance)

We now consider the e"ect of varying the conductance between the soma and den-
drite, gc (in Ref. [2], gc was set to 1). In Fig. 2, we show a partial bifurcation set
using I and gc as parameters. For gc between about 0:2 and 1:7, the neuron moves from
quiescence to tonic 2ring through a saddle-node bifurcation of 2xed points on a circle
(solid line) as I is increased, and then to bursting through a saddle-node bifurcation
of periodic orbits (dashed). For gc¿∼1:7, or ¡∼0:2, only periodic 2ring occurs. This
can be explained as follows.
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Fig. 2. Bifurcation set using I and gc as bifurcation parameters. The solid curve indicates a saddle-node
bifurcation of 2xed points on a circle, dashed is a saddle-node bifurcation of periodic orbits (one of which
is stable), and the dashed–dotted is a saddle-node bifurcation of periodic orbits, both of which are unstable.
� = 0:4.

For large gc, the voltages in the soma and dendrite track one another very closely.
An essential ingredient for bursting is the dendritic to somatic current that causes the
DAP, and speci2cally, the slow growth of the DAP. In this model, this current is purely
a result of the di"erent halfwidths of the somatic and dendritic action potentials—the
somatic is normally shorter than the dendritic. If the somatic and dendritic voltages
track one another closely, the e"ect of these di"erent halfwidths, and thus the DAP,
is removed. Hence there is no bursting for large gc. However, when gc is small, the
e"ective coupling between the soma and dendrite is also small. The soma is not capable
of bursting by itself, so for small gc, the neuron moves from quiescence to tonic 2ring
as I is increased, in the same way as a single-compartment type I neuron [4].

4. Conclusion

We have investigated the e"ects of varying parameters related to the coupling be-
tween the soma and dendrite of a two-compartment model of a pyramidal cell that
undergoes “ghostbursting” [2]. We have found that both parameters must have mod-
erate values for bursting to occur. This can be explained in terms of the e"ects of
changing these parameters on the known mechanism involved in bursting [2,3]. It is of
interest to vary � because pyramidal cells in the ELL have been measured to have a
wide range of � values, and furthermore, cells with smaller � are more likely to burst
via soma–dendrite interactions [1], in agreement with our results.
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