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Abstract

Spatial independent component analysis (sICA) can be applied to human brain functional
magnetic resonance imaging (fMRI) data. Here, we address the problem of identifying the
“meaningful” subset in the large set of components (ICs). While this problem ultimately re-
quires interpretation, we propose kurtosis of the component histogram, spatial clustering of the
component’s layout in the brain and one-lag autocorrelation of the time course as criteria useful
in selecting components for more in-depth examination. Using our method of cortex-based sICA,
we illustrate this selection approach by applying it to two fMRI data sets already well understood
by us. The criteria in combination allow the selection of the task-related fMRI-ICs, independent
of a priori information pertaining to the particular temporal structure of the experiment.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the last few years, blood-oxygenation-level-dependent (BOLD) functional mag-
netic resonance imaging (fMRI) has rapidly assumed a leading role among the tech-
niques used to localize brain activity. Maps of activated brain areas are formed by
detecting the small stimulus-related signal changes (1–5%) deriving from the eHect of
neural activity on local blood volume, Iow and oxygen saturation, the so-called hemo-
dynamic response. Typically, fMRI data are analyzed by hypothesis-driven, voxel-based
statistical methods, e.g. with a general linear model (GLM). In this type of approach,
a model of the hemodynamic response that is spatially invariant (i.e. equal at each
voxel) is speciJed a priori by the experimenter and its goodness-of-Jt is tested inde-
pendently at each voxel [1,7]. In contrast to conventional statistical methods applied in
fMRI analysis, independent component analysis (ICA) is data-driven and multivariate.
The decomposition is determined solely by the intrinsic spatio–temporal structure of
the data set, i.e. no a priori assumption about the time proJle of the eHects of interest
is required.

Recently, ICA has been applied to fMRI data analysis [15,16]. The ICA-variant used
is spatial in that the observed 4D fMRI-signals are modelled as linear “mixtures” of
unknown spatially independent processes (e.g. BOLD signal changes related to the cog-
nitive task, physiological pulsations, head movements, artifacts, etc.), each contributing
to the data set with an unknown time proJle. An adaptive ICA algorithm [3] is used
to decompose the time series into spatial components (ICs), each having a unique time
course (TC). The decomposition process maximizes the spatial statistical independence
of the components, the idea being that the new representation of the data (ICs=TCs)
reIects the “unmixed” conJguration of the original spatial processes. In sICA, the num-
ber of spatial components serving as a linear model the 4D original data set is limited
by the number of time samples acquired. As acquisition of a single fMRI volume of
the brain typically takes 1–2 s and the measurement lasts for a few minutes, the total
number of components that the model comprises is usually ¿100 and ¡500.

In the sICA, as proposed in [15], the entire matrix of the fMRI time series is
blindly decomposed. This matrix includes signals not only from the cerebral cortex,
but also from other parts of the brain, including subcortical structures, the white matter
and the ventricles. The resulting decomposition, thus, also models the dynamics of
the signal in these other structures. As the maximal number of spatial components is
Jxed (it equals the number of time samples, i.e. functional scans), the model’s power
of spatial (i.e. anatomical) discrimination can be enhanced by restricting the analysis
to a subregion of the matrix. Whenever the cortex is the target of investigation, it
is therefore advisable to restrict the sICA to the portion of the matrix that represents
the cortex. Reconstructions of the cortical sheet, obtained by automatic segmentation of
high spatial resolution anatomical magnetic resonance (MR) images [8,13], can be used
to select the subset of the cortical time courses. The increase in spatial discriminatory
power is enormous because only about 20% of the voxels of a whole brain functional
data set lie within the cortex. Besides enhancing the capability of sICA to detect cortical
sources (cortex-based ICA or cbICA) [6], this approach also reduces the computational
load and speeds up the convergence of ICA algorithms.
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As the number of ICs is often very large in spatial ICA (up to the number of
time samples), a problem the user has to deal with is the selection of a “meaning-
ful” subset from the large set of components. While this problem ultimately requires
interpretation—grounded in the knowledge of an expert, certain computable properties
of the obtained components and their time courses can be utilized to guide the expert’s
exploration of the results of the ICA.

As it is usually uninformative to order the ICs according to the contribution to
the variance of the original data [16], currently adopted solutions revert to a priori
information: they select the components on the basis of their time courses’ correlation
with the stimulation protocol [14]. Since the hallmark of ICA is blind decomposition,
allowing the analysis of signals diOcult to model a priori, a method of characterizing
the fMRI-ICs independent of the stimulation protocol is desirable.

The present work aims to investigate whether three descriptive measures computed
for each component are useful in selecting “meaningful” ICs in the context of fMRI
of the human cerebral cortex. The three measures depend on the component’s distri-
bution of the values, on its spatial structure and on the properties of its associated
TC, respectively, but not on a priori information. They are: (1) the kurtosis of the
component’s distribution of voxel values, (2) the degree of spatial clustering of its
suprathreshold voxels, and (3) the one-lag serial autocorrelation of its TC. In order
to test the heuristic value of these measures, we have determined them for the compo-
nents obtained by cbICA of data sets well suited to conventional analysis and already
well understood by us [9]. If these heuristic criteria turn out to work well in these well
understood cases, they might also be helpful in selecting the meaningful components in
cases where conventional analysis is not an option (e.g. because the temporal structure
of the data is not known a priori).

2. fMRI experiments

fMRI data sets consisted of functional time series from a normal subject from the
control group in a study of blindsight patients [9] and from three normal subjects
participating in a study with a simple motor activation paradigm. Functional imag-
ing was performed at 1:5 T (Siemens magnetom vision) using a standard head coil
and a gradient-echo EPI sequence (TE = 69 ms; FA = 90◦, TR = 3000 ms [visual
study]=5000 ms [motor study], FOV = 200× 200 mm2, voxel size = 1:6× 1:6× 3 mm3,
126 scans=time series). In the Jrst study, colored images of natural objects (fruit
and vegetables) subtending 5:2 × 5:2◦ were presented in the upper visual Jeld 7◦

oH-axis in one hemiJeld at a time. Each stimulation block lasted for 30 s and was
repeated four times within each recording session. Fixation blocks of equal length
separated stimulation blocks. Within a stimulation block, an image was shown for
1 s and was then replaced by the next image without an interstimulus interval (for
details see [9]). In the second study, 10 stimulation blocks (25 s), during which
subjects performed a self-paced Jnger-tapping task, were alternated with 10 control
blocks of equal length (100 scans=time series). For all the subjects, a high-resolution
T1-weighted 3D data set covering the entire brain was collected with a 3D MPRAGE
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sequence (magnetization prepared rapid acquisition gradient echo, TR = 9:7 ms, TE =
4 ms, FA = 12◦, matrix = 256 × 256, thickness = 1 mm, number of partitions =
170–180, voxel size = 1 × 1 × 1 mm3) during the same session as the functional
measurement.

3. cbICA of fMRI time series1

cbICA of the fMRI data sets consisted of the following steps:

(1) Reconstruction of the cortical surface. The high-resolution T1-weighted 3D vol-
umes were used for surface reconstruction of both cortical hemispheres of the sub-
ject. The white=gray matter border was segmented with a region-growing method
preceded by inhomogeneity correction of signal intensity across space. The border
of the resulting segmented subvolumes was tessellated to produce a polygon mesh
representation of each cortical hemisphere [13]. The tessellation of the white=gray
matter boundary of a single hemisphere yields a polygon mesh typically consist-
ing of approximately 250,000 triangles. An iterative 3D morphing algorithm was
used to move all surface vertices outwards along with their normals, such that the
surface came to represent the spatial structure of the cortical gray matter. Through
visual inspection, this process was halted when the surface reached the middle of
the gray matter corresponding approximately to layer 4 of the cortex [8]. The re-
sulting surface was used as the spatial reference in projecting functional data onto
inIated representations of the cortex (Fig. 1a).

(2) Selection of the cortical time courses. The complete functional time series were
interpolated to 3 × 3 × 3 mm3 resolution and co-registered to the 3D anatomical
volume following procedures described elsewhere [4]. This yielded a 4D data rep-
resentation (volume time course or VTC) for each functional data set that, being
co-registered to the 3D anatomy, was also co-registered to the polygon mesh rep-
resenting the cortical sheet. This mesh was projected into the functional data
set and the voxels that were within a speciJed range were tagged as “cortex”
(Fig. 1b). The corresponding functional time courses formed the reduced matrix
of the cortical time courses [6,10].

(3) Spatial ICA decomposition. Let Xc be the T ×Mc (T = number of scans, Mc =
number of cortical time-courses) matrix of the observed cortical time courses (as
deJned in step 2), C the N ×Mc matrix whose rows Ci (i= 1; : : : ; N ) contain the
spatial processes (N6T = number of processes) and A the T ×N mixing matrix
whose columns Aj (j=1; : : : ; N ) contain the time courses of the N processes. The
problem of the ICA-decomposition of fMRI time series can be formulated as the

1The proposed methods are available as a part of the BrainVoyager 2000 fMRI analysis package
(www.brainvoyager.com).

http://www.brainvoyager.com
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Fig. 1. The use of individual subject cortex reconstruction for visualization on an inIated representation (a)
and for tagging of cortical voxels in the 4D matrix obtained by functional magnetic resonance imaging (b).

estimation of both matrices of the right side of the following equation:

Xc = A · C (1)

under the constraint that the processes Ci are spatially independent. No a priori
assumption is made about the mixing matrix A, i.e. about the time courses of the
processes.

DiHerent ICA algorithms solve this problem using diHerent strategies (see [11] for a
review). Here, Xc was blindly decomposed with a Jxed-point ICA algorithm (FastICA,
[12]) as implemented in [17]. The FastICA algorithm minimizes the mutual informa-
tion of the components using a robust approximation of the negentropy as a contrast
function and a fast, iterative (non-adaptive) algorithm for its maximization (for a de-
tailed description of the FastICA algorithm, see [12]). After sphering the matrix Xc,
the hierarchical (deIation) mode of the FastICA algorithm was used and all the com-
ponents (N1 =126 in the visual study and N2 =100 in the motor study) were estimated
one-by-one.

Note that since these components consist of voxel values at locations linked to the
cortical surface, they could directly be visualized on a folded or a morphed represen-
tation of the cortex (cortical surface components or CSC).
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4. Characterization of the cortical surface components

After cbICA decomposition, each of the obtained CSCs was assigned values and
ranks as follows:

(1) The kurtosis of the distribution of voxel values associated with each CSC was
computed. The CSCs were ranked according to descending values of the kurtosis.
This ranking is related to the hierarchical order of extraction of the deIation ap-
proach used in this paper for the ICA-decomposition. The use of this measure was
suggested by the empirical observation that, in several runs of the ICA algorithm
on functional time series collected with the same stimulation paradigm, CSCs had
a super-Gaussian distribution of voxel values with values of kurtosis corresponding
approximately to the same interval of the ranking [5].

(2) The spatial maps were z-normalized as in [16]. The number of voxels (Ntot) ex-
ceeding a threshold value (|z|¿3:5) and the size of the subset of these voxels
(Nclu) belonging to a 3D cluster of minimum extension (100 mm3) were com-
puted. The CSCs were ranked according to descending values of CLU =Nclu=Ntot.
This method aims to quantify the degree of clustering of the CSCs and exploits
the fact that meaningful processes tend to have a well-deJned spatial structure.

(3) The one-lag serial autocorrelation coe6cient (1L) was computed for the CSCs’
time courses. The CSCs were ranked according to the descending values of 1L.
This method relies on the fact that potentially interesting components present a
time course that is temporally structured without necessarily being correlated to
the stimulation protocol [2].

Additionally, for each CSC, the root-mean-square (RMS) contribution to the original
data was computed. Frequency domain analysis and multiple regression with a linear
model of the hemodynamic response to the stimulation conditions was performed for
the ICs’ time courses.

5. Results

Fig. 2 shows the components (referred to as CSC1 and CSC2) corresponding to
the cortical response to the visual stimulation (objects presented in the left and right
hemiJeld alternately) as identiJed by using the a priori information of the stimulation
protocol: CSC1 and CSC2 are the two components whose TCs were most highly cor-
related (R = 0:76 and 0:73) with hemodynamic predictor functions (Fig. 2b, yellow)
computed on the basis of the stimulation protocol by a linear model [9]. The compo-
nents were normalized and voxels with |z|-values¿3:5 and belonging to a 3D-cluster
¿100 mm3 were color-coded. The resulting maps were projected onto the inIated
representation of the subject’s cortex. The brain areas integrated in these components
included all early visual areas in the occipital cortex and in the ventral stream that
responded to the presentation of the objects in the contralateral hemiJeld. Early areas
of the visual processing stream were represented in a single component, while more
ventral areas received the contribution of both the components (see Fig. 2a, blue patch
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Fig. 2. The two cortical surface components whose time courses (b, white) were most highly correlated with
the hemodynamic response (b, yellow) as predicted on the basis of the stimulation protocol (b, background)
by a linear model. The component voxels whose values were in the tails of the distribution (c) have been
color-coded on the inIated representation (a) note that, as expected from visual neuroanatomy, both com-
ponents are almost completely lateralized to the hemisphere contralateral of the visual hemiJeld stimulated
during the phases when their time courses are high.

in right hemisphere), indicating that their response was less selective to the hemiJeld of
stimulation. The spatial locations of these areas corresponded very well to the locations
of the areas identiJed by the multiple regression analysis (see [9] for a comparison).
The power spectrum of both TCs presented prominent peaks at the frequency of the
stimulus presentation, following harmonics. These results indicate that cbICA can repli-
cate “blindly” the results of the multiple regression analysis and detect both the spatial
patterns and the time courses of the task-related cortical activations.

In Fig. 3, the correlation between all component TCs and the two predictors used in
the GLM analysis (a), the RMS contribution to the original data (b) and the kurtosis
of the 3D spatial map (c) are shown for all CSCs. In all the graphs, the CSCs are
ranked according to the order in which they were obtained with the FastICA algorithm
(deIation mode). By the criterion of RMS contribution, CSC1 (black in Figs. 3 and 4)
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Fig. 3. The cortical surface components (CSC1 and CSC2) identiJed by correlation with the stimulation
protocol (a) are inconspicuous by the criteria of RMS contribution (b) and kurtosis (c).
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and CSC2 (gray in Figs. 3 and 4) were ranked 116th and 91st, respectively, indi-
cating that spatial processes other than stimulus-related activation contributed most to
the fMRI data sets. The CSC with the highest RMS contribution was a spatially dis-
tributed component, accounting for global changes in the signal during the scanning
session. By the criterion of kurtosis, the selected components were ranked 23th and
41st, respectively. In the analysis of other data sets (of this and other fMRI experi-
ments with the same number of scans and similar stimulation protocol), the kurtosis
usually ranked the task-related CSCs in the same interval (approximately between the
21st and the 60th component). In many cases, the highly “super-Gaussian” CSCs (i.e.
the components with high values of kurtosis, approximately those with ranks 1–20)
represented spatially localized processes, which could usually be identiJed as vessels
or motion-related artifacts. CSCs with low values of kurtosis presented a noise-like
spatial distribution of voxel values without focal regions of activity.

In Fig. 4, the degree of clustering (CLU) of the 3D spatial maps (a) and the one-lag
serial autocorrelation (1L) (b) are shown for all the CSCs. Most of the CSCs with a
very high kurtosis also had a high value of CLU (¿ 0:5). Visual inspection of these
CSCs revealed that one high focal cluster of voxels with very high |z|-values was
present. High CLUs were also obtained for CSC1 and CSC2 (0.85 and 0.76, respec-
tively). However, in this case high |z|-values were distributed over several clusters in
the visual areas (Fig. 2). As expected, the TCs of the task-related CSCs showed high
values of 1L (0.82 and 0.72). The highest 1L was obtained for one CSC with a diHuse
spatial distribution. The TC of this component presented a pronounced low-frequency
drift, a common artifact in fMRI data sets.

Fig. 4c shows a plot in which 1L values are plotted versus CLU values. In this
graph, CSC1 and CSC2 are represented near the right upper corner. We would expect
other potentially interesting CSCs (i.e. the CSCs with a structured TC and with several
clusters of activated voxels) to be found in the same quadrant of the graph. Thus, after
excluding the CSCs with very high kurtosis (1st–20th, indicated with crosses),2 the two
nearest CSCs to the task-related components (indicated by circles) were inspected. Each
of them formed a symmetric pattern over the two hemispheres and their TCs suggested
transient activation. While the Jrst represented a bilateral region of the occipital cortex,
the second included clusters of voxels in the anterior cingulum and in the frontal cortex.
Interestingly, the TC of the Jrst of the two indicated occipital activations during the
periods when the subject saw only the Jxation cross. Although the exploratory nature
of this type of analysis does not allow for quantitative inferences, these CSCs might
reIect weakly task-related or -unrelated cognitive activity of the subject during the
scanning session.

In Fig. 5, the same 1L–CLU plot as in Fig. 4c is shown for the functional time series
collected during the motor task. For each of the three subjects, the suggested method
was capable of identifying task-related components, independent of the stimulation
protocol. In all the cases, the CSCs represented near the right upper corner of the
graph included primary motor, pre-motor and supplementary motor areas, while the

2Note that this exclusion was carried out on the basis of a visual inspection of the components. It is
possible that, in other experiments, potentially meaningful components are ranked in this same interval.
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Fig. 4. The combination (c) of degree of clustering (a) as a measure of spatial structure and one-lag serial
autocorrelation (b) as a measure of temporal structure is well-suited to detect the “meaningful” components.
In (c), crosses (+) mark high-kurtosis components (ranks 1–20), circles (o) mark potentially “meaningful”
components that merit more in-depth examination.
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Fig. 5. For each of the three subjects of the motor experiment, the combination of degree of clustering as a
measure of spatial structure and one-lag serial autocorrelation as a measure of temporal structure identiJes
the task-related component (marked by a circle) independent of the stimulation protocol.
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associated time courses were highly correlated (R= 0:71, 0.76, and 0.69, respectively)
with hemodynamic predictor functions.

6. Conclusions

In the present paper we have characterized fMRI-ICs, as obtained by cortex-based
ICA, on the basis of several parameters that depend on the spatial structure of the 3D
voxel values’ distribution or on the intrinsic properties of the associated TCs. We have
shown that a suitable combination of these parameters allows the selection of potentially
“meaningful” fMRI-ICs, independent of the correlation of component-TCs with the
stimulation protocol. Although validation of this approach using a larger number of
fMRI data sets is needed, we believe that this approach is very useful in the analysis
of fMRI experiments in which the hemodynamic response is diOcult to model (e.g.
event-related designs during complex cognitive tasks) or in which the events of interest
are unpredictable (e.g. hallucinations, epileptic seizures).
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