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Abstract

In primates, most LGN fibers terminate in cortical layer 4C, an anatomically prominent structure 

of unexplained function. We hypothesize that the enormous number of cells in layer 4C of monkey 

primate visual cortex functions as a neural network “hidden layer” that inverts distortions 

introduced by transmitting visual signals through the LGN. This hypothesis helps explain how 

simple cells respond (quasi-) linearly to visual inputs in spite of nonlinearities present in LGN 

responses. Linearization averts prematurely discarding visual information, in keeping with the role 

of primary visual cortex as the source of raw visual information to the rest of the brain.
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The transfer of sensory information to the visual cortex occurs primarily at the interface 

between afferents from the LGN and a large population of tiny, densely packed “spiny 

stellate” cells in cortical layer 4C. There is an enormous mismatch between the number of 

incoming LGN fibers and the number of recipient 4C neurons, leading to the estimate that 

each LGN fiber branches to connect with 30–100 4C neurons [2,5]. Layer 4C also serves as 

the primary source of visual input to the simple cell population in cortical layer 2/3, each 

simple cell receiving inputs from numerous 4C cells.

It would appear that layer 4C is strategically situated to perform some kind of conditioning 

of visual signals before “turning them over” for further analysis by the other cortical layers. 

However, the function of layer 4C has been hard to decipher. For example, at other stages in 

the visual hierarchy, new computations are reflected in a progressively more complex 

selectivity of cellular responses for features of the visual input. On the other hand, layer 4C 

cells appear to simply inherit the receptive fields of their LGN drivers.

There have been two main previous hypotheses. First, based on the large fanout of incoming 

LGN fibers, Horace Barlow suggested that layer 4C might serve as an “interpolating grid” 

[2]. Image samples conveyed by LGN afferents would be interpolated by the more 

numerous, densely packed 4C cells, and this higher resolution neural image would serve as 

the readout underlying visual hyperacuity. In another hypothesis, Anderson and Van Essen 

proposed that layer 4C serves as a grid for rescaling and rerouting visual information, as part 
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of the operation of a “shifter circuit” [1]. Subsequent experimental work has failed to 

validate key predictions of either proposal (c.f. [3]).

In this paper we outline a new proposal for the function of layer 4C. To motivate our 

proposal, we first discuss in detail an often overlooked problem encountered in early visual 

processing, namely, that visual signals undergo nonlinear distortion during transmission 

from retina to cortex. This fact at first appears inconsistent with the well-known observation 

that simple cells show an essentially linear dependence on visual inputs. By what 

mechanism is linearity achieved, and why? We propose that layer 4C functions to reverse the 
distortion, and by doing so, prevents the loss of visual information. We provide illustrations 

from computer simulations to demonstrate the principles of our proposal, and highlight ways 

in which our hypothesis may help to explain the experimentally observed linearity of simple 

cell physiology.

The early stages of visual processing admit a straightforward computational description: In 

response to images projected on the retina, the firing rates of ganglion-, lateral geniculate-, 

spiny stellate-, and simple cells are well predicted using models which compute the inner 

product (spatial integral of the product) of a linear filter with the incoming image, and pass 

the result through a static nonlinear function. We use the notation ℐ, ℱ, and g for the image, 

linear filter, and static nonlinearity, respectively. Then we express a neural firing rate in 

terms of the input image as

r ℐ = g ℐ, ℱ − θ

where θ is a threshold, and 〈,〉 denotes the inner product. Here we have neglected the effects 

of noise, but will discuss these later. For simple cells, the underlying linear filter is usually 

described as a Gaussian-weighted sine wave, i.e. a Gabor function. Current evidence 

suggests that these receptive fields arise basically in a feedforward fashion from alternating 

stripes of ON and OFF centers of LGN receptive fields, as originally proposed by Hubel and 

Wiesel [4]. However, completely explaining the linear behavior of simple cells with the 

Hubel and Wiesel model is complicated by the presence of the static nonlinearity in the 

retinal ganglion and LGN cells, g. The essential features of the LGN nonlinearity are 

saturation at high contrasts, and nonnegativity (firing rates are positive quantities). We can 

conveniently model this nonlinearity using the sigmoid function g(x) = kx2=(σ + x2), where 

k and σ are constants determining the maximum firing rate and half saturation level.

The essential problem introduced by saturation is illustrated in Fig. 1. Consider a time-

varying sinusoidal signal transmitted down the retinogeniculate pathway by pairs of ON and 

OFF RGCs and LGN RCs. As shown on the left in Fig. 1, the ON and OFF responses can be 

combined (by taking the difference) to capture both the positive and negative components of 

the visual signal. Using this combined representation highlights the effects of saturation. 

Saturation at high signal amplitudes produces a compressed sinewave as the output of 

RGCs, and the effect is cascaded through the LGN to produce more pronounced distortion in 

the output of the ON/OFF pair of LGN cells. In the following paragraphs we first explain 

how layer 4C can “linearize” the overall transfer of signals from the retina to simple cells by 

reversing the effects of saturation. We postpone addressing the benefits of linearization to 
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allow us to frame the discussion in the context of the hypothetical question, “what if layer 

4C did not exist?”

The implementation of our hypothesis is simple. As stated above, each LGN cell arborizes to 

contact 30–100 layer 4C cells. Due to this direct feedforward connection, each spiny stellate 

cell will inherit the basic ON or OFF, difference-of-Gaussians-shaped receptive field of its 

presynaptic LGN afferent. Suppose, however, that there is moderate diversity amongst either 

the form of the static nonlinearities g for the cells, e.g. different maximum firing rates, or 

some scatter among the thresholds θi. Then by taking an appropriate synaptically weighted 

sum of ON and OFF spiny stellate cell inputs to a simple cell, the overall amplitude transfer 

function characterizing the relay LGN to the simple cell input can be made to approximate 

the inverse of the preceding distortion function, achieving an overall linear transfer of the 

visual signal to the target simple cell. In other words, we propose that layer 4C serves as a 

“hidden layer”, in which the response curves of its neurons serve as basis functions with 

which the inverse of the RGC/LGN amplitude transfer function is computed. For our 

example, we have used 30 ON and 30 OFF neurons, and have computed weights wi by the 

method of least squares, i.e. by minimizing

E wi g−1 x − ∑
i

wiai x 2
x

,

where ai are the response functions (″g′s″) for layer 4 cells, x = ℐ, ℱ , and 〈,〉x indicates 

an average over the ensemble of possible scalar inputs x to the cells, which for simplicity we 

assumed as uniform. In this case, the simple cell response will not show evidence of the 

distortion, but will have a linear response, consistent with experimental observations.

We now discuss the benefits of removing distortions, which we refer to as “linearization”. 

The most immediate benefit is that linearization reformats LGN signals in such a way that 

the responses of simple cells saturate less. The consequence is that simple cell responses 

provide more information about the initial retinal input than if they were directly fed the 

LGN output. To qualitatively illustrate this point, we performed the following numerical 

experiments: Suppose that the visual input to the static nonlinearity g of a single ON/OFF 

pair of RGC is a scalar valued, zero-mean random variable x, with variance σ2; i.e., 

x N 0, σ2 . The variance is chosen so that the RGC and LGN responses occasionally 

saturate. Also, assume that at each synapse, the signal is corrupted by additive Gaussian 

noise, where the noise sources at each stage are independent. The firing rate of an “antiphase 

pair” of simple cells (obtained by taking the difference of the responses of the simple cells in 

Fig. 2) is then a (non-Gaussian) random variable y (Fig. 3).

We produced 1,000,000 random sample input/output pairs (x, y) and used these to form 

Monte-Carlo histogram estimates of the probability densities p(y) and p(y|x). We used these 

histograms and the assumed pdf for x, p(x), to compute the Shannon information (mutual 

information) between the visual signals and the firing rates of the model simple cell pair, 

given by
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I y; x = ∑
x, y

p x p y x log p y x
p y .

We repeated these experiments for two cases: with and without the layer 4C “inverter”, for 

several different noise levels. We find generally that so long as the noise involved in the 

inversion process is small compared to the noise already present in the incoming signals, 

linearization by layer 4C produces substantial improvements in the overall information 

transfer I(y; x). Notice that the benefits will be greatest for simple cells responding to low 

spatial frequency information. This is because these simple cells suppress the noise.

More speculatively, we suppose that distortion inversion for low spatial frequency 

information is important for visual perception. Most of the information in natural images 

resides in the low spatial frequency bands; residual distortions would be noticeable if not 

inverted.

We have outlined a novel computational hypothesis for the function of layer 4C in primate 

visual cortex. A testable prediction of our hypothesis is that there exists a diversity of neural 

response curves in layer 4C. To our knowledge, the data to confirm of refute this prediction 

does not yet exist.

A final interesting related question for further study is whether a similar operation takes 

place in cats, which lack the densely packed layer 4C found in primates [3]. Instead, a 

similar though less dramatic fanout (1→4–10 in cats vs. 1→30–100 in primates) occurs in 

cat LGN. We hypothesize that this fanout in cat LGN may serve the same purpose as we 

have hypothesized for layer 4C in primates.
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Fig. 1. 
Bottom: Response curves for an ON/OFF pair of LGN relay neurons (left) and their 

postsynaptic layer 4C targets. Top: Amplitude transfer function for visual signals using 

responses of the ON/OFF pair (left), and using layer 4C as a distortion inverter (middle). 

Combining these in tandem yields an overall linear transfer (right).
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Fig. 2. 
Schematic of the feedforward neuronal implementation of our proposal. Pairs of neurons are 

used to represent both positive and negative signal components.
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Fig. 3. 
Top: Block diagram for the numerical experiments described in the text. Top pathway, 

without layer 4C; bottom pathway, layer 4C acting as distortion inverter. Bottom: Plots and 

contour plots for estimated pdf’s (see text).
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