

Meta-Learning Evolutionary Artificial Neural Networks
Ajith Abraham

Department of Computer Science, Oklahoma State University
700 N Greenwood Avenue, Tulsa, OK 74106-0700, USA

Email: ajith.abraham@ieee.org, URL: http://ajith.softcomputing.net

Abstract
In this paper, we present MLEANN (Meta-Learning Evolutionary Artificial Neural Network), an automatic
computational framework for the adaptive optimization of artificial neural networks wherein the neural network
architecture, activation function, connection weights; learning algorithm and its parameters are adapted according to the
problem. We explored the performance of MLEANN and conventionally designed artificial neural networks for
function approximation problems. To evaluate the comparative performance, we used three different well-known
chaotic time series. We also present the state of the art popular neural network learning algorithms and some
experimentation results related to convergence speed and generalization performance. We explored the performance of
backpropagation algorithm; conjugate gradient algorithm, quasi-Newton algorithm and Levenberg-Marquardt
algorithm for the three chaotic time series. Performances of the different learning algorithms were evaluated when the
activation functions and architecture were changed. We further present the theoretical background, algorithm, design
strategy and further demonstrate how effective and inevitable is the proposed MLEANN framework to design a neural
network, which is smaller, faster and with a better generalization performance.

Key words: global optimization, local search, evolutionary algorithm and meta-learning

1. Introduction
The strong interest in neural networks in the scientific community is fueled by the many successful and promising
applications especially to tasks of optimization [26], speech recognition [16], pattern recognition [12], signal processing
[57], function approximation [79], control problems [3] [5], financial modeling [67] etc.. Even though artificial neural
networks are capable of performing a wide variety of tasks, yet in practice sometimes they deliver only marginal
performance. Inappropriate topology selection and learning algorithm are frequently blamed. There is little reason to
expect that one can find a uniformly best algorithm for selecting the weights in a feedforward artificial neural network.
This is in accordance with the no free lunch theorem, which explains that for any algorithm, any elevated performance
over one class of problems is exactly paid for in performance over another class [54]. In sum, one should be skeptical
of claims in the literature on training algorithms that one being proposed is substantially better than most others. Such
claims are often defended through some simulations based on applications in which the proposed algorithm performed
better than some familiar alternative [41] [44] [45] [78].

At present, neural network design relies heavily on human experts who have sufficient knowledge about the different
aspects of the network and the problem domain. As the complexity of the problem domain increases, manual design
becomes more difficult and unmanageable. Evolutionary design of artificial neural networks has been widely explored.
Evolutionary algorithms are used to adapt the connection weights, network architecture and learning rules according to
the problem environment. A distinct feature of evolutionary neural networks is their adaptability to a dynamic
environment. In other words, such neural networks can adapt to an environment as well as changes in the environment.
The two forms of adaptation: evolution and learning in evolutionary artificial neural networks make their adaptation to
a dynamic environment much more effective and efficient than the conventional learning approach [2]. In Section 2, we
present the different neural network learning paradigms followed by some experimentation results to demonstrate the
difficulties to design neural networks, which are smaller, faster and with a better generalization performance. In section
3, we introduce evolutionary algorithms and state of the art design of Evolutionary Artificial Neural Networks
(EANNs) followed by the proposed MLEANN framework [2]. In the MLEANN framework, in addition to the
evolutionary search of connection weights and architectures (connectivity and activation functions), local search
techniques are used to fine-tune the weights (meta-learning). Experimentation results are provided in Section 3.3.1 and
some discussions and conclusions are provided towards the end.

2. Artificial Neural Network Learning Algorithms
The artificial neural network (ANN) methodology enables us to design useful nonlinear systems accepting large
numbers of inputs, with the design based solely on instances of input-output relationships. For a training set T
consisting of n argument value pairs and given a d-dimensional argument x and an associated target value t will be
approximated by the neural network output. The function approximation could be represented as

}n:1i:)it,ix{(T ==

 2

In most applications the training set T is considered to be noisy and our goal is not to reproduce it exactly but rather to
construct a network function that generalizes well to new function values. We will try to address the problem of
selecting the weights to learn the training set. The notion of closeness on the training set T is typically formalized
through an error function of the form

2n

1i
itiyT �

=
−=ψ (1)

where yi is the network output. Our target is to find a neural network � such that the output yi = � (xi, w) is close to the
desired output ti for the input xi (w = strengths of synaptic connections). The error �T = �T (w) is a function of w
because y = � depends upon the parameters w defining the selected network �. The objective function �T (w) for a
neural network with many parameters defines a highly irregular surface with many local minima, large regions of little
slope and symmetries. The common node functions (tanh, sigmoidal, logistic etc) are differentiable to arbitrary order
through the chain rule of differentiation, which implies that the error is also differentiable to arbitrary order. Hence we
are able to make a Taylor's series expansion in w for �T [30]. We shall first discuss the algorithms for minimizing �T by
assuming that we can truncate a Taylor's series expansion about a point wo that is possibly a local minimum. The
gradient (first partial derivative) vector is represented by

w
i

T
wT w

)w(g �
�

�
�
�

�

∂
∂

=∇=
ψψ (2)

The gradient vector points in the direction of steepest increase of �T and its negative points in the direction of steepest
decrease. The second partial derivative also known as Hessian matrix is represented by H

ji

T
2

T
2

ij ww
)w(

)w()w(H)w(H
∂∂

∂
=∇==

ψψ (3)

The Taylor's series for �T, assumed twice continuously differentiable about w0, can now be given as

)ww(O

)ww)(w(H)ww(
2
1

)ww()w(g)w()w(

20

00T0T0T00
TT

−+

−−+−+= ψψ
 (4)

where O (�) denotes a term that is of zero-order in small � such that 0
)(O

lim
0

=
→ δ

δ
δ

.

If for example there is continuous derivative at w0, then the remainder term is of order
30ww − and we can

reduce (4) to the following quadratic model

)ww)(w(H)ww(
2
1

)ww()w(g)w()w(m 00T00T00
T −−+−+= ψ (5)

Taking the gradient in the quadratic model of (5) yields

)ww(H)w(gm 00 −+=∇ (6)

If we set the gradient g=0 and solving for the minimizing w* yields

gHww 10* −−= (7)

The model m can now be expressed in terms of minimum value of w* as

)ww)(w(H)ww(
2
1

)w(m)w(m

)w(gH)w(g
2
1

)w(m)w(m

T

01T00

∗∗∗∗

−∗

−−+=

+=
 (8)

 3

a result that follows from (5) by completing the square or recognizing that g(w*)=0. Hence starting from any initial
value of the weight vector, we can in the quadratic case move one step to the minimizing value when it exists. This is
known as Newton's approach and can be used in the non-quadratic case where H is the Hessian and is positive definite.
2.1 Multiple Minima Problem in Neural Networks
A long recognized bane of analysis of the error surface and the performance of training algorithms is the presence of
multiple stationary points, including multiple minima. Analysis of the behavior of training algorithms generally use the
Taylor's series expansions discussed earlier, typically with the expansion about a local minimum w0 However, the
multiplicity of minima confuse the analysis because we need to be assured that we are converging to the same local
minimum as used in the expansion. How likely are we to encounter a sizable number of local minima? Empirical
experience with training algorithm shows that different initialization yield different resulting networks. Hence the issue
of many minima is a real one. According to Auer et al [8], a single node network with n training pairs and Rd inputs

could end up having d)
d
n

(local minima. Hence not only multiple minima exist, but there may be huge numbers of

them.

Different learning algorithms have their staunch proponents, who can always construct instances in which their
algorithm perform better than most others. In practice, there are four types of optimization algorithms that are used to
minimize �T (w). The first three methods gradient descent, conjugate gradients and quasi-Newton are general
optimization methods whose operation can be understood in the context of minimization of a quadratic error function.
Although the error surface is surely not quadratic, for differentiable node functions it will be so in a sufficiently small
neighborhood of a local minimum, and such an analysis provides information about the behavior of the training
algorithm over the span of a few iterations and also as it approaches its goal. The fourth method of Levenberg and
Marquardt is specifically adapted to minimization of an error function that arises from a squared error criterion of the
form we are assuming. Backpropagation calculation of gradient can be adapted easily to provide the information about
the Jacobian matrix J needed for this method. A common feature of these training algorithms is the requirement of
repeated efficient calculation of gradients.

2.1.1 Backpropagation Algorithm

Backpropagation provides an effective method for evaluating the gradient vector needed to implement the steepest
descent, conjugate gradient, and quasi-Newton algorithms. BP differs from straightforward gradient calculations using
the chain rule for differentiation in the way it organizes efficiently the gradient calculation for networks having more
than one hidden layer [68]. BP iteratively selects a sequence of parameter vectors {wk, k =1:T} for a moderate value of
running time T, with the goal of having {�T (wk) = � (k)} converge to a small neighborhood of a good local minimum
rather than the usually inaccessible global minimum [30].

)w(min TWw
*
T ψψ ∈= (9)

The simplest steepest descent algorithm uses the following weight update in the direction of dk=-gk with a learning rate
or step size �k.

kkk1k gww α−=+ (10)
A good choice �k

* for the learning rate �k for a given choice of descent direction dk is the one that minimizes �(k+1).

)dw(minarg kk
*
k αψα α += (11)

To carry out the minimization we use

0*
k

)kdkw(
*
k

)1kw(
=

=∂

+∂
=

=∂
+∂

ααα
αψ

ααα
ψ

 (12)

To evaluate this equation, note that

k
T

1k
)kk

dg
dw(

+=
∂

+∂

α
αψ

 (13)

and conclude that for optimal learning rate we must satisfy the orthogonality condition

0kdT
1kg =+ (14)

 4

When the error function is not specified analytically, then its minimization along dk can be accomplished through a
numerical line search for �k or through numerical differentiation as noted herein. The line search avoids the problem of
setting a fixed step size. Analysis of such algorithms often examine their behavior when the error function is truly a
quadratic as given in (5) and (6). In the current notation,

kkk1k Hdgg α=−+ (15)

Hence the optimality condition for the learning rate �k derived from the orthogonality condition (14) becomes

k
T
k

k
T
k*

k
Hdd

gd−
=α (16)

When search directions are chosen via dk = -Mkgk, with Mk symmetric, then the optimal learning rate is

kkk
T
k

kk
T
k*

k
gHMMg

gMg−
=α (17)

In the case of steepest descent for a quadratic error function, Mk is the identity and

k
T
k

k
T
k*

k
Hgg

gg−
=α (18)

One can think of �k
* as the reciprocal of an expected value of the eigen values {�i} of the Hessian with probabilities

determined by the squares of the coefficients of the gradient vector gk expanded in terms of the eigen vectors {ei} of the
Hessian.

�
=

==
p

i k
T
k

i
T
k

iii
k gg

eg
qq

1

2

*

)(
,

1 λ
α

 (19)

The algorithm, even in the context of a truly quadratic error surface and with line search, suffers from greed. The
successive directions do not generally support each other in that after two steps; say, the gradient is usually no longer
orthogonal to the direction taken in the first step. In the quadratic case there exists a choice of learning rates that will
drive the error to its absolute minimum in no more than p+1 steps where p is the number of parameters [30]. To see
this, note that

gHg)w()ww(H)ww(
2
1

)w()w(1T
2
1**T** −+=−−+= ψψψ (20)

It is easily verified that if gk = g(wk) then

0

k

1
jk g)HI(g �

�

�
�
�

� −= ∏ α (21)

Hence for k � p, we can achieve gk = 0 simply by choosing �1,….�p any permutation of 1/�1 … 1/�p, the reciprocals of
the eigen values of the Hessian H; the resulting product of matrices is a matrix that annihilates each of the p eigen
vectors and therefore any other vector that can be represented as their weighted sum. Of course, in practice, we do not
know the eigen values and cannot implement this algorithm. However, this observation points out the distinction
between optimality when one looks ahead only one step and optimality when one adopts a more distant horizon.
Traditionally the step size is held at a constant value �k = �. The simplicity of this approach is belied by the need to
carefully select the learning rate. If the fixed step size is too large, then we leave ourselves open to overshooting the
line search minimum, we may engage in oscillatory or divergent behavior, and we loose guarantees of monotone
reduction of the error function �T If the step size is too small, then we may need a very large number of iterations T
before we achieve a sufficiently small value of the error function. A variation on the constant learning rate is to adopt a
deterministic learning rate schedule that varies the learning rate dependant on the iteration number.

An ad hoc departure from steepest descent is to add memory to the recursion through momentum term. Now the change
in parameter vector w depends not only on the current gradient but also on the most recent change in parameter vector,

kkkk1k1k gww α∆β∆ −=−= ++ for k � 0 (22)

 5

what we gain is a high frequency smoothing effect through the momentum term. The change in parameter vector
depends not only on the current gradient gk-1 but also, in an exponentially decaying fashion (provided that 0 � � < 1), on
all previous gradients. If the succession of recent gradients has tended to alternate directions, then the sum will be
relatively small and we will make only small changes in the parameter vector. This could occur if we are in the vicinity
of a local minimum, successive changes would just serve to bounce us back and forth past the minimum. If, however,
recent gradients tends to align, then we will make an even larger change in the parameter vector and thereby move
more rapidly across a large region of descent and possibly across over a small region of ascent that screened off a
deeper local minimum. Of course, if the learning rate � is well chosen, then successive gradients will tend to be
orthogonal and a weighted sum will not cancel itself out.

2.1.2 Conjugate Gradient Algorithm

The motivation behind the conjugate gradient algorithm is that we wish to iteratively select search directions (dk) that
are non-interfering in the sense that successive minimizations along these directions do not undo the progress made by
previous minimizations. The search direction is selected in such a way that at each iteratively selected parameter value
wk, the current gradient gk is orthogonal to all previous search directions d1,….dk-1. Hence, at any given step in the
iteration, the error surface has a direction of steepest descent that is orthogonal to the linear subspace of parameters
spanned by the prior search directions. Steepest descent merely assured us that the current gradient is orthogonal to the
last search direction. If the error function {�T (wk)} is quadratic with positive definite Hessian H, choosing the search
directions (di) to be H-conjugate and the �i to satisfy (16) is equivalent to the orthogonality between the current gradient
and the past search directions given by

0kgT
id)pki(=<<∀ (23)

it is easily verified that conjugate directions (di) also form a linearly independent set of directions in weight space [30].
If weight space has dimension p then of course there can be only p linearly independent directions of vectors. Hence, it
is possible to represent any point as a linear combination of no more than p of the conjugate directions, and in particular
if w* is the sought location of the minimum of the error function, then there exist coefficients such that

�
−

=

=−
1

0

*
0*

p

i
ii dww α (24)

Thus if the error surface is quadratic with a positive definite Hessian, then selecting H-conjugate search directions and
learning rates according to (16) guarantees a minimum in no more than p iterations. To be able to apply the method of
conjugate gradients we must be able to determine such a set of directions and then solve for the correct coefficients.
Conventional conjugate gradient algorithms use a line search to find the minimizing step and are initialized as follows

d0 = g0 (25)

introducing a scaling �k to be determined, and then iterate with the simple recursion

kk1k1k dgd β+++ −= (26)

According to the conjugacy condition in (23) and the recursion of (26) yield

)dg(Hd0Hdd kk1k
T
k1k

T
k β+++ −== (27)

Solving yields the necessary condition that

k
T
k

1k
T
k

k
Hdd

Hgd +=β (28)

Induction can be established that this recursive definition of conjugate gradient search directions does indeed yield a
fully conjugate set when the error function is quadratic, although the derivation of (28) only established that dk and dk+1

are conjugate. A version of the conjugate gradient algorithm that does not require line searches was developed by

Moller [61] and uses the finite difference method for estimating Hdk. To monitor the sign of the product k
T
k Hdd ,

define � by

k
T
k Hdd=δ (29)

Moller introduces two new variables, λ and λ , to define an altered value of �, δ . These variables are charged with
ensuring that δ > 0. Although this does not affect the error surface, and the Hessian with the quadratic approximation

 6

will still suggest there is a maximum along the search direction, the method produces a step size that shows good
results in practice. δ is defined as follows

k
T
k dd)(λλδδ −+= (30)

The requirement for δ > 0 gives a condition for λ

k
T
k dd

δλλ −� (31)

Moller then sets)
dd

(2
k

T
k

δλλ −= to satisfy (2.31) and so ensures δ > 0. Substituting this in (2.30)

k
T
k ddλδδ +−= (32)

In order to get a good quadratic approximation of the error surface, a mechanism to raise or lower λ is needed when
the Hessian is positive definite. Detailed step-by-step description can be found in [61].

2.1.3 Quasi - Newton Algorithm

If the error surface is purely quadratic, as per (7) we can solve the minimizing weight vector in a single step through
Newton's method. This solution requires knowledge of the Hessian and assumes it to be constant and positive definite.
We need a solution method that can take into account the variation of H(w) with w, knowing the fact that the error
function is at best only approximately quadratic and removal from a local minimum the approximating quadratic
surface is likely to have a Hessian that is not positive definite and the evaluation of true Hessian is computationally too
expensive.

The quasi- Newton method addresses themselves to these tasks by first generalizing the iterative algorithm to the form

kkkk1k gMww α−=+ (33)

The choice of step size �k to use with a search direction kkk gMd = is determined by an approximate line search,

and use of line search is essential to the success of this method. The quasi-Newton method iteratively tracks the inverse

of the Hessian without ever computing it directly. Let k1kk ggq −= + , and consider the expansion for the

gradient (quadratic case)

kkk1kkk pH)ww(Hq =−= + (34)

If we can evaluate the difference of gradients for p linearly independent increments p0,…pp-1 in the weight vectors, then
we can solve for the Hessian (assumed constant). To do so, form the matrices P with ith column the vector pi-1 and Q
with ith column the vector qi-1. Then we have the matrix equation

Q = H P (35)

which can be solved for the Hessian, when the columns of P are linearly independent, through

H = Q P-1 (36)

Thus from the increments in the gradient induced by the increments in the weight vectors as training proceeds, we have
some hope of being able to track the Hessian. An approximation to the inverse M of the Hessian is achieved by
interchanging qk

 and pk in an approximation to the Hessian itself

M = P Q-1 (37)

Hence the information is available in the sequence of gradients that determine the qk, and the sequence of search
directions and learning rates that determine the pk, to infer to the inverse of the Hessian, particularly if it is only slowly
varying.

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi – Newton algorithm [25] implements the update for the
approximate inverse M of the Hessian by

 7

k
T
k

T
kkkk

T
kk

T
kk

T
kk

k
T
k

kk
T
k

k1k
pq

pqMMqp

pp

pp
)

pq

qMq
1(MM

+
−++=+ (38)

This recursion is initialized by starting with a positive definite matrix such as the identity, M0 = I. The Determination of
the learning rates is critical, as was the case for the method of conjugate directions. Quasi-Newton methods enjoy
asymptotically more rapid convergence than that of steepest descent or conjugate gradient methods.

2.1.4 Levenberg-Marquardt algorithm

The Levenberg-Marquardt (LM) algorithm [25] exploits the fact that the error function is a sum of squares as given in
(1). Introduce the following notation for the error vector and its Jacobian with respect to the network parameters w

n:1j,p:1i,
w

e
JJ

i

j
ij ==

∂

∂
== (39)

The Jacobian matrix is a large p × n matrix, all of whose elements are calculated directly by backpropagation
technique as presented in Section 2.1.1. The p dimensional gradient g for the quadratic error function can be expressed
as

�
=

=∇=
n

1i
ii Je)w(ee)w(g

and the Hessian matrix by

��
=

�
�
�

	

�
�
�

�

∂∂

∂∂
+

∂∂

∂

=
= ∂∂

∂
=

∂∂

∂
==

n

1k
jwiw

keke

jwiw
ke2

ken

1k jwiw

2
ke2

2
1

jwiw
T

2

ijHH
ψ

�
=

�
�
�

	

�
�
�

�

+
∂∂

∂

=
n

1k

jkJikJ
jwiw

ke2

ke
 (40)

Hence defining i

n

1i

2
i eeD �

=
∇= yields the expression

H (w) = JJT + D (41)

The key to the LM algorithm is to approximate this expression for the Hessian by replacing the matrix D involving
second derivatives by the much simpler positively scaled unit matrix I∈ . The LM is a descent algorithm using this
approximation in the form

[])w(gMww,IJJM kkkk1k
1T

k α−=∈+= +
−

 (42)

Successful use of LM requires approximate line search to determine the rate �k. The matrix JJT is automatically
symmetric and non-negative definite. The typically large size of J may necessitate careful memory management in
evaluating the product JJT. Hence any positive ∈ will ensure that Mk is positive definite, as required by the descent
condition. The performance of the algorithm thus depends on the choice of ∈.

When the scalar ∈ is zero, this is just Newton's method, using the approximate Hessian matrix. When ∈ is large, this
becomes gradient descent with a small step size. As Newton's method is more accurate, ∈ is decreased after each
successful step (reduction in performance function) and is increased only when a tentative step would increase the
performance function. By doing this, the performance function will always be reduced at each iteration of the algorithm
[12].

2.2. Designing Artificial Neural Networks
The error surface of very small networks has been characterized previously. However, practical networks often contain
hundreds of weights and in general, theoretical and empirical results on small networks do not scale up to large

 8

networks. To investigate the empirical performance with the different learning algorithms on different architectures and
node transfer functions, we have choosen 3 famous chaotic time series benchmarks so that a) we know the best
solution, b) can carefully control various parameters and c) know the effect of the different learning algorithms namely
backpropagation (BP), scaled conjugate gradient (SCG), quasi-Newton algorithm (QNA) and Levenberg Marquardt
algorithm (LM).

We also report some experimentation results related to convergence speed and generalization performance of the four
different neural network-learning algorithms discussed in Section 2.1. Performances of the different learning algorithms
were evaluated when the activation functions and architectures were changed.

We used a feedforward neural network with 1 hidden layer and the numbers of hidden neurons were varied
(14,16,18,20,24) and the speed of convergence and generalization error for each of the four learning algorithms was
observed. The effect of node activation functions, log-sigmoidal activation function (LSAF) and tanh-sigmoidal
activation function (TSAF), keeping 24 hidden neurons for the four learning algorithms was also studied.
Computational complexities of the different learning algorithms were also noted during each event. The experiments
were replicated 3 times each with a different starting condition (random weights) and the worst errors were reported.
No stopping criterion, and no method of controlling generalization is used other than the maximum number of updates
(epochs). All networks were trained for an identical number of stochastic updates (2500 epochs).We used the following
three chaotic time series:

a) Waste Water Flow Prediction

The problem is to predict the wastewater flow into a sewage plant [46]. The water flow was measured every hour. It is
important to be able to predict the volume of flow f(t+1) as the collecting tank has a limited capacity and a sudden
increase in flow will cause to overflow excess water. The water flow prediction is to assist an adaptive online
controller. The data set is represented as [f(t), f(t-1), a(t), b(t), f(t+1)] where f(t), f(t-1) and f(t+1) are the water flows at
time t,t-1, and t+1 (hours) respectively. a(t) and b(t) are the moving averages for 12 hours and 24 hours. The time
series consists of 475 data points. The first 240 data sets were used for training and remaining data for testing.

b) Mackey-Glass Chaotic Time Series

The Mackey-Glass differential equation [53] is a chaotic time series for some values of the parameters x(0) and 	.

.x(t)0.1
�)(tx1

�)0.2x(t
dt

dx(t)
10

−
−+

−= (43)

We used the value x(t-18), x(t-12), x(t-6), x(t) to predict x(t+6). Fourth order Runge-Kutta method was used to generate
1000 data series. The time step used in the method is 0.1 and initial condition were x(0)=1.2, 	=17, x(t)=0 for t<0. First
500 data sets were used for training and remaining data for testing.

c) Gas Furnace Time Series Data
This time series was used to predict the CO2 (carbon dioxide) concentration y (t+1) [17]. In a gas furnace system, air
and methane are combined to form a mixture of gases containing CO2. Air fed into the gas furnace is kept constant,
while the methane feed rate u(t) can be varied in any desired manner. After that, the resulting CO2 concentration y(t) is
measured in the exhaust gases at the outlet of the furnace. Data is represented as [u(t), y(t), y(t+1)]. The time series
consists of 292 pairs of observation and 50% of data was used for training and remaining for testing.

2.2.1 Simulation Results Using ANNs
Results for four different learning algorithms for different architectures, node transfer functions for the three different
time series are presented in the following sections.

2.2.1.1 Network Architecture
This section investigates the training and generalization behavior of the networks when the architecture of the neural
network was changed. The same architecture was used for the three different time series for the four learning
algorithms using same node transfer function. Tables 1–3 summarize the empirical results of training and
generalization.

 9

Table 1. Training and test performance for Mackey Glass Series for different architectures

Mackey Glass Time Series
Root Mean Squared Error

Learning algorithm

Hidden Neurons Training data Test data
14 0.0890 0.0880
16 0.0824 0.0860
18 0.0764 0.0750
20 0.0452 0.0442

BP

24 0.0439 0.0437
14 0.0040 0.0051
16 0.0053 0.0052
18 0.0066 0.0067
20 0.0058 0.0058

SCG

24 0.0045 0.0045
14 0.0041 0.0040
16 0.0031 0.0030
18 0.0035 0.0036
20 0.0038 0.0038

QNA

24 0.0034 0.0036
14 0.0016 0.0016
16 0.0015 0.0015
18 0.0015 0.0015
20 0.0010 0.0011

LM

24 0.0009 0.0009

Table.2. Training and test performance for gas furnace time series for different architectures

Gas Furnace Time Series

Root Mean Squared Error
Learning algorithm

Hidden Neurons

Training data Test data
14 0.0670 0.1291
16 0.0835 0.1056
18 0.0716 0.0766
20 0.0800 0.0950

BP

24 0.0663 0.0970
14 0.0160 0.0331
16 0.0157 0.0330
18 0.0165 0.0330
20 0.0158 0.0361

SCG

24 0.0153 0.0367
14 0.0137 0.0529
16 0.0133 0.0465
18 0.0133 0.0376
20 0.0136 0.0410

QNA

24 0.0128 0.0516
14 0.0118 0.0450
16 0.0140 0.0971
18 0.0116 0.1080
20 0.0100 0.1880

LM

24 0.0100 0.1856

 10

2.2.1.2 Node transfer functions

This section investigates the effect of different node transfer functions on training and generalization performance for
the four learning algorithms. To compare empirically we maintained the same architecture and only changing he node
transfer functions and learning algorithms. All the networks were randomly initialized and trained for 2500 epochs.
Tables 4 – 6 summarizes the empirical results of training and generalization for the two node transfer functions, tanh-
sigmoidal activation function (TSAF) and log-sigmoidal activation function (LSAF), when the architecture was fixed
with 24 hidden neurons.

Table 3. Training and test performance for wastewater flow series for different architectures

Wastewater Time Series
Root Mean Squared Error Learning algorithm Hidden Neurons Training data Test data

14 0.1269 0.1340
16 0.1184 0.1360
18 0.1182 0.1350
20 0.1221 0.1370

BP

24 0.1169 0.1412
14 0.0459 0.0900
16 0.0428 0.1130
18 0.0425 0.1130
20 0.0423 0.1626

SCG

24 0.0400 0.0920
14 0.0423 0.1271
16 0.0367 0.1369
18 0.0363 0.1360
20 0.0339 0.1450

QNA

24 0.0316 0.2620
14 0.0364 0.0950
16 0.0303 0.1631
18 0.0314 0.1800
20 0.0259 0.1314

LM

24 0.0244 0.1560

Table.4. Mackey Glass time series: Training and generalization performance for different activation functions

Root Mean Squared Error

Time series Learning algorithm Activation function
Training Test

TSAF 0.0439 0.0437
BP

LSAF 0.0970 0.0950

TSAF 0.0045 0.0045
SCG

LSAF 0.0076 0.0074

TSAF 0.0033 0.0034
QNA

LSAF 0.0029 0.0029

TSAF 0.0009 0.0009

Mackey
Glass

LM
LSAF 0.0009 0.0010

 11

2.2.1.3 Computational Complexity of Learning algorithms

This section investigates the computational complexity of the different learning algorithms when the architecture of the
hidden layer is varied using tanh-sigmoidal activation function. The networks were randomly initialized and trained for
2500 epochs using the different learning algorithms. Table 7 summarizes the empirical values of the computational load
for the different learning methods for the three different time series.

Table 5. Gas furnace series: Training and generalization performance for different activation functions

Root Mean Squared Error

Time series Learning algorithm Activation function
Training Test

TSAF 0.0663 0.0970
BP

LSAF 0.0940 0.1025

TSAF 0.0153 0.0367
SCG

LSAF 0.0162 0.0367

TSAF 0.0128 0.0516
QNA

LSAF 0.0137 0.0420

TSAF 0.0100 0.1856

Gas furnace

LM
LSAF 0.0089 0.1009

Table 6. Waste water time series: Training and generalization performance for different activation functions

Root Mean Squared Error

Time series Learning algorithm Activation function
Training Test

TSAF 0.1169 0.1412
BP

LSAF 0.0156 0.1600

TSAF 0.0400 0.0920
SCG

LSAF 0.0420 0.0820

TSAF 0.0316 0.4600
QNA

LSAF 0.0256 0.2110

TSAF 0.0244 0.1560

Wastewater

LM LSAF 0.2160 0.1770

 12

Table 7. Approximate computational load for the different time series using the different training algorithms

Computational Load (billion flops)
Learning algorithm Hidden Neurons

Mackey
Glass Gas Furnace Waste water

14 0.625 0.142 0.301

16 0.713 0.305 0.645

18 0.800 0.488 0.880

20 0.888 0.690 1.460

BP

24 1.064 0.932 1.970

14 1.256 0.286 0.604

16 1.429 0.326 0.689

18 1.605 0.366 0.774

20 1.781 0.406 0.859

SCG

24 2.133 0.486 1.029

14 2.570 0.679 1.910

16 3.319 0.8899 2.582

18 4.221 0.9000 3.388

20 5.313 1.131 4.384

QNA

24 7.989 2.193 6.925

14 29.40 3.930 12.46

16 57.51 8.355 27.72

18 93.29 14.03 93.79

20 137.83 21.10 118.53

LM

24 203.10 31.83 175.22

2.3. Discussion of Results Obtained

In this Section we would like to evaluate and summarize the results of the various experimentations mentioned in
Section 2.2.1. For Mackey Glass series (Table 1) all the 4 learning algorithms tend to generalize well as the hidden
neurons were increased. However the generalization was better when the hidden neurons were using TSAF. LM
showed the fastest convergence regardless of architecture and node activation function. However, the computational
complexity of LM algorithm is very amazing as depicted in Table 7. For Mackey glass series (with 14 hidden neurons),
when BP was using 0.625 billion flops, LM technique required 29.4 billion flops. When the hidden neurons were
increased to 24, BP used 1.064 billion flops and LM's share jumped to 203.10 billion flops. LM gave the lowest
generalization RMSE of 0.0009 with 24 hidden neurons.

As shown in Table 2, for gas furnace series the generalization performance were entirely different for the different
learning algorithms. BP gave the best generalization RMSE of 0.0766 with 18 hidden neurons. RMSE for SCG, QNA
and LM were 0.0330 (16 neurons), 0.0376 (18 neurons) and 0.045 (14 neurons) respectively. As depicted in Figures 9
and 10 the node transfer function also has an effect on the training speed and generalization performance. LM
algorithm converged much faster and gave a better generalization performance when the node transfer function was
changed to LSAF (Refer to Figure 10(b)).

Waste water prediction series also showed a different generalization performance when the architecture was changed
for the different learning algorithms (Refer to Table 3). BP's best generalization RMSE was 0.135 with 18 hidden
neurons using TSAF and that of SCG, QNA and LM were 0.0900, 0.1271 and 0.095 with 14 neurons each respectively.

 13

LM algorithm converged much faster and gave a better generalization performance when the node transfer function
was changed to LSAF (Refer to Figure 12(b)).

In spite of computational complexity, LM performed well for Mackey Glass series. For gas furnace and waste water
prediction SCG algorithm performed better. However the speed of convergence of LM in all the three cases is worth
noting. This leads us to the following questions:

• What is the optimal architecture (number of neurons and hidden layers) for a given problem?
• What node transfer function(s) should one choose?
• What is the optimal learning algorithm and its parameters?

From the above discussion it is clear that the selection of the topology of a network and the best learning algorithm and
its parameters is a tedious task for designing an optimal artificial neural network, which is smaller, faster and with a
better generalization performance. Evolutionary algorithm is an adaptive search technique based on the principles and
mechanisms of natural selection and survival of the fittest from natural evolution [31]. The interest in evolutionary
search procedures for designing neural network topology has been growing in recent years as they can evolve towards
the optimal architecture without outside interference, thus eliminating the tedious trial and error work of manually
finding an optimal network.

3. Evolutionary Algorithms (EA)
EAs are population based adaptive methods, which may be used to solve optimization problems, based on the genetic
processes of biological organisms [31] [32]. Over many generations, natural populations evolve according to the
principles of natural selection and "Survival of the Fittest", first clearly stated by Charles Darwin in "On the Origin of
Species". By mimicking this process, EAs are able to "evolve" solutions to real world problems, if they have been
suitably encoded. The procedure may be written as the difference equation [31]:

]))t[x(v(s]1t[x =+ (44)

where x (t) is the population at time t, v is a random operator, and s is the selection operator.

3.2 Evolutionary Artificial Neural Networks (EANN)
Many of the conventional ANNs now being designed are statistically quite accurate but they still leave a bad taste with
users who expect computers to solve their problems accurately. The important drawback is that the designer has to
specify the number of neurons, their distribution over several layers and interconnection between them. Several
methods have been proposed to automatically construct ANNs for reduction in network complexity that is to determine
the appropriate number of hidden units, layers, etc. Topological optimization algorithms such as Extentron [9], Upstart
[35], Pruning [63] [75] and Cascade Correlation [29] etc. got its own limitations.

The interest in evolutionary search procedures for designing ANN architecture has been growing in recent years as they
can evolve towards the optimal architecture without outside interference, thus eliminating the tedious trial and error
work of manually finding an optimal network [2] [6] [7] [14] [18] [19] [20] [21] [37] [50] [60] [69] [70] [77] [81] [83]
[84] [85]. The advantage of the automatic design over the manual design becomes clearer as the complexity of ANN
increases. EANNs provide a general framework for investigating various aspects of simulated evolution and learning
[10] [14] [15] [50] [52].

3.2.1 General Framework for EANNs
In EANN's evolution can be introduced at various levels. At the lowest level, evolution can be introduced into weight
training, where ANN weights are evolved. At the next higher level, evolution can be introduced into neural network
architecture adaptation, where the architecture (number of hidden layers, no of hidden neurons and node transfer
functions) is evolved. At the highest level, evolution can be introduced into the learning mechanism. A general
framework of EANNs which includes the above three levels of evolution is given in Figure 1 [2] [6].

 14

Evolutionary Search of learning rules

Evolutionary search of architectures and node transfer functions

Evolutionary search of connection weights

 Slow

Fast

Figure 1. A General Framework for EANNs

From the point of view of engineering, the decision on the level of evolution depends on what kind of prior knowledge
is available. If there is more prior knowledge about EANN's architectures than that about their learning rules or a
particular class of architectures is pursued, it is better to implement the evolution of architectures at the highest level
because such knowledge can be used to reduce the search space and the lower level evolution of learning rules can be
more biased towards this kind of architectures. On the other hand, the evolution of learning rules should be at the
highest level if there is more prior knowledge about them available or there is a special interest in certain type of
learning rules.

3.2.1.1 Evolutionary Search of Connection weights
The shortcomings of the BP algorithm mentioned in Section 2.1 could be overcome if the training process is formulated
as a global search of connection weights towards an optimal set defined by the evolutionary algorithm.. Optimal
connection weights can be formulated as a global search problem wherein the architecture of the neural network is pre-
defined and fixed during the evolution. Connection weights may be represented as binary strings represented by a
certain length. The whole network is encoded by concatenation of all the connection weights of the network in the
chromosome. A heuristic concerning the order of the concatenation is to put connection weights to the same node
together. Figure 2 illustrates the binary representation of connection weights wherein each weight is represented by 4
bits.

1

5

2

3

4

Input

Output

4

8

7

3

1

5

Genotype: 0100 1000 0111 0011 0001 0101
Figure 2. Connection weight chromosome encoding using binary representation

Real numbers have been proposed to represent connection weights directly [66]. A representation of the ANN could be
(2.0, 6.0, 5.0, 1.0, 4.0, 10.0). However proper genetic operators are to be chosen depending upon the representation
used.

Evolutionary Search of connection weights can be formulated as follows:

1) Generate an initial population of N weight chromosomes. Evaluate the fitness of each EANN depending on the
problem.

2) Depending on the fitness and using suitable selection methods reproduce a number of children for each
individual in the current generation.

3) Apply genetic operators to each child individual generated above and obtain the next generation.

4) Check whether the network has achieved the required error rate or the specified number of generations has
been reached. Go to Step 2.

5) End

While gradient based techniques are very much dependant on the initial setting of weights, the proposed algorithm can
be considered generally much less sensitive to initial conditions. When compared to any gradient descent or second

 15

order optimization technique that can only find local optimum in a neighborhood of the initial solution, evolutionary
algorithms always try to search for a global optimal solution. Performance by using the above approach will directly
depend on the problem.

3.2.1.2 Evolutionary Search of Architectures

Evolutionary architecture adaptation can be achieved by constructive and destructive algorithms. Constructive
algorithms, which add complexity to the network starting from a very simple architecture until the entire network is
able to learn the task [35] [56] [59]. Destructive algorithms start with large architectures and remove nodes and
interconnections until the ANN is no longer able to perform its task [63] [75]. Then the last removal is undone. Figure
3 demonstrates how typical neural network architecture could be directly encoded and how the genotype is represented.
For an optimal network, the required node transfer function (Gaussian, sigmoidal, etc.) can be formulated as a global
search problem, which is evolved simultaneously with the search for architectures [51].

To minimize the size of the genotype string and improve scalability, when priori knowledge of the architecture is
known it will be efficient to use some indirect coding (high level) schemes. For example, if two neighboring layers are
fully connected then the architecture can be coded by simply using the number of layers and nodes. The blueprint
representation is a popular indirect coding scheme where it assumes architecture consists of various segments or areas.
Each segment or area will define a set of neurons, their spatial arrangement and their efferent connectivity. Several high
level coding schemes like graph generation system [49], Symbiotic Adaptive Neuro-Evolution (SANE) [62] [65],
marker based genetic coding [36], L-systems [13], cellular encoding [38], fractal representation [58] etc are some of the
rugged techniques.

1

5

34

2

From
To 1 2 3 4 5 Bias Gene

1 0 0 0 0 0 0 000000
2 0 0 0 0 0 0 000000
3 1 1 0 0 0 1 110001
4 1 1 0 0 0 1 110001

5 0 0 1 1 0 1 001101

Genotype: 000000 000000 110001 110001 001101

Input

Output

Figure 3. Architecture chromosome using binary coding

Global search of transfer function and the connectivity of the ANN using evolutionary algorithms can be formulated as

follows

1) The evolution of architectures has to be implemented such that the evolution of weight chromosomes are

evolved at a faster rate i.e. for every architecture chromosome, there will be several weight chromosomes

evolving at a faster time scale

2) Generate an initial population of N architecture chromosomes. Evaluate the fitness of each EANN depending on

the problem.

3) Depending on the fitness and using suitable selection methods reproduce a number of children for each

individual in the current generation.

4) Apply genetic operators to each child individual generated above and obtain the next generation.

5) Check whether the network has achieved the required error rate or the specified number of generations has

been reached. Go to Step 3.

6) End

 16

3.2.1.3 Evolutionary Search of Learning Rules

For the neural network to be fully optimal the learning rules are to be adapted dynamically according to its architecture
and the given problem. Deciding the learning rate and momentum can be considered as the first attempt of learning
rules [48]. The basic learning rule can be generalized by the function

∏��
=

−
==

=
k

1j
))1t(ijxki,..,2i,1i(

n

1ki,...,2i,1i

n

1k
)t(w θ∆ (45)

Where t is the time,
w is the weight change, x1, x2,….. xn are local variables and the θ’s are the real values coefficients
which will be determined by the global search algorithm. In the above equation different values of θ’s determine
different learning rules. The above equation is arrived based on the assumption that the same rule is applicable at every
node of the network and the weight updating is only dependent on the input/output activations and the connection
weights on a particular node. Genotypes (θ’s) can be encoded as real-valued coefficients and the global search for
learning rules using the hybrid algorithm can be formulated as follows:

1. The evolution of learning rules has to be implemented such that the evolution of architecture chromosomes are

evolved at a faster rate i.e. for every learning rule chromosome, there will be several architecture chromosomes

evolving at a faster time scale

2. Generate an initial population of N learning rules. Evaluate the fitness of each EANN depending on the problem.

3. Depending on the fitness and using suitable selection methods reproduce a number of children for each individual

in the current generation.

4. Apply genetic operators to each child individual generated above and obtain the next generation.

5. Check whether the network has achieved the required error rate or the specified number of generations has been

reached. Go to Step 3.

6. End

Several researches have been going on about how to formulate different optimal learning rules [4] [6] [11] [33] [82].
The adaptive adjustment of BP algorithm's parameters, such as the learning rate and momentum, through evolution
could be considered as the first attempt of the evolution of learning rules [40]. Chalmers [23] defined the form of
learning rules as a linear function of four local variables and their six pair wise products [11] [33]. Global optimization
of neural network has been widely addressed using several other techniques [22] [28] [34] [64] [71] [72] [73] [74] [86].
Sexton et al [72] used simulated annealing algorithm for optimization of learning. For optimization of the neural
network learning, in many cases a pre-defined architecture was used and in a few cases architectures were evolved
together. No work has been reported to the best of our knowledge, where the network is fully automated (interaction of
the different evolutionary search mechanisms) using the generic framework mentioned in Section 3.2. Many a times,
the search space is narrowed down by pre-defined architecture, node transfer functions and learning rules.

3.3 Meta Learning Evolutionary Artificial Neural Networks (MLEANN)
Experimental evidence had indicated cases where evolutionary algorithms are inefficient at fine tuning solutions, but
better at finding global basins of attraction [2] [82] [43] [80]. The efficiency of evolutionary training can be improved
significantly by incorporating a local search procedure into the evolution. Evolutionary algorithms are used to first
locate a good region in the space and then a local search procedure is used to find a near optimal solution in this region.
It is interesting to consider finding good initial weights as locating a good region in the space. Defining that the basin
of attraction of a local minimum is composed of all the points, sets of weights in this case, which can converge to the
local minimum through a local search algorithm, then a global minimum can easily be found by the local search
algorithm if the evolutionary algorithm can locate any point, i.e, a set of initial weights, in the basin of attraction of the
global minimum. Referring to Figure 4, G1 and G2 could be considered as the initial weights as located by the
evolutionary search and WA and WB the corresponding final weights fine-tuned by the meta-learning technique.

 17

�
�

��

��

��
�
	

	

�
�

��
�
�

�� �� ������
Figure 4. Fine tuning of weights using meta-learning

Figure 5 illustrates the general interaction mechanism with the learning mechanism of the EANN evolving at the
highest level on the slowest time scale. All the randomly generated architecture of the initial population are trained by
four different learning algorithms (backpropagation-BP, scaled conjugate gradient-SCG, quasi-Newton algorithm-QNA
and Levenberg-Marquardt-LM) and evolved in a parallel environment. Parameters controlling the performance of the
learning algorithm will be adapted (example, learning rate and momentum for BP) according to the problem [2] [6].
Figure 6 depicts the basic algorithm of proposed meta-learning EANN. Architecture of the chromosome is depicted in
Figure 7.

Backpropagation Scaled Conjugate
Gradient Quasi- Newton Levenberg

Marquardt

Evolutionary search of learning algorithms and its parameters

Evolutionary search of architectures and node transfer functions

Evolutionary search of connection weights

Figure 5. Interaction of various evolutionary search mechanisms

Figure 6. Meta-learning algorithm for EANNs

1. Set t=0 and randomly generate an initial population of neural networks with
architectures, node transfer functions and connection weights assigned at
random.

2. In a parallel mode, evaluate fitness of each ANN using BP/SCG/QNA and
LM

3. Based on fitness value, select parents for reproduction

4. Apply mutation to the parents and produce offspring (s) for next generation.
Refill the population back to the defined size.

5. Repeat step 2

6. STOP when the required solution is found or number of iterations has
reached the required limit.

 18

��� ��� ��� ��� ������ ��	 ��
���

��� ��� ��� ��� ��� ��	���

��
��
��

����������������������
�������������������

�������������
����!����!�����

���������������

��
��

Figure 7. Chromosome representation of the proposed MLEANN framework

3.3.1 MLEANN: Experiment Setup
We have applied the proposed meta learning framework to the three-time series prediction problems discussed in
Section 2.2. For performance comparison, we used the same set of training and test data that were used for
experimentations with conventional design of neural networks. For performance evaluation, the parameters used in our
experiments were set to be the same for all the 3 problems. Fitness value is calculated based on the RMSE achieved on
the test set. In this experiment, we have considered the best-evolved neural network as the best individual of the last
generation. As the learning process is evolved separately, user has the option to pick the best neural network (e.g. less
RMSE or less computational expensive etc.) among the four learning algorithms. All the genotypes were represented
using binary coding and the initial populations were randomly generated based on the following parameters shown in
Table 8. The parameter settings, which were evolved for the different learning algorithms, are illustrated in Table 9.
The parameter settings mentioned in Table 8 and 9 were finalized after a few trail and error approaches. We also
investigated the performance of the proposed method with a restriction of architecture (no of hidden neurons). We set a
maximum number of 4 hidden neurons and evaluated the learning performance. The experiments were repeated three
times and the worst RMSE values are reported.

3.3.2 MLEANN: Experimentation Results

Table 10 displays empirical values of RMSE on test data for the three time series problems without architecture
restriction. For comparison purposes, test set RMSE values using conventional design techniques are also presented in
Table 10 (adapted from Table 1,2 and 3). Table 11 illustrates the RMSE values on training/test set data using the meta-
learning technique when the architecture restriction was imposed. Run times for the two different experimentations are
also presented.

Table 8. Parameters used for evolutionary design of artificial neural networks

Population size 40
Maximum no of generations 40
Number of hidden nodes • Experiment 1: 5-16 hidden nodes

• Experiment 2: maximum 4 neurons
Activation functions tanh (T), logistic (L), sigmoidal (S), tanh-

sigmoidal (T*), log-sigmoidal (L*)
Output neuron linear
Training epochs 500
Initialization of weights +/- 0.3
Ranked based selection 0.50
Elitism 5 %
Mutation rate 0.40

 19

Table 9. Parameters settings of the learning algorithms

Learning algorithm Parameter Setting
Learning rate 0.25-0.05 Backpropagation
Momentum 0.25-0.05
Change in weight for second
derivative approximation

0 - 0.0001 Scaled conjugate
gradient algorithm

Regulating the indefiniteness of the
Hessian

0 – 1.0 E-06

Step lengths 1.0E-06 – 100
Limits on step sizes 0.1 – 0.6
Scale factor to determine
performance

0.001 – 0.003

Quasi-Newton
algorithm

Scale factor to determine step size. 0.1 - 0.4
Levenberg Marquardt Learning rate 0.001 – 0.02

Figure 8. Mackey Glass time series: Average test set RSME values during the 40 generations and meta-learning

Figure 9. Gas furnace time series: Average test set RSME values during the 40 generations and meta-learning

 20

Figure 10. Wastewater time series: Average test set RSME values during the 40 generations and meta-learning

Table 10. Performance comparison between MLEANN (without architecture restriction) and ANN

EANN ANN
RMSE Time

series
Learn
Algo.

Training Test Architecture RMSE Architecture

BP 0.0072 0.0077 7 T, 3 L 0.0437 24 T*
SCG 0.0030 0.0031 11 T 0.0045 24 T*
QNA 0.0024 0.0027 6 T, 4 T* 0.0034 24 T*

Mackey

Glass
LM 0.0004 †0.0004 8 T, 2 T* 1 L* 0.0009 24 T*
BP 0.0159 0.0358 8 T 0.0766 18 T*

SCG 0.0110 †0.0210 8 T, 2 T* 0.0330 16 T*
QNA 0.0115 0.0256 7 T, 2 L* 0.0376 18 T*

Gas

Furnace
LM 0.0120 0.0223 6 T, 1 L, 1 T* 0.0451 14 T*
BP 0.0441 0.0547 6 T, 5 T*,1 L 0.1360 16 T*

SCG 0.0457 0.0579 6 T, 4 L* 0.0820 14 T*
QNA 0.0673 0.0823 5 T, 5 TS 0.1276 14 T*

Waste
Water

LM 0.0425 †0.0521 8 T, 1 LS 0.0951 14 T*

Table 11. Performance results and run time comparison of MLEANN

EANN
RMSE Run time in minutes Time

series
Learn
Algo.

Training Test Architecture ++A +B

BP 0.0166 0.0168 4T 1181 288
SCG 0.0062 0.0067 3 T, 1 T* 2066 504
QNA 0.0059 0.0058 3 T*, 1 L 2169 528

Mackey
Glass

LM 0.0056 ††0.0061 2 L*, 2 T* 2463 602
BP 0.0189 0.0371 3 L 305 62

SCG 0.0179 0.0295 1 T*, 2 L 629 121
QNA 0.0156 0.0295 2 T*, 1 L*, 1 L 661 128

Gas
Furnace

LM 0.0181 ††0.0290 1 T, 1 L, 1 T* 696 132
BP 0.0647 0.0639 2T, 2T* 702 146

SCG 0.0580 0.0600 2 T*, 1 T, 1 L 1254 267
QNA 0.0590 0.0596 3 T*, 1L* 1291 279

Waste
Water

LM 0.0567 ††0.0591 2 L, 1 T, 1 T* 1176 294
++ without architecture restriction, + with architecture restriction
† Lowest RMSE error

 21

3.3.3 Comparison with Neuro-Fuzzy Systems
In this section we compare the performance of MLEANN (RMSE values on training and test sets) with two popular
neuro-fuzzy models. The neuro-fuzzy models [1] considered were Dynamic Evolving Fuzzy neural networks
(dmEFuNN) [24] [47] implementing a Mamdani fuzzy inference system [55] and an Adaptive Neuro-Fuzzy Inference
System (ANFIS) [42] implementing a Takagi-Sugeno fuzzy inference system [76]. The same training and test sets of
the three time series were used to compare the performance with the neuro-fuzzy systems. The empirical results are
depicted in Table 12.

Table 12. Performance comparison between MLEANN and Neuro-Fuzzy Systems

RMSE
EANN Mamdani – NF Takagi Sugeno - NF Time

series
Training Test Training Test Training Test

Mackey
Glass 0.0004 0.0004 0.0023 0.0042 0.0019 0.0018

Gas
Furnace 0.0110 0.0210 0.0140 0.0490 0.0137 0.0570

Waste
Water 0.0425 0.0521 0.0019 0.0750 0.0530 0.0810

4. Discussions and Conclusions
Table 10 shows comparative performance between MLEANN and a conventional ANN without any architecture
restriction. For Mackey glass series, using 500 epochs of BP learning, RMSE on test set was reduced by 82% (BP),
31% (SCG), 29% (QNA) and 56% (LM). At the same time, number of hidden neurons got reduced by approximately
58% (BP), 54% (SCG), 58% (QNA) and 55% for LM. LM algorithm gave the best RMSE error on test set (0.0004)
even though it is highly computational expensive as demonstrated in Table 7.

For the gas furnace time series, RMSE on test set was reduced by 53%% (BP), 36% (SCG), 69% (QNA) and 73%
(LM). Savings in hidden neurons amounted to 55% (BP), 37% (SCG), 50% (QNA) and 55% (LM). SCG training gave
the best RMSE value (0.0210) for gas furnace series.

For the wastewater time series, RMSE on test set was reduced by 60% (BP), 29% (SCG), 35% (QNA) and 45% (LM).
Savings in hidden neurons amounted to 25% (BP), 29% (SCG), 29% (QNA) and 36% (LM). LM learning gave the best
RMSE value (0.0521) for wastewater series.

To have an empirical comparison, we deliberately terminated the local search after 500 epochs (regardless of early
stopping in some cases) for all the training algorithms. In some cases the generalization performance could have been
further improved. As depicted in Table 3.4, our experimentations with limited architecture also reveal the efficiency of
MLEANN technique. The gas furnace time series and wastewater series could be learned just with 4 hidden neurons
using LM algorithm. However, for Mackey glass series the results were not that encouraging when compared with the
conventional design using 24 hidden neurons. Perhaps Mackey Glass series requires more hidden neurons to learn the
problem within the required accuracy. Table 12 depicts empirical comparison between two popular neuro-fuzzy
systems. As evident, MLEANN has outperformed both neuro fuzzy models in terms of the lowest RMSE vales on test
set for all the three time series. Selection of the architecture (number of layers, hidden neurons, activation functions and
connection weights) of a network and correct learning algorithm is a tedious task for designing an optimal artificial
neural network. Moreover, for critical applications and hardware implementations optimal design often becomes a
necessity. In this paper, we have formulated and explored; MLEANN: an adaptive computational framework based on
evolutionary computation for automatic design of optimal artificial neural networks. Empirical results are promising
and show the importance and efficacy of the technique.

In MLEANN, our work was mostly concentrated on the evolutionary search of optimal learning algorithms for
feedforward neural networks. Similar approach could be used for optimizing recurrent neural networks and other
connectionist networks. For the evolutionary search of architectures, it will be interesting to model as co-evolving [27]
sub-networks instead of evolving the whole network. Further, it will be worthwhile to explore the whole population
information of the final generation for deciding the best solution. We used a fixed chromosome structure (direct
encoding technique) to represent the connection weights, architecture, learning algorithms and its parameters. As size
of the network increases, the chromosome size grows. Moreover, implementation of crossover is often difficult due to
production of non-functional offspring's. Parameterized encoding overcomes the problems with direct encoding but the

 22

search of architectures is restricted to layers. In the grammatical encoding rewriting grammar is encoded. So the
success will depend on the coding of grammar (rules). Cellular configuration might be helpful to explore the
architecture of neural networks more efficiently. Gutierrez et al [39] has shown that their cellular automata technique
performed better than direct coding.

Acknowledgement

The author wishes to thank the anonymous reviewers for their valuable comments.

References

[1] Abraham A (2001), Neuro-Fuzzy Systems: State-of-the-Art Modeling Techniques, Connectionist Models of

Neurons, Learning Processes, and Artificial Intelligence, Springer-Verlag Germany, Jose Mira and Alberto Prieto
(Eds.), Granada, Spain, pp. 269-276.

[2] Abraham A (2002), Optimization of Evolutionary Neural Networks Using Hybrid Learning Algorithms, IEEE
2002 Joint International Conference on Neural networks, IEEE Press, Volume 3, pp. 2797-2802.

[3] Abraham A and Nath B (1999), Failure Prediction Of Critical Electronic Systems in Power Plants Using Artificial
Neural Networks", In Proceedings of First International Power & Energy Conference, Isreb M (Editor), ISBN
0732 620 945, Australia, December 1999.

[4] Abraham A and Nath B (2000), Optimal Design of Neural Nets Using Hybrid Algorithms, In proceedings of 6th
Pacific Rim International Conference on Artificial Intelligence (PRICAI 2000), pp. 510-520.

[5] Abraham and Nath B (2000), Artificial Neural Networks for Intelligent Real Time Power Quality Monitoring
Systems", In Proceedings of First International Power & Energy Conference, Isreb M (Editor), ISBN 0732 620
945, Australia, December 1999.

[6] Abraham and Nath B (2001), ALEC -An Adaptive Learning Framework for Optimizing Artificial Neural
Networks", Computational Science, Springer-Verlag Germany, Vassil N Alexandrov et al (Editors), San
Francisco, USA, pp. 171-180.

[7] Angeline P J, Saunders G B and Pollack J B (1994), An Evolutionary Algorithm that Evolves Recurrent Neural
Networks, IEEE Transactions on Neural Networks, Vol. 5:1, pp. 54-65.

[8] Auer P., Herbster M and Warmuth M (1996), Exponentially Many Local Minima for Single Neurons, D
Touretzky et al (Eds.), Advances in Neural Information Processing Systems, MIT Press, Cambridge, MA, Vol 8,
pp. 316-322.

[9] Baffles P T and Zelle J M (1992), Growing layers of Perceptrons: Introducing the Exentron Algorithm,
Proceedings on the International Joint Conference on Neural Networks, Vol 2, pp. 392-397.

[10] Balakrishnan K and Honawar V (1996), Some Experiments in Evolutionary Synthesis of Robotic
Neurocontrollers. Proceedings of World Congress on Neural Networks. pp 1035-1040.

[11] Baxter J (1992), The evolution of learning algorithms for artificial neural networks, Complex systems, IOS press,
Amsterdam, pp. 313-326..

[12] Bishop C M (1995), Neural Networks for Pattern Recognition, Oxford Press.
[13] Boers E J W, Borst M V and Sprinkhuizen-Kuyper I G (1995), Artificial Neural Nets and Genetic Algorithms,

DW Pearson et al, (Eds.); Springer Verlag, NY, Proceedings of the International Conference in Ales, France, pp.
333-336.

[14] Boers E J W, Borst M V and Sprinkhuizen-Kuyper I G (1995); Evolving artificial neural networks using the
Baldwin effect, In D.W. Pearson et al (Eds.), Artificial Neural Nets and Genetic Algorithms, Proceedings of the
International Conference in Alès, France, pp. 333-336, Springer-Verlag, New York.

[15] Boers E J W, Kuiper H, Happel B L M, and Sprinkhuizen-Kuyper I G (1993); Designing modular artificial neural
networks, In: H.A. Wijshoff (Ed.); Proceedings of Computing Science in The Netherlands, pp. 87-96.

[16] Bourlard H.A and Morgan N. (1994), Connectionist Speech Recognition: A Hybrid Approach, Boston: Kluwer
Academic Publishers

[17] Box G E P and Jenkins G M (1970), Time Series Analysis, Forecasting and Control, San Francisco: Holden Day.
[18] Branke J, Kohlmorgen U and Schmeck H (1995), A Distributed Genetic Algorithm Improving the Generalization

Behavior of Neural Networks, Proceedings of the European Conference on Machine Learning, N Lavrac et al
(eds.), pp. 107-112.

 23

[19] Braun H (1995), On Optimizing Large Neural Networks (Multilayer Perceptrons) by Learning and Evolution, in
Proceedings of the Third International Congress on Industrial and Applied Mathematics, ICIAM.

[20] Braun H and Weisbrod J (1993), Evolving Neural Networks for Application Oriented Problems, in D.B Fogel
(Ed.), Proceedings of the second Conference on Evolutionary Programming, USA.

[21] Braun H and Zagorski P (1994), ENZO-M - a Hybrid Approach for Optimizing Neural Networks by Evolution
and Learning, in Y Davidor et al (Eds.), Proceedings of the third Int. Conference on Parallel Problem Solving
from Nature, Israel.

[22] Castillo P A, Merelo J J, Prieto A, Rivas V and Romero G (2000), G-Prop: Global optimization of multilayer
perceptrons using GAs, Neurocomputing, 35, pp. 149-163.

[23] Chalmers D J (1990), The Evolution of Learning: An Experiment in Genetic Connectionism", In Touretzky D S et
al (Eds), Proceedings of the 1990 Connectionist Models Summer School, Morgan Kaufmann, CA, pp. 81-90.

[24] Cherkassky V (1998), Fuzzy Inference Systems: A Critical Review, Computational Intelligence: Soft Computing
and Fuzzy-Neuro Integration with Applications, Kayak O, Zadeh LA et al (Eds.), Springer, pp.177-197.

[25] Chong, E. K.P. and Zak, S.H. (1996). An Introduction to Optimization. John Wiley and Sons, Inc. New York.
[26] Cichocki, A. and Unbehauen, R. (1993), Neural Networks for Optimization and Signal Processing. NY: John

Wiley & Sons
[27] Darwen P. J (1996), Co-evolutionary Learning by Automatic Modularization with Speciation'' PhD Thesis,

University of New South Wales.
[28] Duch W and Korczak J (1999), Optimization and global minimization methods suitable for neural networks,

Neural Computing Surveys.
[29] Fahlman S E and Lebiere C (1990), The Cascade – Correlation Learning architecture, Advances in Neural

Information Processing Systems, D.Tourretzky (Ed.), Morgan Kaufmann, pp. 524-532.
[30] Fine T L (1999), Feedforward Neural Network Methodology, Springer Verlag, New York.
[31] Fogel D (1999), Evolutionary Computation: Towards a New Philosophy of Machine Intelligence, 2nd Edition,

IEEE press.
[32] Fogel D B (1997), The Advantages of Evolutionary Computation, Bio-Computing and Emergent Computation, D.

Lundh, B. Olsson, and A. Narayanan (Eds.), Sköve, Sweden, World Scientific Press, Singapore, pp. 1-11.
[33] Fontanari J F and Meir R (1991), Evolving a learning algorithm for the binary perceptron, Network, vol.2, pp.

353-359.
[34] Forti M (1996), A Note on Neural Networks With Multiple Equilibrium Points, IEEE Transactions on Circuits

and Systems-I: Fundamental Theory, 43, pp. 487 (5).
[35] Frean M (1990), The upstart algorithm: a method for constructing and training feed forward neural networks,

Neural computations Volume 2, pp.198-209.
[36] Fullmer B and Miikkulainen R (1992), Using Marker-Based Genetic Encoding of Neural Networks To Evolve

Finite-State Behaviour, FJ Varela and P Bourgine (Eds), Proceedings of the First European Conference on
Artificial Life, France), pp.255-262.

[37] Funabiki N, Kitamichi J and Nishikawa S (1998), An evolutionary Neural Network Approach for Module
Orientation Problems, IEEE transactions on Systems, Man, And Cybernetics- Part B: Cybernetics, Vol.28, No.6,
pp.849-855.

[38] Grau F (1992), Genetic Synthesis of Boolean Neural Networks with a Cell Rewriting Developmental Process, In
D Whitely and Schaffer J D., Proceedings of the International Workshop on Combinations of Genetic Algorithms
and Neural Networks, IEEE Computer Society Press, CA, pp. 55.74.

[39] Gutierrez G, Isasi P, Molina J M, Sanchis A and Galvan I M (2001), Evolutionary Cellular Configurations for
Designing Feedforward Neural Network Architectures, Connectionist Models of Neurons, Learning Processes,
and Artificial Intelligence, Jose Mira et al (Eds), Springer Verlag - Germany, LNCS 2084, pp. 514-521

[40] Harp S A, Samad T and Guha A (1989), "Towards the Genetic Synthesis of Neural Networks", In Schaffer J D
(Editor), Proceedings of the Third International Conference on Genetic Algorithms and their Applications,
Morgan Kaufmann, CA, pp. 360-369.

[41] Hofgen K U (1993), Computational limits on Training Sigmoidal Neural Networks, Information Processing
Letters, Volume 46, pp. 269-274.

[42] Jang J S R (1991), ANFIS: Adaptive Network Based Fuzzy Inference Systems, IEEE Transactions Systems, Man
& Cybernetics.

 24

[43] Jayalakshmi G A, Sathiamoorthy S and Rajaram R (2001), An Hybrid Genetic Algorithm – A New Approach to
Solve Traveling Salesman Problem, International Journal of Computational Engineering Science, Vol. 2, No. 2,
pp. 339-355.

[44] Jones L, The Computational Intractability of Training Sigmoidal Neural Networks, IEEE Transactions on
Information Theory, Volume 43, pp 143-173.

[45] Judd S, Neural Network Design and the Complexity of Learning, MIT Press, Cambridge, MA.
[46] Kasabov N (1996), Foundations of Neural Networks, Fuzzy Systems and Knowledge Engineering, The MIT

Press.
[47] Kasabov N (1998), Evolving Fuzzy Neural Networks - Algorithms, Applications and Biological Motivation, in

Yamakawa T and Matsumoto G (Eds), Methodologies for the Conception, Design and Application of Soft
Computing, World Scientific, pp. 271-274.

[48] Kim H B, Jung S H, Kim T G and Park K H (1996), Fast learning method for back-propagation neural network by
evolutionary adaptation of learning rates, Neurocomputing, vol. 11, no.1, pp. 101-106.

[49] Kitano H (1990), Designing Neural Networks Using Genetic Algorithms with graph Generation System, Complex
Systems, Volume 4, No.4, pp. 461-476.

[50] Kok J N, Marchiori E, Marchiori M and Rossi C (1996), Evolutionary Training of CLP-Constrained Neural
Networks, 2nd Int. Conf. on Practical Application of Constraint Technology, pp.129-142.

[51] Liu Y and Yao X (1996), Evolutionary design of artificial neural networks with different node transfer functions,
Proceedings of the Third IEEE International Conference on Evolutionary Computation, Nagoya, Japan, pp.670-
675.

[52] Liu Y and Yao X (1998), Towards designing neural network ensembles by evolution, Proceedings of the Fifth
International Conference on Parallel Problem Solving from Nature (PPSN-V), Lecture Notes in Computer
Science, Vol. 1498, AE Eiben, M Schoenauer and HP Schwefel (Ed.), Springer-Verlag, Berlin, pp.623-632.

[53] Mackey MC and Glass L (1977), Oscillation and Chaos in Physiological Control Systems, Science Vol 197,
pp.287-289.

[54] Macready W G and Wolpert D H (1997), The No Free Lunch theorems, IEEE Trans. on Evolutionary
Computing, vol.1 , no. 1, pp. 67-82.

[55] Mamdani E H and Assilian S (1975), An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller,
International Journal of Man-Machine Studies, Vol. 7, No.1, pp. 1-13.

[56] Mascioli F and Martinelli G (1995), A constructive algorithm for binary neural networks: The oil Spot Algorithm,
IEEE Transaction on Neural Networks, 6(3), pp 794-797.

[57] Masters, T. (1994), Signal and Image Processing with Neural Networks: A C++ Sourcebook, John Wiley and
Sons, Inc., New York.

[58] Merril J W L and Port R F (1991), Fractally Configured Neural Networks, Neural Networks, Vol 4, No.1, pp 53-
60.

[59] Mezard M and Nadal J P (1989), Learning in feed forward layered networks: The Tiling algorithm, Journal of
Physics A, Vol 22, pp. 2191-2204

[60] Miller G F, Todd P M and Hedge S U (1989), Designing Neural Networks Using Genetic Algorithms,
Proceedings of the Third International Conference on Genetic Algorithms, JD Schaffer (Ed), pp. 379-384.

[61] Moller A F (1993), A Scaled Conjugate Gradient Algorithm for Fast Supervised Learning, Neural Networks,
Volume (6), pp. 525-533.

[62] Moriarty D E and Miikkulainen R (1997),. Forming Neural Networks through Efficient and Adaptive
Coevolution. Evolutionary Computation Volume 5, pp. 373-399.

[63] Omlin C W and Giles C L (1993), Pruning Recurrent neural networks for improved generalization performance,
Tech. Report No 93-6, CS Department, Rensselaer Institute, Troy, NY.

[64] Phansalkar V V and Thathachar M A L (1995), Local and Global Optimization Algorithms for Generalized
Learning Automata, Neural Computation, 7, pp. 950-973.

[65] Polani D and Miikkulainen R (1999), Fast Reinforcement Learning Through Eugenic Neuro-Evolution. Technical
Report AI99-277, Department of Computer Sciences, University of Texas at Austin.

[66] Porto V W, Fogel D B and Fogel L J (1995), Alternative neural Network training methods, IEEE Expert, volume
10, no.4, pp. 16-22.

[67] Refenes, A. (Ed.) (1995). Neural Networks in the Capital Markets. Chichester, John Wiley and Sons, Inc.,
England.

 25

[68] Schiffmann W, Joost M and Werner R (1993), Comparison of optimized backpropagation algorithms,
Proceedings. Of the European Symposium on Artificial Neural Networks, Brussels, M. Verleysen (Ed.), de Facto
Press, pp. 97-104.

[69] Sebald A V, Chellapilla K (1998), On Making Problems Evolutionarily Friendly Part 1: Evolving the Most
Convenient Representations, The Seventh International Conference on Evolutionary Programming, EP98, San
Diego, pp. 271-280.

[70] Sebald A V, Chellapilla K (1998), On Making Problems Evolutionarily Friendly Part 2: Evolving the Most
Convenient Representations, The Seventh International Conference on Evolutionary Programming, EP98, San
Diego, pp. 281-290.

[71] Sexton R, Dorsey R and Johnson J (1998), Toward Global Optimization of Neural Networks: A Comparison of
the Genetic Algorithm and Backpropagation, Decision Support Systems, 22, pp. 171-185.

[72] Sexton R, Dorsey R and Johnson J (1999), Optimization of Neural Networks: A Comparative Analysis of the
Genetic Algorithm and Simulated Annealing, European Journal of Operational Research, 114, pp. 589-601.

[73] Shang Y and Wah B (1996), Global Optimization for Neural Network Training, Computer, 29, pp.45-55.
[74] Shukla K K and Raghunath (1999), An Efficient Global Algorithm for Supervised Training of Neural Networks,

Computers and Electrical Engineering, 25, pp. 195(2).
[75] Stepniewski S W and Keane A J (1997), Pruning Back-propagation Neural Networks Using Modern Stochastic

Optimization Techniques, Neural Computing & Applications, Vol. 5, pp. 76-98.
[76] Sugeno M (1985), Industrial Applications of Fuzzy Control, Elsevier Science Pub Co.
[77] Topchy A P and Lebedko O A (1997), Neural Network training by means of cooperative evolutionary search,

Nuclear Instruments & Methods In Physics Research, Section A: accelerators, Spectrometers, Detectors and
Associated equipment, Volume 389, no. 1-2, pp. 240-241.

[78] Vidhyasagar M M (1997), The Theory of Learning and Generalization, Springer-Verlag, New York.
[79] Weigend A.S. and Gershenfeld N.A. Eds. (1994) Time Series Prediction: Forecasting the Future and

Understanding the Past, Reading, MA: Addison-Wesley.
[80] Whitley D (1995), Modeling Hybrid Genetic Algorithms, Genetic Algorithms in Engineering and Computer

Science, G. Winter, J. Periaux, M. Galan and P. Cuesta, Eds. John Wiley, pp: 191-201.
[81] Yao X (1995), Designing Artificial Neural Networks Using Co-Evolution, Proceedings of IEEE Singapore

International Conference on Intelligent Control and Instrumentation, pp.149-154.
[82] Yao X (1999), Evolving Artificial Neural Networks, Proceedings of the IEEE, 87(9):1, pp. 423-1447.
[83] Yao X and Liu Y (1997), A new evolutionary system for evolving artificial neural networks, IEEE Transactions

on Neural Networks, 8(3), pp. 694-713.
[84] Yao X and Liu Y (1998), Making use of population information in evolutionary artificial neural networks, IEEE

Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, 28(3): PP.417-425.
[85] Yao X and Liu Y (1998), Towards designing artificial neural networks by evolution, Applied Mathematics and

Computation, 91(1): pp. 83-90.
[86] Zhang X M and Chen Y Q (2000), Ray-guided global optimization method for training neural networks,

Neurocomputing, 30, pp. 333-337.

