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Abstract

The cortico-thalamic connestions and the nucleus reticularis thdami (nRt) have gained
muchattertion lately becaiseof their integrative andmodulabry functions. This paricular
archiecture hasbeean thoughtto perform analysisandsyntesisof memorieswork asactive
blackboards or aglobd workspae, or gateattertion andgive riseto consciousess.n this
pape, | shav that this circuitry canbe implemening a geneaal analogical functiondlity.

Theconaeteconrectionbetveenanabgicd function andits exactneural bass estalished
in this papercanhelpusbette undestandthe brain function.
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1 Introduction

Currentcomputationaheuroscienceesearchs focusedon discoveringwhatkind
of informationis carriedby neuronsln otherwords,we areinterestedn whatthe
neuronsrepresentHowever, this viewpoint makesthe neuronspassiveIn sucha
passve view, neurongequirefurtherinterpretatior(of whatthey representby oth-
ersandthatcancausehe problemof infinite regress.To overcomethis problem,|
proposethatwe assigna moreactiverole to the neuronsActive, in the sensehat
neurongreceve input (temporalor spatial)andimmediatelyinvoke otherneurons
if theinputwaspreferableWith this slight changeof viewpoint, a surprisng func-
tionality canbe derived;that of analagy. In this paper | will describehow asa
collectionsuchactive neuronscanperformanalogicalfunction,andshav thatthe
inhibitory mechanismn the nucleugreticularisthalami(nRt) cancarryoutactwvity
gatingnecessaryor properanalogicafunction.

1 This resarchwassuppatedin partby the TexasHigher Educaton Coordimating Board
ARP/ATP programunder grant#000512-0217-2001 revision : 1.10
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2 Active Neurons: A Primitive for Analogical Computing

Insteadof focusingon understandingvhatkind of informationthe neuronsencode
andprocesswe canaskwhatactionis takenwhenthey sensea certainfeaturein

theincoming input, bethattemporalor spatial.Theactionperformedoy neurongs

basicallyinvokingactiity in otherneuronsin thisway, neurongepresena certain
inputfeature andtake immedateactionby invoking otherneuronsncethefeature
is detected An importantobsenation hereis that suchinvocation establibesa

relationalcontext amongneurons becauseconnectionsdetweenneuronstendto

strengtherwhenthey arecausalityrelated[9].

The questiornthenis whatkind of generabprinciple cansuchactive neuronample-
ment?Sucha unit alonecannotachieze much, neithercana serialchain of such
units. Thetrue power of this simde unit is revealedwhenit is usedin a massvely
parallelway:. It turnsoutthatthe collective effort of thesesimpleunitscanembody
asimple yet powerful functionalprinciple of analogy We have to simplfy matters
to seehow suchneuronsanprocessanalogy

Let us assumehereare six neuronsin an imaginary creatures brain inhabiing
theworld of fruits (figure 1). After the fruit brain experienceghe world of fruits,
it will learnthe co-occurrencedetweenfeaturesand establishrelationalarrovs
as shown in the figure (arcswith arrans). Also supposehat the brain is parti-
tionedinto several specializednapareadqor partitiors), asin corticalmaps.Now,
suppose<apple>, <orange>, and <word-red> werepresentedo the creaturesi-
multaneouly. If we track the activaion, we canseethatthesedetectorswill turn
on: appledetectoy orangedetectoy color-red detectoy color-orangedetectoy and
finally, word-reddetector Theseactivationsareinput-driven Becausehe neurons
areactive, assoonasthey detectwhatthey arefamiliar with, they sendout signals
throughtherelationalarrowvs horizontallyacrosghe cortex. As aresultof this sec-
ond orderactvation, the word-orangedetectorturnson, evenwithout input. Now,
hereis the crucial moment. We can askthis question:which neuion’s firing was
purely cortically-driven? Note that this questioncanbe viewed as a filtering (or
a gating process.Theresultof thefiltering is then <word-orange-. The signif-
icanceof this obsenation is that this processs very similar to solving analogi-
cal problems.Theinput presentedo the creatures basicallyananalogicalquery:
<apple>:<orange- = <word-red>:<?>. The filtered cortical response<word-
orange- canthenbethe answerto this query? Thus,active neuronscanperform
arudimentaryanalogicafunctionwhentheresponsearefiltered properly

However, thingscanget complicatedwvhencombinatias of objectsareusedasa
guery Let us extendthe creatures featuredetectordo include conceptsof small
andbig (not shown in thefigure). Thenwe canallow the creatureto learnthere-
lationsagain.We canthenpresentnanalogicalquerylik e this: <big><appk> :

2 Thereis anisste of how the presnceof <word-red> canaffectthe outcaneatall. This
probemwill bediscussedaterin the disaussian sectian.
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Fig. 1. World of Fruits. A brainwith object, color, andword detector neuonsis shown.
The six neuons eachrespom to theseinput features as labeled above. At the bottom
is the fruit world, and the thick verticd arrawvs repreent afferent input. The horizontal
arcsaretherelaional arravs that point to their mostfrequently co-occuring counterpats
that have beenlearred through experience The gray verticd barsrepresentthe parition-
ing of the brain into sepaate map area (from the left to right, object map, color map,
and word map). Note that for simplicity, the word-orange detector comectsonly to the
color-orarge detecbr, but not the orange detedor, i.e. it is a word-color-orange detedor,
not aword-dbject-orange detedor.

<smalb><appe> = <big><orange> : <?>. In this case,f we follow the same
stepsas above, we comeacrossa problem.Becausethe answerwe expect (i.e.

<smalt> <orange-) alreadyappearedh thequery if welook for purelycortically-
drivenactivatons,theanswemwill be <word-red> <word-orange-. However, we
canovercone this problemif we ask:what are the mostcortically-driven activi-

tiesin ead partition of the brain? Because<big> and <apple> appearedn the
inputtwice but <smalt> and <orange> appeareanly once,thelattertwo canbe
selectedaswell asthe purely cortically driven actwities listed above. Thus,even
for derived actwitiesthatareinput-driven,thosethatarelessinput-driven cansur

vive andthe correctanalogicalresponsecanstill be found amongsuchactuities
that are more cortically-driven within eachpartition (or area).Note that <color-

orange- alsosurvivesthefiltering, but whatis moreimportanthereis thata simple

filtering processas describedabore cangeneratea small subsetof potentialan-
swes to analogicalqueries Although the simple analogicalquerypresentedbove
hasa straightforward answeyin morecomplex analogicalproblemstherecanbe
multiple answergependingntheinterpretatior{6].

In this section,| have shavn thatactive neuronghatencodenput featuresandre-
lational contexts cancollectively performrudimentaryanalogicafunctions? But
doesthe brainfunctionin suchaway?In fact,anexactcircuit thatmay be imple-
mentingsucha functionexistsin thebrain.

3 Neural Basisof Analogical Completion and Filtering

Two basicmechanismareneededo accountor theproposedinalogicafunction:
completionandfiltering. Below, | will discusshow thecortico-corticalconnections

3 Analogcal tasks canbecane muchmorecomple thanthe onesshovn here. The exam-
plein this paperis deddedly simpleto clealy illu stratethe basicmechansm.
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Fig. 2. Analogical Filtering in the Thalamus. The diagr.am showvs a simplified tha-

lamo-catical loop that can perform anabgicd completion and selection, and propayate
the selection backto the cortex. All conrectiors shownare basel on known anatany of

the thalamusandthe cortex [7]. 11 andI2 areinput fibers, T1 and T2 are thalamic relay
cells R1andR2 areinhibitory nRtcells.C1,C2,C3,andC4 arecortical neuons(eachis

asetof newronsranging multiple layersin a singlecortical column). Theneuonsareeither
excitatory (+) or inhibitory (=), andthearrowsareaxors (pointing in thediredion of action
potential propagatian). The numbere labds on ead arc showv the actiity being carried.

Black solid arrowsare ascenihg fibersto the cortex andthe cortico-catical comectians
(relational arrans), andgray solid arrows arecortico-thalamicfeedbacks Black dashed ar

rows areinhibitory connestions. The diagram shavs a scerario wheninput waspresented
to C1, which excitesC2, andin turn gereratesthe feecdbackfrom C2to T2, which is then
retransmittedto the cortex asa new queay (as@nding thick black arrawv). The selecton

decison for further propagationto the cortex dependson the relative excitation andinhi-

bition T1(T2) receiwe from C1(C2)andR1(R2).Ontheright of C2 (dotted) in the cortex

is the sulsequat cascale of anal@ical completons. Note thatto avoid clutter, reciprocal
conrectiors in the cortex, aswell asdisinhibiting conrectionswithin the nRtlayerarenot
showvn.

andthethalamo-corticaloop canimplementthesetwo mechanisrs.

Completionamaybe accomplishedby thelong-rangecortico-corticalconnections.
Synapsesire strengtheneevhenthe presynaptiactiity precedepostsyapticac-

tivity [9], thusthe connectioncanimplementcausalrelations.Also, specificpat-

ternsof connection®bseredin animals(e.g.in the primaryvisualcortex of mon-

keys; [1]) shav how suchpatternscanimplementspecificcompletionfunctions.

Computatioal modelsalsoshavedhow suchconnectity patternsanencoddea-

ture co-occurrencandhow they candictatethe performancef the model[3, 4].

For filtering, a separatenechanisms necessanyt turnsout thatthe feedforward
andfeedbackconnectiongrom thethalamudo the cortex togethemwith thenRtin-
hibitionscanfilter feedbackd$rom the cortex to promot the mostcortically-driven



feedback,.e. the analogicalanswersl et us first seehow the purely cortically-
driven actiities are selected(figure 2). In the thalamus,ascendingibers (T1 to

C1) branchout and excite the inhibitory nRt neuronR1 (T1 to R1). Whenthe
feedbackfrom C1 to T1 comesback,it branchesand stimulatesR1. As a result,
if the descendindeedbackhada matchingascendingsignal,the inhibition T1 re-

ceivesis twice ashigh asotherneuronsgn thethalamughatareactivatedby purely
cortically-driven feedback(e.g. T2). If the synapticweightsare appropriate(i.e.

wre = 2 andwrg = 1)4, at T1 thefeedbackwill cancelout, but at T2 the feed-
backwill survive the inhibition andwill be retransmittedo the cortex (the new

gueryarran). Sucha survving cortical feedback togetherwith the input stimu-
lus at the next momentform a new analogicalqueryto the cortex, andthe same
processs repeatedThatis, C2 elicits activitiesin C3, andin turn C4 throughthe
thalamo-corticaloop (notethat they canbe quite far away). For the selectionof

the mostcortically driven feedbackthe mutualinhibitionsin the nRt layer (e.g.
betweernR1 andR2) maydisinhbit (inhibiting aninhibitory neuronresultsin less
netinhibition) eachotherandallow the morecortically drivenfeedbacko go back
to the cortex, evenwhenall currentcorticalactiities areinputdriven

4 Discussion

The neuralmechanismslescribedn this papercanonly accountfor simplekinds
of analogiesandin somecaseit canevenseemassimplepatterncompletion.For
example,<orange- = ? will resultin the sameanswer<word-orange- asin sec-
tion 2. How canthe term <word-red> in the original queryaffect the outcomeat
all? For this, | believe thatamongmary possiblecompletionsthegeneramaparea
(i.e.thepartitionsin figure 1) thatareactivated by input getshigherpreferenceln
this example,the object-mapword-mapand color-mapwill turn on, thuspurely
corticalactiatiors in othergeneraimaps(sayodormap,etc.)will notbeassalient
asthatof <word-orange-. Thus,in thisway, the presencef <word-red> canin-
deedaffectthe outcomeof theanalogicaljuery A morepreciseneuralmechanism
for thiskind of selectionof areagor maps)needdo beinvestgatedfurther.

Researcharegardtheanalogicatapabilityasthecrux of high-level cognition(see
[5] for a collectionof currentwork on analogy).However, analogydoesnot need
to be limited to high-level cognition [2]. With this new view, we canstartto un-
derstandperceptioncognition,andmotorfunctionsunderthe unifying frameawvork
of analogyinsteadof trying to understandhoseasembodyng separatéunctional
principles.How cansucha diversefunctionality be integratedunderthe general
principle of analogicalprocessing™assve connectionsexist within and across
differentfunctional areasin the brain, andthe sensory/rotor mapsare topologi-
cally organized8]. Whenthe sensorycognitive,andmotormapsareconnectedn
anorderlyway preservingheir local topology, analogiesvithin and(moreimpor-
tantly) acrossdifferentdomainscanbedrawvn [5].

4 Here,wyx is the synatic connetion strength from newon X to neuon Y.



Within this hugenumberof mapsspecializingn differenttasks,a cascadef mul-
tiple analogicalcompletios canbe goingonin parallel,synchronizedt eachmo-
mentby the 40Hzrhythmto hold aninstantaneoug coherenstate[7]. Suchstate
canthenposeasanotheranalogicalquery andthatprocessanrepeatWhenthat
cascadaeachesa motor area,behaior will be generatedMemory contentcan
alsoentertheanalogicalcascadeandthis quasi-staticontribution canpreventthe
continuouly changingnput streamfrom causingrandomcascadegherebymain-
taininga moregoal-directedandstablebehaior. Specificmechanismef how the
memorycontententerghethalamo-corticaloop,andhow completecanalogiesre
archivedin memorythroughthe interactionswith subcorticalcenterssuchasthe
hippocampushouldbe studiedfurther.

5 Conclusion

In thispaper| assigne@nactive invocatioral role to neuronsandit turnedoutthat
collectively they canperforman analagical function The thalamicandthalamo-
cortical circuitswerefoundto beideal for implenentingsucha function,andes-
pecially the gatinginhibition in the nRt was found to be crucial for analogical
processingWith analogy differentdomainscan be mappedandrelated,thuswe

canstartto understangberceptiongcognition, andmotorfunctionundera unifying

framework. This new framewnork will enableusto take amorefocusedapproachn

studyirg the brainfunction.
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