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Abstract

This paper proposes using the support vector machines (SVMs) experts for time series fore-
casting. The generalized SVMs experts have a two-stage neural network architecture. In the
3rst stage, self-organizing feature map (SOM) is used as a clustering algorithm to partition the
whole input space into several disjointed regions. A tree-structured architecture is adopted in
the partition to avoid the problem of predetermining the number of partitioned regions. Then,
in the second stage, multiple SVMs, also called SVM experts, that best 3t partitioned regions
are constructed by 3nding the most appropriate kernel function and the optimal free parameters
of SVMs. The sunspot data, Santa Fe data sets A, C and D, and the two building data sets are
evaluated in the experiment. The simulation shows that the SVMs experts achieve signi3cant
improvement in the generalization performance in comparison with the single SVMs models. In
addition, the SVMs experts also converge faster and use fewer support vectors.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Recently, support vector machines (SVMs) have been proposed as a novel technique
in time series forecasting [14–16]. SVMs are a very speci3c type of learning algorithms
characterized by the capacity control of the decision function, the use of the kernel
functions and the sparsity of the solution [6,28,29]. Established on the unique theory
of the structural risk minimization principle to estimate a function by minimizing an
upper bound of the generalization error, SVMs are shown to be very resistant to the
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over-3tting problem, eventually achieving high generalization performance in solving
various time series forecasting problems [2,23–26]. Another key property of SVMs is
that training SVMs is equivalent to solving a linearly constrained quadratic program-
ming problem so that the solution of SVMs is always unique and globally optimal,
unlike other networks’ training which requires non-linear optimization with the danger
of getting stuck into local minima.

In the modeling of time series, two of the key problems are noise and non-stationarity.
The noisy characteristic refers to the unavailability of complete information from the
past behaviour of the time series to fully capture the dependency between the future
and the past. The information that is not included in the model is considered as noise.
The noise in the data could lead to the over-3tting or under-3tting problem. The ob-
tained model will have a poor level of performance when applied to new data patterns.
The non-stationarity implies that the time series switch their dynamics between diEer-
ent regions. This will lead to gradual changes in the dependency between the input and
output variables. In general, it is hard for a single model including SVMs to capture
such a dynamic input–output relationship inherent in the data. Furthermore, using a
single model to learn the data is somewhat mismatch as there are diEerent noise levels
in diEerent input regions—before the single model starts to extract features in some
region (local under-3tting), it potentially could have extracted in another region (local
over-3tting).

A potential solution to the above problems is to use a mixture of experts (ME)
architecture [9,10,33,34]. Inspired by the so-called “divide-and-conquer” principle that
is often used to attack a complex problem by dividing it into simpler problems whose
solutions are combined to yield a solution to the complex problem, the well-known
ME consists of a set of expert networks and a gating network that cooperate with each
other to solve a complex problem (Fig. 1). Speci3cally, the expert networks are used
to solve diEerent input regions which are softly decomposed from the whole input
space by a softmax based gating network. Then the outputs of the expert networks are
combined by the softmax based gating network to obtain the solution of the problem.
The motivation of the ME is that individual expert networks can focus on speci3c
regions and attack them well.

Based on the same idea of using diEerent experts for diEerent input regions, Mi-
lidiu et al. [13] generalize the ME architecture into a two-stage architecture to handle
the non-stationarity in the data. As shown in Fig. 2, in the 3rst stage, the Isodata
clustering algorithm is used to partition the whole input space into several disjointed
regions. Then, in the second stage, a mixture of experts including partial least squares,
K-nearest neighbors and carbon copy are competed to solve partitioned regions. For
each particular region, only the expert that best 3ts it is used for the 3nal prediction. By
taking this strategy, the proposed method has an adaptive architecture in the sense any
model can be chosen as the expert candidate. Furthermore, by applying the most ade-
quate model to each partitioned region, this generalized ME architecture signi3cantly
improves prediction performance in comparison with using a single expert model to
learn the whole input space.

This paper generalizes the ME into SVMs for time series forecasting. The idea of
generalizing SVMs into the ME architecture has been simply discussed in [12]. Based
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Fig. 2. A generalized two-stage mixture of experts.

on the original ME architecture (Fig. 1), Kwok directly uses multiple SVMs as expert
networks, resulting in a weighted quadratic programming (QP) problem. As the weights
are functions of input vectors, it is very diKcult to solve this complex QP problem.
Motivated by Milidiu’s work (Fig. 2), this paper incorporates the ME architecture into
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SVMs by using a two-stage neural network architecture. As illustrated in Fig. 3, in
the 3rst stage, self-organization feature map (SOM) is used to partition the whole
input space into several disjointed regions. Then, in the second stage, diEerent SVMs
experts are competed to tackle partitioned regions. Same as in Milidiu’s work, for
each particular region only the SVMs expert that is the most adequate one is used for
the 3nal prediction. There are two rationales in the proposed method. First, as SOM
is an unsupervised clustering algorithm based on the competitive learning algorithm
[11], the training data points which have similar characteristics in the input space
will be classi3ed into the same region. As the partitioned regions have more uniform
distributions than that of the whole input space, it will become easier for a SVMs expert
to capture such a more stationary input–output relationship. Second, diEerent choices
of the kernel function in SVMs will de3ne diEerent types of feature space resulting in
diEerent solutions [29]. As diEerent partitioned regions have diEerent characteristics,
by taking this architecture the SVMs experts that best 3t particular regions by choosing
the most appropriate kernel function and the optimal learning parameters of SVMs will
be used for the 3nal prediction. This is very diEerent from a single SVMs model that
learns the whole input space globally and thus cannot guarantee that each local input
region is the best learned. The SVMs experts are illustrated experimentally by using
the sunspot data set, Santa Fe competition time series and the building data sets. The
simulation shows that there is great improvement in prediction performance by using
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the SVMs experts to learn the data. In addition, the SVMs experts also converge faster
and use fewer support vectors.

This paper is organized as follows: Section 2 describes the detailed architecture of
the SVMs experts. A learning algorithm is also developed in the same section. Section
3 presents the experimental results. Section 4 discusses the related work, followed by
the conclusions drawn from this study in the last section.

2. Architecture and the learning algorithm

The basic idea underlying the SVMs experts is to use SOM for partitioning the
whole input space into several regions and to use SVMs experts for solving these
partitioned regions. As there is no prior knowledge about how many regions could
be partitioned from the whole input space, the tree-structured architecture proposed
by [3,4] is adopted here for partition, which recursively partitions a large input space
into two regions until the partition condition is not satis3ed. The main advantage
of the tree-structured architecture is that by specifying a partition condition, it could
automatically 3nd a suitable network structure and size for partitioning a large problem
without predetermining the number of partitioned regions.

As illustrated in Fig. 4, each SOM sits at the non-terminal node of the tree and plays
a “divide” role to heuristically partition a large input space into two regions, and then
each SVMs expert sits at the leave of the tree and plays a “conquer” role to tackle
each partitioned region. For a data set  , a terminal node is created and located by the
data set. A SOM is developed to automatically partition the data set into two regions
according to the input space of the data set. If the number of training data points in
the partitioned regions is both larger than a predetermined threshold value Nthreshold

(partition condition), the terminal node for the data set becomes a non-terminal node,
and it is replaced with the SOM. Two new terminal nodes are created and located
by the two regions. As a result, the data set is partitioned into two non-overlapping
regions  1 and  2, where  1 ∩  2 = � and  1 ∪  2 =  (� denotes the null set).
The aforementioned procedures are applied in the partitioned regions until the partition
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condition that the number of training data points in the following partitioned regions
is both larger than Nthreshold is violated in all the regions. Finally, all the terminal
nodes of the tree become leaves, and they are located by the SVMs experts which are
appropriately constructed to deal with each region.

A learning algorithm for the proposed architecture is outlined as follows.

(1) Create a terminal node and put the training data set at it. Set a minimum number
of training data points Nthreshold.

(2) Let  denotes the data set located at the terminal node. Present the input spaces
of  (the data set  without outputs) to a SOM which will automatically partition
 into two regions  1 and  2 ( 1 ∩  2 = � and  1 ∪  2 =  ).

(3) Calculate the number of training data points in each region {Ni}2
i=1. If {Ni}2

i=1 is
both larger than Nthreshold, change the terminal node as a non-terminal node and
locate it by the SOM. Create two new terminal nodes and locate them by the two
regions  1 and  2. Otherwise, merge the two regions  1 and  2 and stop.

(4) Repeat from (2)–(3) until the partition cannot be proceeded in all the regions.
(5) Classify the validation set into the partitioned regions by the trained SOM based

on the input space.
(6) Train SVMs experts for the partitioned regions. Choose the most adequate SVMs

expert that produces the smallest error on the partitioned validation set for each
partitioned region. Locate it at the terminal node of the tree.

For an unknown data point in testing, it is 3rst classi3ed into one of the partitioned
regions by multiple SOM traversing path downs to leaves of the tree. Then its output
is produced by the corresponding SVMs expert.

3. Experimental results

3.1. Sunspot data

The sunspot data set has long served as a benchmark and been well studied in the
previous literature [5,7,8,17,18,27,30,32]. To make results comparable, this study uses
the same experimental setup as used in [27,32]. The only diEerence is that in our
experiment, the data points from 1921–1955 are used as the validation set to select the
optimal parameters of SVMs. The details of the experimental setup are described in
Appendix A.

Furthermore, the normalized mean square error (NMSE) is used to measure the
performance of SVMs. The NMSE of the test set is calculated as follows:

NMSE =
1

�2n

n∑
i=1

(yi − ŷ i)
2; (1)

�2 =
1

n− 1

n∑
i=1

(yi − Ny)2; (2)
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Table 1
The converged NMSE in sunspot data

Methods NMSE

Single SVMs Polynomial 0.1780
Single SVMs Tangent 0.2065
Single SVMs Gaussian 0.2682
SVMs experts 0.1541

Benchmarks 0.28 [27]
0.35 [32]

where n represents the total number of data points in the test set. ŷ represents the
predicted value. Ny denotes the mean of the actual output values.

The SOM software used is directly taken from Matlab5.3.1 neural network toolbox.
In each of our used SOM, there are only two output neurons representing two cat-
egories. After training by randomly presenting the input spaces of the training data
set, SOM automatically classi3es the training data set into two regions according to
the winner neuron. The value of Nthreshold is chosen experimentally. The used value
of Nthreshold and the number of partitioned regions are given in Appendix B, together
with the results for the other studied data sets. In addition, the number of training data
points in each partitioned region and its inter-class distance are also illustrated in the
appendix. Obviously, the inter-class distance in each partitioned region is much smaller
than that of the whole input space, demonstrating the clustering characteristic of SOM.

For training SVMs, the sequential minimal optimization algorithm solving the regres-
sion problem [21,22] is implemented in this experiment and the program is developed
by using VC++ language. The investigated kernel functions are restricted into three
categories: the polynomial kernel, the Gaussian kernel and the two-layer tangent ker-
nel. Thus, for each partitioned region, three SVMs experts are 3rstly developed. For
each SVMs expert, the optimal values of the kernel parameters, C and � are chosen
based on the smallest error on the validation set. Then the SVMs expert with the kernel
function, the kernel parameters, C and � that produce the smallest error on the valida-
tion set is chosen as the 3nal expert. To assure there is the best prediction performance
in the single SVMs models, the validation set is also used to select the optimal kernel
parameters, C and �.

The results of the SVMs experts and of the single SVMs models are given in Table 1.
The table shows that in the single SVMs models the polynomial kernel achieves better
performance than the Gaussian kernel and the two-layer tangent kernel. The converged
NMSE by using the polynomial kernel is much smaller than the benchmarks reported
in [27,32]. Furthermore, the SVMs experts could achieve a smaller NMSE than the
best single SVMs model by using the polynomial kernel.

Fig. 5(a) illustrates the predicted and actual values. The solid line is the actual value.
The thick solid line is the predicted value of the SVMs experts, and the dotted line is
the predicted value of the best single SVMs model. From the 3gure, it can be observed
that the SVMs experts forecast more closely to the actual values than the best single
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Fig. 5. (a) The predicted and actual values in sunspot data, (b) the absolute prediction errors in the SVMs
experts and the best single SVMs model.
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Table 2
The results in Santa Fe time series

Methods Santa Fe-a Santa Fe-c Santa Fe-d
(NMSE) (NMSE) (RMSE)

Single SVMs Polynomial 0.6570 0.2249 0.0224
Single SVMs Tangent 0.4895 0.6974 0.0259
Single SVMs Gaussian 0.0188 0.2186 0.0212
SVMs experts 0.0061 0.1607 0.0188

Benchmarks 0.0073 [13] 0.2419 [13] 0.0418–0.0559 [15]
0.0596 [19]

SVMs model in most of the testing time period. So there are correspondingly smaller
absolute prediction errors in the SVMs experts (the thick solid line) than the best single
SVMs model (the dotted line), as illustrated in Fig. 5(b).

3.2. Santa Fe competition time series

The data sets A, C and D in Santa Fe competition which is held during the fall
of 1990 under the auspices of the Santa Fe Institute [31] are also examined. In Santa
Fe data sets A and C, the experimental setup is used as the same as in [13], which
is given in Appendix C. There is no validation set, and the parameters of SVMs that
produce the smallest NMSE on the test set are used for SVMs, as the same strategy
as in [13]. In Santa Fe data set D, the experimental setup is adopted from [15,19].
For the data set D, the root mean square error (RMSE) is used to evaluate the perfor-
mance of SVMs as this criterion is used in the previous studies [15,19]. The RMSE is
calculated by

RMSE =

√∑n
i=1 (yi − ŷ i)2

n
; (3)

where n and ŷ have the same meaning as in (1).
The results of the SVMs experts and of the single SVMs models are given in Table 2.

For these data sets, the Gaussian kernel performs best among the single SVMs models.
The best single SVMs model by using the Gaussian kernel also has better result than
the benchmark reported in [13] for the data set C and in [15,19] for the data set D.
In the data set A, the best single SVMs model has slightly worse performance than
the benchmark reported in [13]. However, among all the methods, the SVMs experts
achieve the smallest test error in all the data sets.

Figs. 6(a)–8(a) illustrate the predicted and actual values in each data set. Obviously,
the SVMs experts forecast more closely to the actual values than the best single SVMs
model by using the Gaussian kernel in most of the testing time period. And there are
correspondingly smaller absolute prediction errors in the SVMs experts than the best
single SVMs model, as illustrated in Figs. 6(b)–8(b).
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Fig. 6. (a) The predicted and actual values in Santa Fe-a, (b) the absolute prediction errors in the SVMs
experts and the best single SVMs model.



L. Cao /Neurocomputing 51 (2003) 321–339 331

0 10 20 30 40 50 60
1.2

1.25

1.3

1.35

1.4

1.45

S ingle SVM

SVM s+SOM

Actual

Santa Fe - c

Number of test data points

O
up

ut
 v

al
ue

 

0 10 20 30 40 50 60
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of test data points

 A
bs

ol
ut

e 
pr

ed
ic

tio
n 

er
ro

r 

S ingle SVM

SVM s+SOM

(a)

(b)

Fig. 7. (a) The predicted and actual values in Santa Fe-c, (b) the absolute prediction errors in the SVMs
experts and the best single SVMs model.
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Table 3
The converged CV in the building data sets

Methods Building-1 Building-2

WBE CCW HW

Single SVMs Polynomial 19.65 20.54 48.63 13.74
Single SVMs Tangent 22.10 18.33 52.18 19.48
Single SVMs Gaussian 18.05 12.94 34.07 6.11
SVMs experts 16.35 12.57 33.25 4.82

Benchmarks WBE: 10.36–30.91; CCW: 11.65–33.26; Building 2:
HW: 15.24–66.45 2.75–18.21
ftp.cs.colorado.edu=pub=distribs=energy-shootout

WBE: whole building electricity; CCW: chilled cold water; HW: hot water.

3.3. Building data

The two building data sets is taken from the contest of “The Great Energy
Predictor Shootout—the First Data Analysis and Prediction” which is organized from
December 1, 1992 to April 30, 1993 in Denver, Colorado [20]. For the 3rst
building data set, three SVMs experts need to be developed, corresponding to the three
dependent variables which are the whole building electricity, the hourly chilled
water and the hot water. In both data sets, the last 600 data patterns are used
as the validation set to select the optimal parameters of SVMs. Furthermore,
the prediction performance of SVMs is evaluated by the coeKcient of variation
(CV) as this criterion is used in the competition. The criterion of CV is cal-
culated by

CV =

√∑n
i=1 (yi−ŷ i)

2

n

Ny
; (4)

where n, ŷ and Ny denotes the same meaning as in Eq. (1).
The results of the SVMs experts and of the single SVMs models are given in

Table 3. Same as in the Santa Fe data sets, the Gaussian kernel has the best performance
among the single SVMs models. The best results in the single SVMs models are among
the results reported in the competition. Comparing the results of the SVMs experts with
those of the best single SVMs model, it can be observed that the SVMs experts achieve
a much smaller CV than the best single SVMs model.

In addition, the used CPU time and the number of converged support vectors in the
SVMs experts and the best single SVMs model are also reported in Table 4, which
are calculated for all the studied data sets. The table shows that the time spent to 3nd
the solution is largely less for in the SVMs experts than the best single SVMs model.
Moreover, there are fewer support vectors in the SVMs experts than the best single
SVMs model.
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Table 4
The used CPU time and the number of support vectors

Data sets SVMs experts Best single SVMs model

CPU time (s) # of SV CPU time (s) # of SV

Sunspot 53 82 93 98
Santa Fe-a 748 875 34573 899
Santa Fe-c 2 42 51 66
Santa Fe-d 221 1256 66994 1336
Building-1 WBE 344 2049 13688 2117
Building-1 CCW 90 1994 6591 2004
Building-1 HW 52 1977 9228 2046
Building-2 1292 1503 7731 1568

4. Related work

Our proposed method can be considered similar in spirit to the “local learning”
algorithm proposed in [1]. In the local learning algorithm, for every test data point,
a 3xed number of training data points which are closest to it in the input space are
found and used to train a neural network. The same amount of neural networks as
that of the test data point is established in this method. In our proposed method, the
similar test data points in the input space are 3rstly grouped together, and then the
training data points which are closest to them in the input space are used to train a
neural network. Thus, in our proposed method, the amount of neural networks that is
required to be developed is reduced. The number of training data points for diEerent
test data points could vary according to the given training data set. When the number
of test data points is reduced to one, our proposed method is equivalent to the local
learning algorithm.

5. Conclusions

Based on the principle of “divide-and-conquer”, a SVMs experts model is developed
by combining SVMs with SOM using a two-stage architecture. In the 3rst stage, mul-
tiple SOMs are used to classify a given input into one of the partitioned regions based
on a tree-structured architecture. Then, at the second stage, the corresponding SVMs
expert is used to produce the output.

There are several advantages in this hybrid system. First, it achieves high predic-
tion performance because diEerent input regions are separately learned by the most
appropriate SVMs experts. Second, it allows eKcient learning. The time complexity
of training SVMs scales approximately between quadratic and cubic in the number of
training data points [22]. With the number of training data points getting smaller in
each SVMs expert, the convergence speed of SVMs is largely increased. Third, the
SVMs experts converges to fewer support vectors. Thus, the solution can be repre-
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sented more sparsely and simply. The SVMs experts model has been evaluated using
an extensive amount of data sets. Its superiority is demonstrated by comparing it with
the single SVMs models. All the simulation results show that the SVMs experts model
is more eEective and eKcient in forecasting noisy and non-stationary time series than
the single SVM model.

Although this paper shows the eEectiveness of the SVMs experts model, there are
more issues need to be investigated. Firstly, due to the “hard” decision used in the
current partition, there is deterioration in the performance to some regions, which is also
illustrated in Figs. 5–8. The “soft” partition which allows the data to simultaneously lie
in multiple regions may be more suitable in these regions. This should be investigated
in future work. Secondly, the experiment shows that the performance of the SVMs
experts is inTuenced by the value of Nthreshold. How to determine the optimal value of
Nthreshold is an important issue needs to be studied. Finally, in this study only three
kernel functions are investigated. Future work needs to explore more useful kernel
functions for further improving the performance of the SVMs experts.
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Appendix A

Sunspot data. The data set consists of a total of 280 yearly averaged sunspots
recorded from 1700 to 1979. In the experiment, the data points from 1700 to 1920 are
used as the training set, and those from 1921 to 1955 are used as the validation set,
and the remaining data points from 1956 to 1979 are used as the test set. 12 previous
sunspots are used as inputs to predict the current sunspot. So there are a total of 209
data patterns in the training set, 35 data patterns in the validation set and 24 data
patterns in the test set.
Santa Fe data set A. This data set is a laser time series recorded from a Far-Infrared-

Laser in a chaotic state, which is approximately described by three coupled non-linear
ordinary diEerential equations. The data set contains 1000 data points, followed by
a continued data set containing 9093 data points. The whole data set is used as the
training set, and the 3rst 100 data points in the continued data set are used as the test
set. 8 lagged data points are used as inputs to predict the current data point. So there
are a total of 992 data patterns in the training set and 100 data patterns in the test set.
Santa Fe data set C. This data set is a tick-wise time record (tick-wise means

that samples come at irregular intervals of time) of the high-frequency exchange rates
between the Swiss franc and the US dollar from August 7, 1990 to April 18, 1991. The
data set contains 10 segments of 3000 data points each. The continued data set is a
record of exchange rates at the tick closest to the requested time during the same time
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Table 5

Data sets Sun spot Santa Fe-a Santa Fe-c Santa Fe-d Building-1 Building-2

No. of regions n d n d n d n d n d n d

original 209 0.5767 992 122.57 103 1.2381 1880 1.0079 2326 675.19 1744 629.31
1 28 0.2634 36 34.37 21 0.1195 117 0.3992 102 17.52 35 37.53
2 27 0.3734 39 32.86 19 0.1051 106 0.4067 103 17.84 64 44.67
3 30 0.2719 36 21.82 22 0.1006 88 0.5508 85 14.06 69 65.92
4 25 0.3896 27 34.14 14 0.0462 99 0.4982 75 95.56 107 64.61
5 26 0.3620 32 30.36 14 0.1189 54 0.5275 101 78.48 63 128.59
6 23 0.2122 27 18.34 13 0.0423 47 0.5269 103 19.65 37 128.78
7 29 0.2347 33 29.00 — — 48 0.5471 90 42.31 75 85.97
8 21 0.3241 35 35.36 — — 41 0.4091 70 68.93 47 114.26
9 — — 37 32.92 — — 69 0.4685 87 89.94 52 192.12

10 — — 38 33.49 — — 56 0.3406 63 83.64 56 180.17
11 — — 39 21.90 — — 73 0.5812 72 102.60 38 192.01
12 — — 28 44.77 — — 106 0.3916 66 135.93 43 202.19
13 — — 27 16.84 — — 106 0.4744 57 104.76 91 106.60
14 — — 33 29.99 — — 53 0.2807 66 100.53 54 126.63
14 — — 31 32.87 — — 53 0.2908 73 109.85 49 169.67
16 — — 33 33.17 — — 45 0.2901 102 17.01 53 191.10
17 — — 36 42.85 — — 59 0.2923 102 17.06 48 169.45
18 — — 26 28.26 — — 60 0.3636 86 13.90 57 184.78
19 — — 30 31.58 — — 70 0.3582 85 13.91 76 161.58
20 — — 30 31.16 — — 100 0.4696 102 16.99 48 165.76
21 — — 32 37.45 — — 7 0.4782 101 16.99 69 147.21
22 — — 35 23.98 — — 67 0.4211 102 17.13 52 171.38
23 — — 28 22.12 — — 59 0.4550 102 17.12 46 194.26
24 — — 24 53.95 — — 57 0.4510 98 54.04 32 194.75
25 — — 32 32.75 — — 63 0.3883 95 68.09 48 185.14
26 — — 30 24.59 — — 65 0.5224 53 75.05 30 193.14
27 — — 26 27.91 — — 62 0.4333 85 57.65 58 195.26
28 — — 38 36.03 — — — — — — 31 207.33
29 — — 31 38.52 — — — — — — 47 175.92
30 — — 29 24.16 — — — — — — 58 228.84
31 — — 34 23.69 — — — — — — 48 228.77
32 — — — — — — — — — — 63 210.53
33 — — — — — — — — — — — —

Nthreshold 21 24 13 41 53 30

period, consisting of 60 data points. The daily closing exchange rates are used as the
training set, thus reducing the whole time series from 30 000 to 111. 8 lagged exchange
rates as well as the week day are used as inputs to predict the present exchange rate.
So there are a total of 103 data patterns in the training set and 60 data patterns in the
test set.
Santa Fe data set D. This data set is an arti3cial data generated from a nine-dimen-

sional periodically driven dissipative dynamic system with an asymmetrical four-well
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potential and a drift on the parameters. The whole data set contains 2 segments of each
5000 data points, followed by a continued data set containing 500 data points. In the
last 2000 data points of the data set, the 3rst 1900 data points are used as the training
set, and the remaining 100 data points are used as the validation set. In addition, the
3rst 25 data points in the continued data set are used as the test set. 20 lagged data
points are used as inputs to predict the current data point. So there are a total of 1880
data patterns in the training set, 100 data patterns in the validation set, and 25 data
patterns in the test set.
Building data set 1. This data set is a time record of whole building electricity,

hourly chilled water and hot water usage for a four-month period in an institutional
building. The hourly usage of whole building electricity, hourly chilled water and hot
water for the following two months is to be predicted. There are a total of 2926 data
patterns in the training set and 1282 data patterns in the test set. Each data pattern
consists of 8 independent variables determined by a time stamp and weather data and
the three dependent variables. In this experiment, the training data set is sequentially
divided into two parts: the 3rst 2326 data patterns are used for training SVMs, and the
remaining 600 data patterns are used as the validation set.
Building data set 2. This data set is a record of beam radiation during a six-month

period. There are a total of 2344 and 900 randomly ordered data patterns respectively
in the training set and the test set. Each data pattern consists of 5 independent variables
including four solar radiation measurements and one decimal rate. In the experiment,
the 3rst 1744 data patterns in the training set are used for training SVMs, and the
remaining 600 data patterns are used for validating.

Appendix B

The number of partitioned regions, the number of training data points (n) and the
inter-class distance (d) in each partitioned region, and the used Nthreshold in each data
set, as shown in Table 5.
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