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Abstract

The cortico-thalamic connections and the nucleus reticularis thalami (nRt) have gained
muchattention lately becauseof their integrativeandmodulatory functions.Thisparticular
architecturehasbeen thoughtto perform analysisandsynthesisof memories, work asactive
blackboards or a global workspace,or gateattention andgive riseto consciousness.In this
paper, I show that this circuitry canbe implementing a general analogical functionality.
Theconcreteconnectionbetweenanalogical functionandits exactneural basisestablished
in this papercanhelpusbetter understandthebrainfunction.
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1 Introduction

Currentcomputationalneuroscienceresearchis focusedon discoveringwhatkind
of informationis carriedby neurons.In otherwords,we areinterestedin whatthe
neuronsrepresent.However, this viewpoint makesthe neuronspassive. In sucha
passiveview, neuronsrequirefurtherinterpretation(of whatthey represent)by oth-
ersandthatcancausetheproblemof infinite regress.To overcomethis problem,I
proposethatwe assigna moreactiverole to theneurons.Active, in thesensethat
neuronsreceive input (temporalor spatial)andimmediatelyinvoke otherneurons
if theinputwaspreferable.With thisslight changeof viewpoint, asurprising func-
tionality canbe derived; that of analogy. In this paper, I will describehow asa
collectionsuchactive neuronscanperformanalogicalfunction,andshow that the
inhibitory mechanismin thenucleusreticularisthalami(nRt)cancarryoutactivity
gatingnecessaryfor properanalogicalfunction.
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2 Active Neurons: A Primitive for Analogical Computing

Insteadof focusingonunderstandingwhatkind of informationtheneuronsencode
andprocess,we canaskwhataction is takenwhenthey sensea certainfeaturein
theincoming input,bethattemporalor spatial.Theactionperformedby neuronsis
basicallyinvokingactivity in otherneurons.In thisway, neuronsrepresentacertain
inputfeature,andtakeimmediateactionby invokingotherneuronsoncethefeature
is detected.An importantobservation here is that suchinvocation establishesa
relationalcontext amongneurons,becauseconnectionsbetweenneuronstend to
strengthenwhenthey arecausalityrelated[9].

Thequestionthenis whatkind of generalprinciplecansuchactiveneuronsimple-
ment?Sucha unit alonecannotachieve much,neithercana serialchainof such
units.Thetruepower of this simple unit is revealedwhenit is usedin a massively
parallelway. It turnsout thatthecollectiveeffort of thesesimpleunitscanembody
a simple yet powerful functionalprincipleof analogy. We have to simplify matters
to seehow suchneuronscanprocessanalogy.

Let us assumethereare six neuronsin an imaginarycreature’s brain inhabiting
theworld of fruits (figure 1). After the fruit brainexperiencestheworld of fruits,
it will learn the co-occurrencesbetweenfeaturesandestablishrelationalarrows
as shown in the figure (arcswith arrows). Also supposethat the brain is parti-
tionedinto severalspecializedmapareas(or partitions), asin corticalmaps.Now,
suppose� apple� , � orange� , and � word-red� werepresentedto thecreaturesi-
multaneously. If we track the activation, we canseethat thesedetectorswill turn
on: appledetector, orangedetector, color-red detector, color-orangedetector, and
finally, word-reddetector. Theseactivationsareinput-driven. Becausetheneurons
areactive,assoonasthey detectwhatthey arefamiliar with, they sendout signals
throughtherelationalarrowshorizontallyacrossthecortex. As a resultof thissec-
ondorderactivation, theword-orangedetectorturnson,evenwithout input.Now,
hereis the crucial moment. We canaskthis question:which neuron’s firing was
purely cortically-driven?. Note that this questioncanbe viewed asa filtering (or
a gating) process.The resultof the filtering is then � word-orange� . The signif-
icanceof this observation is that this processis very similar to solving analogi-
cal problems.Theinput presentedto thecreatureis basicallyananalogicalquery:
� apple� : � orange� = � word-red� : � ?� . The filtered cortical response� word-
orange� canthenbetheanswerto this query. � Thus,active neuronscanperform
a rudimentaryanalogicalfunctionwhentheresponsesarefilteredproperly.

However, thingscangetcomplicatedwhencombinations of objectsareusedasa
query. Let us extendthe creature’s featuredetectorsto includeconceptsof small
andbig (not shown in thefigure).Thenwe canallow thecreatureto learnthe re-
lationsagain.We canthenpresentananalogicalquerylike this: � big ��� apple� :

� Thereis anissueof how thepresenceof � word-red � canaffect theoutcomeatall. This
problem will bediscussedlater in thediscussion section.
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Fig. 1. World of Fruits. A brain with object, color, andword detector neuronsis shown.
The six neurons eachrespond to theseinput features as labeled above. At the bottom
is the fruit world, and the thick vertical arrows represent afferent input. The horizontal
arcsarethe relational arrows thatpoint to their mostfrequentlyco-occurring counterparts
that have beenlearned through experience. The gray vertical barsrepresentthe partition-
ing of the brain into separate map areas (from the left to right, object map,color map,
and word map).Note that for simplicity, the word-orange detector connectsonly to the
color-orange detector, but not the orange detector, i.e. it is a word-color-orange detector,
not a word-object-orange detector.

� small��� apple � = � big ��� orange� : � ?� . In this case,if we follow thesame
stepsas above, we comeacrossa problem.Becausethe answerwe expect (i.e.
� small� � orange� ) alreadyappearedin thequery, if welook for purelycortically-
drivenactivations,theanswerwill be � word-red�!� word-orange� . However, we
canovercome this problemif we ask:what are the mostcortically-drivenactivi-
ties in each partition of thebrain? Because� big � and � apple� appearedin the
input twice but � small� and � orange� appearedonly once,thelatter two canbe
selected,aswell asthepurelycortically drivenactivities listedabove. Thus,even
for derivedactivitiesthatareinput-driven,thosethatarelessinput-drivencansur-
vive andthe correctanalogicalresponsecanstill be found amongsuchactivities
that aremorecortically-driven within eachpartition (or area).Note that � color-
orange� alsosurvivesthefiltering,but whatis moreimportanthereis thatasimple
filtering processasdescribedabove cangeneratea small subsetof potentialan-
swers to analogicalqueries.Although thesimpleanalogicalquerypresentedabove
hasa straightforwardanswer, in morecomplex analogicalproblems,therecanbe
multipleanswersdependingon theinterpretation[6].

In this section,I have shown thatactiveneuronsthatencodeinput featuresandre-
lationalcontexts cancollectively performrudimentaryanalogicalfunctions." But
doesthebrainfunctionin sucha way?In fact,anexactcircuit thatmaybeimple-
mentingsucha functionexistsin thebrain.

3 Neural Basis of Analogical Completion and Filtering

Two basicmechanismsareneededto accountfor theproposedanalogicalfunction:
completionandfiltering.Below, I will discusshow thecortico-corticalconnections

" Analogical taskscanbecomemuchmorecomplex thantheonesshown here.Theexam-
ple in this paper is decidedly simpleto clearly illustratethebasicmechanism.
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Fig. 2. Analogical Filtering in the Thalamus. The diagram shows a simplified tha-
lamo-cortical loop that can perform analogical completion and selection, and propagate
the selection back to the cortex. All connections shownarebased on known anatomy of
the thalamusandthe cortex [7]. I1 andI2 are input fibers,T1 andT2 arethalamic relay
cells, R1 andR2 areinhibitory nRt cells.C1,C2,C3,andC4 arecortical neurons(eachis
asetof neuronsrangingmultiple layers in asinglecortical column). Theneuronsareeither
excitatory (+) or inhibitory (–), andthearrowsareaxons(pointing in thedirection of action
potential propagation). The numbered labels on each arc show the activity beingcarried.
Black solid arrowsareascending fibersto the cortex andthe cortico-cortical connections
(relational arrows),andgraysolid arrows arecortico-thalamicfeedbacks. Black dashedar-
rows areinhibitory connections.Thediagramshows a scenario wheninput waspresented
to C1,which excitesC2, andin turn generatesthefeedbackfrom C2 to T2, which is then
retransmittedto the cortex as a new query (ascending thick black arrow). The selection
decision for further propagationto the cortex dependson the relative excitation andinhi-
bition T1(T2) receive from C1(C2)andR1(R2).On the right of C2 (dotted) in the cortex
is thesubsequent cascadeof analogical completions.Note that to avoid clutter, reciprocal
connections in thecortex, aswell asdisinhibiting connectionswithin thenRt layerarenot
shown.

andthethalamo-corticalloopcanimplementthesetwo mechanisms.

Completionsmaybeaccomplishedby thelong-rangecortico-corticalconnections.
Synapsesarestrengthenedwhenthepresynapticactivity precedepostsynapticac-
tivity [9], thustheconnectionscanimplementcausalrelations.Also, specificpat-
ternsof connectionsobservedin animals(e.g.in theprimaryvisualcortex of mon-
keys; [1]) show how suchpatternscan implementspecificcompletionfunctions.
Computational modelsalsoshowedhow suchconnectivity patternscanencodefea-
tureco-occurrenceandhow they candictatetheperformanceof themodel[3, 4].

For filtering, a separatemechanismis necessary. It turnsout that the feedforward
andfeedbackconnectionsfrom thethalamusto thecortex togetherwith thenRt in-
hibitionscanfilter feedbacksfrom thecortex to promote themostcortically-driven
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feedback,i.e. the analogicalanswers.Let us first seehow the purely cortically-
driven activities are selected(figure 2). In the thalamus,ascendingfibers (T1 to
C1) branchout and excite the inhibitory nRt neuronR1 (T1 to R1). When the
feedbackfrom C1 to T1 comesback,it branchesandstimulatesR1. As a result,
if thedescendingfeedbackhada matchingascendingsignal,the inhibition T1 re-
ceivesis twiceashighasotherneuronsin thethalamusthatareactivatedby purely
cortically-driven feedback(e.g.T2). If the synapticweightsare appropriate(i.e.
#%$'&)(+* and #%$-,.( � ) / , at T1 the feedbackwill cancelout, but at T2 the feed-
backwill survive the inhibition andwill be retransmittedto the cortex (the new
queryarrow). Sucha surviving cortical feedback,togetherwith the input stimu-
lus at the next momentform a new analogicalquery to the cortex, andthe same
processis repeated.That is, C2 elicits activities in C3, andin turn C4 throughthe
thalamo-corticalloop (notethat they canbe quite far away). For the selectionof
the mostcortically driven feedback,the mutual inhibitions in the nRt layer (e.g.
betweenR1 andR2) maydisinhibit (inhibiting aninhibitory neuronresultsin less
netinhibition) eachotherandallow themorecorticallydrivenfeedbackto goback
to thecortex, evenwhenall currentcorticalactivitiesareinputdriven.

4 Discussion

Theneuralmechanismsdescribedin this papercanonly accountfor simplekinds
of analogies,andin somecaseit canevenseemassimplepatterncompletion.For
example, � orange� = ? will resultin thesameanswer� word-orange� asin sec-
tion 2. How canthe term � word-red� in theoriginal queryaffect theoutcomeat
all?For this,I believethatamongmany possiblecompletions, thegeneralmaparea
(i.e. thepartitionsin figure1) thatareactivatedby input getshigherpreference. In
this example,the object-map,word-mapandcolor-mapwill turn on, thuspurely
corticalactivations in othergeneralmaps(sayodor-map,etc.)will notbeassalient
asthatof � word-orange� . Thus,in this way, thepresenceof � word-red� canin-
deedaffect theoutcomeof theanalogicalquery. A morepreciseneuralmechanism
for thiskind of selectionof areas(or maps)needsto beinvestigatedfurther.

Researchersregardtheanalogicalcapabilityasthecruxof high-level cognition(see
[5] for a collectionof currentwork on analogy).However, analogydoesnot need
to be limited to high-level cognition [2]. With this new view, we canstart to un-
derstandperception,cognition,andmotorfunctionsundertheunifying framework
of analogyinsteadof trying to understandthoseasembodying separatefunctional
principles.How cansucha diversefunctionality be integratedunderthe general
principle of analogicalprocessing?Massive connectionsexist within and across
different functionalareasin the brain, andthe sensory/motor mapsare topologi-
cally organized[8]. Whenthesensory, cognitive,andmotormapsareconnectedin
anorderlyway preservingtheir local topology, analogieswithin and(moreimpor-
tantly)acrossdifferentdomainscanbedrawn [5].

/ Here, 02143 is thesynaptic connection strengthfrom neuron X to neuron Y.
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Within this hugenumberof mapsspecializingin differenttasks,a cascadeof mul-
tiple analogicalcompletionscanbegoingon in parallel,synchronizedat eachmo-
mentby the40Hzrhythmto hold aninstantaneously coherentstate[7]. Suchstate
canthenposeasanotheranalogicalquery, andthatprocesscanrepeat.Whenthat
cascadereachesa motor area,behavior will be generated.Memory contentcan
alsoentertheanalogicalcascade,andthis quasi-staticcontributioncanpreventthe
continuously changinginput streamfrom causingrandomcascades,therebymain-
taininga moregoal-directedandstablebehavior. Specificmechanismsof how the
memorycontententersthethalamo-corticalloop,andhow completedanalogiesare
archived in memorythroughthe interactionswith subcorticalcenterssuchasthe
hippocampusshouldbestudiedfurther.

5 Conclusion

In thispaper, I assignedanactiveinvocational roleto neurons,andit turnedoutthat
collectively they canperforman analogical function. The thalamicandthalamo-
cortical circuitswerefoundto be ideal for implementingsucha function,andes-
pecially, the gating inhibition in the nRt was found to be crucial for analogical
processing.With analogy, differentdomainscanbe mappedandrelated,thuswe
canstartto understandperception,cognition,andmotorfunctionundera unifying
framework. Thisnew framework will enableusto takeamorefocusedapproachin
studying thebrainfunction.
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