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Abstract 
In this paper, we present MLEANN (Meta-Learning Evolutionary Artificial Neural Network), an automatic 
computational framework for the adaptive optimization of artificial neural networks wherein the neural network 
architecture, activation function, connection weights; learning algorithm and its parameters are adapted according to the 
problem. We explored the performance of MLEANN and conventionally designed artificial neural networks for 
function approximation problems. To evaluate the comparative performance, we used three different well-known 
chaotic time series. We also present the state of the art popular neural network learning algorithms and some 
experimentation results related to convergence speed and generalization performance. We explored the performance of 
backpropagation algorithm; conjugate gradient algorithm, quasi-Newton algorithm and Levenberg-Marquardt 
algorithm for the three chaotic time series. Performances of the different learning algorithms were evaluated when the 
activation functions and architecture were changed. We further present the theoretical background, algorithm, design 
strategy and further demonstrate how effective and inevitable is the proposed MLEANN framework to design a neural 
network, which is smaller, faster and with a better generalization performance.  
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1. Introduction 
The strong interest in neural networks in the scientific community is fueled by the many successful and promising 
applications especially to tasks of optimization [26], speech recognition [16], pattern recognition [12], signal processing 
[57], function approximation [79], control problems [3] [5], financial modeling [67] etc.. Even though artificial neural 
networks are capable of performing a wide variety of tasks, yet in practice sometimes they deliver only marginal 
performance. Inappropriate topology selection and learning algorithm are frequently blamed. There is little reason to 
expect that one can find a uniformly best algorithm for selecting the weights in a feedforward artificial neural network. 
This is in accordance with the no free lunch theorem, which explains that for any algorithm, any elevated performance 
over one class of problems is exactly paid for in performance over another class [54]. In sum, one should be skeptical 
of claims in the literature on training algorithms that one being proposed is substantially better than most others. Such 
claims are often defended through some simulations based on applications in which the proposed algorithm performed 
better than some familiar alternative [41] [44] [45] [78].  
 
At present, neural network design relies heavily on human experts who have sufficient knowledge about the different 
aspects of the network and the problem domain. As the complexity of the problem domain increases, manual design 
becomes more difficult and unmanageable. Evolutionary design of artificial neural networks has been widely explored. 
Evolutionary algorithms are used to adapt the connection weights, network architecture and learning rules according to 
the problem environment. A distinct feature of evolutionary neural networks is their adaptability to a dynamic 
environment. In other words, such neural networks can adapt to an environment as well as changes in the environment. 
The two forms of adaptation: evolution and learning in evolutionary artificial neural networks make their adaptation to 
a dynamic environment much more effective and efficient than the conventional learning approach [2]. In Section 2, we 
present the different neural network learning paradigms followed by some experimentation results to demonstrate the 
difficulties to design neural networks, which are smaller, faster and with a better generalization performance. In section 
3, we introduce evolutionary algorithms and state of the art design of Evolutionary Artificial Neural Networks 
(EANNs) followed by the proposed MLEANN framework [2]. In the MLEANN framework, in addition to the 
evolutionary search of connection weights and architectures (connectivity and activation functions), local search 
techniques are used to fine-tune the weights (meta-learning). Experimentation results are provided in Section 3.3.1 and 
some discussions and conclusions are provided towards the end. 

2. Artificial Neural Network Learning Algorithms 
The artificial neural network (ANN) methodology enables us to design useful nonlinear systems accepting large 
numbers of inputs, with the design based solely on instances of input-output relationships. For a training set T 
consisting of n argument value pairs and given a d-dimensional argument x and an associated target value t will be 
approximated by the neural network output. The function approximation could be represented as 
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In most applications the training set T is considered to be noisy and our goal is not to reproduce it exactly but rather to 
construct a network function that generalizes well to new function values. We will try to address the problem of 
selecting the weights to learn the training set. The notion of closeness on the training set T is typically formalized 
through an error function of the form 
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where yi is the network output. Our target is to find a neural network � such that the output yi = � (xi, w) is close to the 
desired output ti for the input xi (w = strengths of synaptic connections). The error �T = �T (w) is a function of w 
because y = � depends upon the parameters w defining the selected network �. The objective function �T (w) for a 
neural network with many parameters defines a highly irregular surface with many local minima, large regions of little 
slope and symmetries. The common node functions (tanh, sigmoidal, logistic etc) are differentiable to arbitrary order 
through the chain rule of differentiation, which implies that the error is also differentiable to arbitrary order.  Hence we 
are able to make a Taylor's series expansion in w for �T [30]. We shall first discuss the algorithms for minimizing �T by 
assuming that we can truncate a Taylor's series expansion about a point wo that is possibly a local minimum. The 
gradient (first partial derivative) vector is represented by 
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The gradient vector points in the direction of steepest increase of �T and its negative points in the direction of steepest 
decrease. The second partial derivative also known as Hessian matrix is represented by H 
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The Taylor's series for �T, assumed twice continuously differentiable about w0, can now be given as 
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where O (�) denotes a term that is of zero-order in small � such that 0
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If for example there is continuous derivative at w0, then the remainder term is of order 
30ww −  and we can 

reduce (4) to the following quadratic model 
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Taking the gradient in the quadratic model of (5) yields 
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If we set the gradient g=0 and solving for the minimizing w* yields 
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The model m can now be expressed in terms of minimum value of w* as 
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a result that follows from (5) by completing the square or recognizing that g(w*)=0. Hence starting from any initial 
value of the weight vector, we can in the quadratic case move one step to the minimizing value when it exists. This is 
known as Newton's approach and can be used in the non-quadratic case where H is the Hessian and is positive definite. 
2.1 Multiple Minima Problem in Neural Networks 
A long recognized bane of analysis of the error surface and the performance of training algorithms is the presence of 
multiple stationary points, including multiple minima. Analysis of the behavior of training algorithms generally use the 
Taylor's series expansions discussed earlier, typically with the expansion about a local minimum w0 However, the 
multiplicity of minima confuse the analysis because we need to be assured that we are converging to the same local 
minimum as used in the expansion. How likely are we to encounter a sizable number of local minima? Empirical 
experience with training algorithm shows that different initialization yield different resulting networks. Hence the issue 
of many minima is a real one. According to Auer et al [8], a single node network with n training pairs and Rd inputs 

could end up having d)
d
n

(  local minima. Hence not only multiple minima exist, but there may be huge numbers of 

them. 
 
Different learning algorithms have their staunch proponents, who can always construct instances in which their 
algorithm perform better than most others. In practice, there are four types of optimization algorithms that are used to 
minimize �T (w). The first three methods gradient descent, conjugate gradients and quasi-Newton are general 
optimization methods whose operation can be understood in the context of minimization of a quadratic error function. 
Although the error surface is surely not quadratic, for differentiable node functions it will be so in a sufficiently small 
neighborhood of a local minimum, and such an analysis provides information about the behavior of the training 
algorithm over the span of a few iterations and also as it approaches its goal. The fourth method of Levenberg and 
Marquardt is specifically adapted to minimization of an error function that arises from a squared error criterion of the 
form we are assuming. Backpropagation calculation of gradient can be adapted easily to provide the information about 
the Jacobian matrix J needed for this method. A common feature of these training algorithms is the requirement of 
repeated efficient calculation of gradients.  

2.1.1 Backpropagation Algorithm  

Backpropagation provides an effective method for evaluating the gradient vector needed to implement the steepest 
descent, conjugate gradient, and quasi-Newton algorithms. BP differs from straightforward gradient calculations using 
the chain rule for differentiation in the way it organizes efficiently the gradient calculation for networks having more 
than one hidden layer [68]. BP iteratively selects a sequence of parameter vectors {wk, k =1:T} for a moderate value of 
running time T, with the goal of having {�T (wk) = � (k)} converge to a small neighborhood of a good local minimum 
rather than the usually inaccessible global minimum [30]. 
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The simplest steepest descent algorithm uses the following weight update in the direction of dk=-gk  with a learning rate 
or step size �k. 
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A good choice �k

* for the learning rate �k for a given choice of descent direction dk is the one that minimizes �(k+1). 
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To carry out the minimization we use 
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To evaluate this equation, note that 
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and conclude that for optimal learning rate we must satisfy the orthogonality condition 
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When the error function is not specified analytically, then its minimization along dk can be accomplished through a 
numerical line search for �k or through numerical differentiation as noted herein. The line search avoids the problem of 
setting a fixed step size. Analysis of such algorithms often examine their behavior when the error function is truly a 
quadratic as given in (5) and (6). In the current notation, 
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Hence the optimality condition for the learning rate �k derived from the orthogonality condition (14) becomes  
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When search directions are chosen via dk = -Mkgk, with Mk symmetric, then the optimal learning rate is 
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In the case of steepest descent for a quadratic error function, Mk is the identity and  
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One can think of �k
* as the reciprocal of an expected value of the eigen values {�i} of the Hessian with probabilities 

determined by the squares of the coefficients of the gradient vector gk expanded in terms of the eigen vectors {ei} of the 
Hessian. 
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The algorithm, even in the context of a truly quadratic error surface and with line search, suffers from greed. The 
successive directions do not generally support each other in that after two steps; say, the gradient is usually no longer 
orthogonal to the direction taken in the first step. In the quadratic case there exists a choice of learning rates that will 
drive the error to its absolute minimum in no more than p+1 steps where p is the number of parameters [30]. To see 
this, note that 
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It is easily verified that if gk = g(wk) then 
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Hence for k � p, we can achieve gk = 0 simply by choosing �1,….�p any permutation of 1/�1 … 1/�p, the reciprocals of 
the eigen values of the Hessian H; the resulting product of matrices is a matrix that annihilates each of the p eigen 
vectors and therefore any other vector that can be represented as their weighted sum. Of course, in practice, we do not 
know the eigen values and cannot implement this algorithm. However, this observation points out the distinction 
between optimality when one looks ahead only one step and optimality when one adopts a more distant horizon. 
Traditionally the step size is held at a constant value �k = �. The simplicity of this approach is belied by the need to 
carefully select the learning rate. If the fixed step size is too large, then we leave ourselves open to overshooting the 
line search minimum, we may engage in oscillatory or divergent behavior, and we loose guarantees of monotone 
reduction of the error function �T  If the step size is too small, then we may need a very large number of iterations T 
before we achieve a sufficiently small value of the error function. A variation on the constant learning rate is to adopt a 
deterministic learning rate schedule that varies the learning rate dependant on the iteration number.  

An ad hoc departure from steepest descent is to add memory to the recursion through momentum term. Now the change 
in parameter vector w depends not only on the current gradient but also on the most recent change in parameter vector, 

kkkk1k1k gww α∆β∆ −=−= ++   for k �  0      (22) 
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what we gain is a high frequency smoothing effect through the momentum term. The change in parameter vector 
depends not only on the current gradient gk-1 but also, in an exponentially decaying fashion (provided that 0 � � < 1), on 
all previous gradients. If the succession of recent gradients has tended to alternate directions, then the sum will be 
relatively small and we will make only small changes in the parameter vector.  This could occur if we are in the vicinity 
of a local minimum, successive changes would just serve to bounce us back and forth past the minimum. If, however, 
recent gradients tends to align, then we will make an even larger change in the parameter vector and thereby move 
more rapidly across a large region of descent and possibly across over a small region of ascent that screened off a 
deeper local minimum. Of course, if the learning rate � is well chosen, then successive gradients will tend to be 
orthogonal and a weighted sum will not cancel itself out.  

2.1.2 Conjugate Gradient Algorithm 

The motivation behind the conjugate gradient algorithm is that we wish to iteratively select search directions (dk) that 
are non-interfering in the sense that successive minimizations along these directions do not undo the progress made by 
previous minimizations. The search direction is selected in such a way that at each iteratively selected parameter value 
wk, the current gradient gk is orthogonal to all previous search directions d1,….dk-1. Hence, at any given step in the 
iteration, the error surface has a direction of steepest descent that is orthogonal to the linear subspace of parameters 
spanned by the prior search directions. Steepest descent merely assured us that the current gradient is orthogonal to the 
last search direction. If the error function {�T (wk )} is quadratic with positive definite Hessian H, choosing the search 
directions (di)  to be H-conjugate and the �i to satisfy (16) is equivalent to the orthogonality between the current gradient 
and the past search directions given by  
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it is easily verified that conjugate directions (di) also form a linearly independent set of directions in weight space [30]. 
If weight space has dimension p then of course there can be only p linearly independent directions of vectors. Hence, it 
is possible to represent any point as a linear combination of no more than p of the conjugate directions, and in particular 
if w* is the sought location of the minimum of the error function, then there exist coefficients such that 
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Thus if the error surface is quadratic with a positive definite Hessian, then selecting H-conjugate search directions and 
learning rates according to (16) guarantees a minimum in no more than p iterations. To be able to apply the method of 
conjugate gradients we must be able to determine such a set of directions and then solve for the correct coefficients. 
Conventional conjugate gradient algorithms use a line search to find the minimizing step and are initialized as follows 

d0 = g0           (25) 

introducing a scaling �k to be determined, and then iterate with the simple recursion 
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According to the conjugacy condition in (23) and the recursion of (26) yield 
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Solving yields the necessary condition that 
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Induction can be established that this recursive definition of conjugate gradient search directions does indeed yield a 
fully conjugate set when the error function is quadratic, although the derivation of (28) only established that dk and dk+1 

are conjugate. A version of the conjugate gradient algorithm that does not require line searches was developed by 

Moller [61] and uses the finite difference method for estimating Hdk. To monitor the sign of the product k
T
k Hdd , 

define � by  
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Moller introduces two new variables, λ  and λ , to define an altered value of �, δ . These variables are charged with 
ensuring that δ  > 0. Although this does not affect the error surface, and the Hessian with the quadratic approximation 
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will still suggest there is a maximum along the search direction, the method produces a step size that shows good 
results in practice. δ  is defined as follows 
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The requirement for δ  > 0 gives a condition for λ  
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In order to get a good quadratic approximation of the error surface, a mechanism to raise or lower λ  is needed when 
the Hessian is positive definite. Detailed step-by-step description can be found in [61]. 

2.1.3 Quasi - Newton Algorithm 

If the error surface is purely quadratic, as per (7) we can solve the minimizing weight vector in a single step through 
Newton's method. This solution requires knowledge of the Hessian and assumes it to be constant and positive definite. 
We need a solution method that can take into account the variation of H(w) with w, knowing the fact that the error 
function is at best only approximately quadratic and removal from a local minimum the approximating quadratic 
surface is likely to have a Hessian that is not positive definite and the evaluation of true Hessian is computationally too 
expensive. 
 
The quasi- Newton method addresses themselves to these tasks by first generalizing the iterative algorithm to the form 

kkkk1k gMww α−=+         (33) 

The choice of step size �k to use with a search direction kkk gMd = is determined by an approximate line search, 

and use of line search is essential to the success of this method. The quasi-Newton method iteratively tracks the inverse 

of the Hessian without ever computing it directly. Let k1kk ggq −= + , and consider the expansion for the 

gradient (quadratic case) 
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If we can evaluate the difference of gradients for p linearly independent increments p0,…pp-1 in the weight vectors, then 
we can solve for the Hessian (assumed constant). To do so, form the matrices P with ith column the vector pi-1 and Q 
with ith column the vector qi-1. Then we have the matrix equation  

Q = H P           (35) 

which can be solved for the Hessian, when the columns of P are linearly independent, through 

H = Q P-1          (36) 

Thus from the increments in the gradient induced by the increments in the weight vectors as training proceeds, we have 
some hope of being able to track the Hessian. An approximation to the inverse M of the Hessian is achieved by 
interchanging qk

 and pk in an approximation to the Hessian itself 

M = P Q-1          (37) 

Hence the information is available in the sequence of gradients that determine the qk, and the sequence of search 
directions and learning rates that determine the pk, to infer to the inverse of the Hessian, particularly if it is only slowly 
varying. 
 
The Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi – Newton algorithm [25] implements the update for the 
approximate inverse M of the Hessian by 
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This recursion is initialized by starting with a positive definite matrix such as the identity, M0 = I. The Determination of 
the learning rates is critical, as was the case for the method of conjugate directions. Quasi-Newton methods enjoy 
asymptotically more rapid convergence than that of steepest descent or conjugate gradient methods. 

2.1.4 Levenberg-Marquardt algorithm 

The Levenberg-Marquardt (LM) algorithm [25] exploits the fact that the error function is a sum of squares as given in 
(1). Introduce the following notation for the error vector and its Jacobian with respect to the network parameters w 
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The Jacobian matrix is a large p ×  n matrix, all of whose elements are calculated directly by backpropagation 
technique as presented in Section 2.1.1. The p dimensional gradient g for the quadratic error function can be expressed 
as 
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Hence defining i
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∇= yields the expression  

H (w) = JJT + D          (41) 

The key to the LM algorithm is to approximate this expression for the Hessian by replacing the matrix D involving 
second derivatives by the much simpler positively scaled unit matrix I∈ . The LM is a descent algorithm using this 
approximation in the form 
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Successful use of LM requires approximate line search to determine the rate �k. The matrix JJT is automatically 
symmetric and non-negative definite. The typically large size of J may necessitate careful memory management in 
evaluating the product JJT. Hence any positive ∈ will ensure that Mk is positive definite, as required by the descent 
condition. The performance of the algorithm thus depends on the choice of ∈. 
 
When the scalar ∈ is zero, this is just Newton's method, using the approximate Hessian matrix. When ∈ is large, this 
becomes gradient descent with a small step size. As Newton's method is more accurate, ∈ is decreased after each 
successful step (reduction in performance function) and is increased only when a tentative step would increase the 
performance function. By doing this, the performance function will always be reduced at each iteration of the algorithm 
[12]. 

2.2. Designing Artificial Neural Networks 
The error surface of very small networks has been characterized previously. However, practical networks often contain 
hundreds of weights and in general, theoretical and empirical results on small networks do not scale up to large 
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networks. To investigate the empirical performance with the different learning algorithms on different architectures and 
node transfer functions, we have choosen 3 famous chaotic time series benchmarks so that a) we know the best 
solution, b) can carefully control various parameters and c) know the effect of the different learning algorithms namely 
backpropagation (BP), scaled conjugate gradient (SCG), quasi-Newton algorithm (QNA) and Levenberg Marquardt 
algorithm (LM). 

We also report some experimentation results related to convergence speed and generalization performance of the four 
different neural network-learning algorithms discussed in Section 2.1. Performances of the different learning algorithms 
were evaluated when the activation functions and architectures were changed.  

We used a feedforward neural network with 1 hidden layer and the numbers of hidden neurons were varied 
(14,16,18,20,24) and the speed of convergence and generalization error for each of the four learning algorithms was 
observed. The effect of node activation functions, log-sigmoidal activation function (LSAF) and tanh-sigmoidal 
activation function (TSAF), keeping 24 hidden neurons for the four learning algorithms was also studied. 
Computational complexities of the different learning algorithms were also noted during each event. The experiments 
were replicated 3 times each with a different starting condition (random weights) and the worst errors were reported. 
No stopping criterion, and no method of controlling generalization is used other than the maximum number of updates 
(epochs). All networks were trained for an identical number of stochastic updates (2500 epochs).We used the following 
three chaotic time series: 

a) Waste Water Flow Prediction 

The problem is to predict the wastewater flow into a sewage plant [46]. The water flow was measured every hour. It is 
important to be able to predict the volume of flow f(t+1) as the collecting tank has a limited capacity and a sudden 
increase in flow will cause to overflow excess water. The water flow prediction is to assist an adaptive online 
controller. The data set is represented as [f(t), f(t-1), a(t), b(t), f(t+1)] where f(t), f(t-1) and f(t+1) are the water flows at 
time t,t-1, and t+1 (hours) respectively. a(t) and b(t) are the moving averages for 12 hours and 24 hours. The time 
series consists of 475 data points. The first 240 data sets were used for training and remaining data for testing. 

b) Mackey-Glass Chaotic Time Series 

The Mackey-Glass differential equation [53] is a chaotic time series for some values of the parameters x(0) and 	. 
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We used the value x(t-18), x(t-12), x(t-6), x(t) to predict x(t+6). Fourth order Runge-Kutta method was used to generate 
1000 data series. The time step used in the method is 0.1 and initial condition were x(0)=1.2, 	=17, x(t)=0 for t<0. First 
500 data sets were used for training and remaining data for testing. 

c) Gas Furnace Time Series Data 
This time series was used to predict the CO2 (carbon dioxide) concentration y (t+1) [17]. In a gas furnace system, air 
and methane are combined to form a mixture of gases containing CO2. Air fed into the gas furnace is kept constant, 
while the methane feed rate u(t) can be varied in any desired manner. After that, the resulting CO2 concentration y(t) is 
measured in the exhaust gases at the outlet of the furnace. Data is represented as [u(t), y(t), y(t+1)]. The time series 
consists of 292 pairs of observation and 50% of data was used for training and remaining for testing.  

2.2.1 Simulation Results Using ANNs 
Results for four different learning algorithms for different architectures, node transfer functions for the three different 
time series are presented in the following sections. 

2.2.1.1 Network Architecture 
This section investigates the training and generalization behavior of the networks when the architecture of the neural 
network was changed. The same architecture was used for the three different time series for the four learning 
algorithms using same node transfer function. Tables 1–3 summarize the empirical results of training and 
generalization. 
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Table 1. Training and test performance for Mackey Glass Series for different architectures 

Mackey Glass Time Series 
Root Mean Squared Error  

Learning algorithm 
 

Hidden Neurons Training data Test data 
14 0.0890 0.0880 
16 0.0824 0.0860 
18 0.0764 0.0750 
20 0.0452 0.0442 

 
 

BP 

24 0.0439 0.0437 
14 0.0040 0.0051 
16 0.0053 0.0052 
18 0.0066 0.0067 
20 0.0058 0.0058 

 
 

SCG 

24 0.0045 0.0045 
14 0.0041 0.0040 
16 0.0031 0.0030 
18 0.0035 0.0036 
20 0.0038 0.0038 

 
 

QNA 
 

24 0.0034 0.0036 
14 0.0016 0.0016 
16 0.0015 0.0015 
18 0.0015 0.0015 
20 0.0010 0.0011 

 
 

LM 

24 0.0009 0.0009 
 

Table.2. Training and test performance for gas furnace time series for different architectures 

Gas Furnace Time Series 

Root Mean Squared Error  
Learning algorithm 

 
Hidden Neurons 

Training data Test data 
14 0.0670 0.1291 
16 0.0835 0.1056 
18 0.0716 0.0766 
20 0.0800 0.0950 

 
 

BP 

24 0.0663 0.0970 
14 0.0160 0.0331 
16 0.0157 0.0330 
18 0.0165 0.0330 
20 0.0158 0.0361 

 
 

SCG 

24 0.0153 0.0367 
14 0.0137 0.0529 
16 0.0133 0.0465 
18 0.0133 0.0376 
20 0.0136 0.0410 

 
 

QNA 
 

24 0.0128 0.0516 
14 0.0118 0.0450 
16 0.0140 0.0971 
18 0.0116 0.1080 
20 0.0100 0.1880 

 
 

LM 

24 0.0100 0.1856 
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2.2.1.2 Node transfer functions 

This section investigates the effect of different node transfer functions on training and generalization performance for 
the four learning algorithms. To compare empirically we maintained the same architecture and only changing he node 
transfer functions and learning algorithms. All the networks were randomly initialized and trained for 2500 epochs. 
Tables 4 – 6 summarizes the empirical results of training and generalization for the two node transfer functions, tanh-
sigmoidal activation function (TSAF) and log-sigmoidal activation function (LSAF), when the architecture was fixed 
with 24 hidden neurons. 

Table 3. Training and test performance for wastewater flow series for different architectures 

Wastewater Time Series 
Root Mean Squared Error Learning algorithm Hidden Neurons Training data Test data 

14 0.1269 0.1340 
16 0.1184 0.1360 
18 0.1182 0.1350 
20 0.1221 0.1370 

BP 

24 0.1169 0.1412 
14 0.0459 0.0900 
16 0.0428 0.1130 
18 0.0425 0.1130 
20 0.0423 0.1626 

SCG 

24 0.0400 0.0920 
14 0.0423 0.1271 
16 0.0367 0.1369 
18 0.0363 0.1360 
20 0.0339 0.1450 

QNA 
 

24 0.0316 0.2620 
14 0.0364 0.0950 
16 0.0303 0.1631 
18 0.0314 0.1800 
20 0.0259 0.1314 

LM 

24 0.0244 0.1560 

 

Table.4. Mackey Glass time series: Training and generalization performance for different activation functions 

Root Mean Squared Error 

Time series Learning algorithm Activation function 
Training Test 

TSAF 0.0439 0.0437 
BP 

LSAF 0.0970 0.0950 

TSAF 0.0045 0.0045 
SCG 

LSAF 0.0076 0.0074 

TSAF 0.0033 0.0034 
QNA 

LSAF 0.0029 0.0029 

TSAF 0.0009 0.0009 

Mackey 
Glass 

LM 
LSAF 0.0009 0.0010 
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2.2.1.3 Computational Complexity of Learning algorithms 

This section investigates the computational complexity of the different learning algorithms when the architecture of the 
hidden layer is varied using tanh-sigmoidal activation function. The networks were randomly initialized and trained for 
2500 epochs using the different learning algorithms. Table 7 summarizes the empirical values of the computational load 
for the different learning methods for the three different time series. 

Table 5. Gas furnace series: Training and generalization performance for different activation functions 

Root Mean Squared Error 

Time series Learning algorithm Activation function 
Training Test 

TSAF 0.0663 0.0970 
BP 

LSAF 0.0940 0.1025 

TSAF 0.0153 0.0367 
SCG 

LSAF 0.0162 0.0367 

TSAF 0.0128 0.0516 
QNA 

LSAF 0.0137 0.0420 

TSAF 0.0100 0.1856 

Gas furnace 

LM 
LSAF 0.0089 0.1009 

Table 6. Waste water time series: Training and generalization performance for different activation functions 

Root Mean Squared Error 

Time series Learning algorithm Activation function 
Training Test 

TSAF 0.1169 0.1412 
BP 

LSAF 0.0156 0.1600 

TSAF 0.0400 0.0920 
SCG 

LSAF 0.0420 0.0820 

TSAF 0.0316 0.4600 
QNA 

LSAF 0.0256 0.2110 

TSAF 0.0244 0.1560 

Wastewater 

LM LSAF 0.2160 0.1770 
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Table 7. Approximate computational load for the different time series using the different training algorithms 

Computational Load (billion flops) 
Learning algorithm Hidden Neurons 

Mackey 
Glass Gas Furnace Waste water 

14 0.625 0.142 0.301 

16 0.713 0.305 0.645 

18 0.800 0.488 0.880 

20 0.888 0.690 1.460 

BP 

24 1.064 0.932 1.970 

14 1.256 0.286 0.604 

16 1.429 0.326 0.689 

18 1.605 0.366 0.774 

20 1.781 0.406 0.859 

SCG 

24 2.133 0.486 1.029 

14 2.570 0.679 1.910 

16 3.319 0.8899 2.582 

18 4.221 0.9000 3.388 

20 5.313 1.131 4.384 

QNA 

 

24 7.989 2.193 6.925 

14 29.40 3.930 12.46 

16 57.51 8.355 27.72 

18 93.29 14.03 93.79 

20 137.83 21.10 118.53 

LM 

24 203.10 31.83 175.22 

2.3. Discussion of Results Obtained 

In this Section we would like to evaluate and summarize the results of the various experimentations mentioned in 
Section 2.2.1. For Mackey Glass series (Table 1) all the 4 learning algorithms tend to generalize well as the hidden 
neurons were increased. However the generalization was better when the hidden neurons were using TSAF. LM 
showed the fastest convergence regardless of architecture and node activation function. However, the computational 
complexity of LM algorithm is very amazing as depicted in Table 7. For Mackey glass series (with 14 hidden neurons), 
when BP was using 0.625 billion flops, LM technique required 29.4 billion flops. When the hidden neurons were 
increased to 24, BP used 1.064 billion flops and LM's share jumped to 203.10 billion flops. LM gave the lowest 
generalization RMSE of 0.0009 with 24 hidden neurons. 

As shown in Table 2, for gas furnace series the generalization performance were entirely different for the different 
learning algorithms. BP gave the best generalization RMSE of 0.0766 with 18 hidden neurons. RMSE for SCG, QNA 
and LM were 0.0330 (16 neurons), 0.0376 (18 neurons) and 0.045 (14 neurons) respectively. As depicted in Figures 9 
and 10 the node transfer function also has an effect on the training speed and generalization performance. LM 
algorithm converged much faster and gave a better generalization performance when the node transfer function was 
changed to LSAF (Refer to Figure 10(b)). 

Waste water prediction series also showed a different generalization performance when the architecture was changed 
for the different learning algorithms (Refer to Table 3). BP's best generalization RMSE was 0.135 with 18 hidden 
neurons using TSAF and that of SCG, QNA and LM were 0.0900, 0.1271 and 0.095 with 14 neurons each respectively. 



 13 

LM algorithm converged much faster and gave a better generalization performance when the node transfer function 
was changed to LSAF (Refer to Figure 12(b)). 

In spite of computational complexity, LM performed well for Mackey Glass series. For gas furnace and waste water 
prediction SCG algorithm performed better. However the speed of convergence of LM in all the three cases is worth 
noting. This leads us to the following questions: 

• What is the optimal architecture (number of neurons and hidden layers) for a given problem? 
• What node transfer function(s) should one choose? 
• What is the optimal learning algorithm and its parameters? 

From the above discussion it is clear that the selection of the topology of a network and the best learning algorithm and 
its parameters is a tedious task for designing an optimal artificial neural network, which is smaller, faster and with a 
better generalization performance. Evolutionary algorithm is an adaptive search technique based on the principles and 
mechanisms of natural selection and survival of the fittest from natural evolution [31]. The interest in evolutionary 
search procedures for designing neural network topology has been growing in recent years as they can evolve towards 
the optimal architecture without outside interference, thus eliminating the tedious trial and error work of manually 
finding an optimal network. 

3. Evolutionary Algorithms (EA) 
EAs are population based adaptive methods, which may be used to solve optimization problems, based on the genetic 
processes of biological organisms [31] [32]. Over many generations, natural populations evolve according to the 
principles of natural selection and "Survival of the Fittest", first clearly stated by Charles Darwin in "On the Origin of 
Species". By mimicking this process, EAs are able to "evolve" solutions to real world problems, if they have been 
suitably encoded. The procedure may be written as the difference equation [31]: 

]))t[x(v(s]1t[x =+         (44) 

where x (t) is the population at time t, v is a random operator, and s is the selection operator. 

3.2 Evolutionary Artificial Neural Networks (EANN) 
Many of the conventional ANNs now being designed are statistically quite accurate but they still leave a bad taste with 
users who expect computers to solve their problems accurately. The important drawback is that the designer has to 
specify the number of neurons, their distribution over several layers and interconnection between them. Several 
methods have been proposed to automatically construct ANNs for reduction in network complexity that is to determine 
the appropriate number of hidden units, layers, etc. Topological optimization algorithms such as Extentron [9], Upstart 
[35], Pruning [63] [75] and Cascade Correlation [29] etc. got its own limitations. 

The interest in evolutionary search procedures for designing ANN architecture has been growing in recent years as they 
can evolve towards the optimal architecture without outside interference, thus eliminating the tedious trial and error 
work of manually finding an optimal network [2] [6] [7] [14] [18] [19] [20] [21] [37] [50] [60] [69] [70] [77] [81] [83]  
[84] [85]. The advantage of the automatic design over the manual design becomes clearer as the complexity of ANN 
increases. EANNs provide a general framework for investigating various aspects of simulated evolution and learning 
[10] [14] [15] [50] [52]. 

3.2.1 General Framework for EANNs 
In EANN's evolution can be introduced at various levels. At the lowest level, evolution can be introduced into weight 
training, where ANN weights are evolved. At the next higher level, evolution can be introduced into neural network 
architecture adaptation, where the architecture (number of hidden layers, no of hidden neurons and node transfer 
functions) is evolved. At the highest level, evolution can be introduced into the learning mechanism. A general 
framework of EANNs which includes the above three levels of evolution is given in Figure 1 [2] [6].  



 14 

Evolutionary Search of learning rules

Evolutionary search of architectures and node transfer functions

Evolutionary search of connection weights

  Slow

Fast

 

Figure 1. A General Framework for EANNs 

From the point of view of engineering, the decision on the level of evolution depends on what kind of prior knowledge 
is available. If there is more prior knowledge about EANN's architectures than that about their learning rules or a 
particular class of architectures is pursued, it is better to implement the evolution of architectures at the highest level 
because such knowledge can be used to reduce the search space and the lower level evolution of learning rules can be 
more biased towards this kind of architectures. On the other hand, the evolution of learning rules should be at the 
highest level if there is more prior knowledge about them available or there is a special interest in certain type of 
learning rules. 

3.2.1.1 Evolutionary Search of Connection weights 
The shortcomings of the BP algorithm mentioned in Section 2.1 could be overcome if the training process is formulated 
as a global search of connection weights towards an optimal set defined by the evolutionary algorithm.. Optimal 
connection weights can be formulated as a global search problem wherein the architecture of the neural network is pre-
defined and fixed during the evolution. Connection weights may be represented as binary strings represented by a 
certain length. The whole network is encoded by concatenation of all the connection weights of the network in the 
chromosome. A heuristic concerning the order of the concatenation is to put connection weights to the same node 
together. Figure 2 illustrates the binary representation of connection weights wherein each weight is represented by 4 
bits. 

1

5

2

3

4

Input

Output

4

8

7

3

1

5

Genotype: 0100  1000  0111  0011  0001  0101  
Figure 2. Connection weight chromosome encoding using binary representation 

Real numbers have been proposed to represent connection weights directly [66]. A representation of the ANN could be 
(2.0, 6.0, 5.0, 1.0, 4.0, 10.0). However proper genetic operators are to be chosen depending upon the representation 
used. 

Evolutionary Search of connection weights can be formulated as follows: 

1) Generate an initial population of N weight chromosomes. Evaluate the fitness of each EANN depending on the 
problem. 

2) Depending on the fitness and using suitable selection methods reproduce a number of children for each 
individual in the current generation. 

3) Apply genetic operators to each child individual generated above and obtain the next generation.  

4) Check whether the network has achieved the required error rate or the specified number of generations has 
been reached. Go to Step 2. 

5) End 

While gradient based techniques are very much dependant on the initial setting of weights, the proposed algorithm can 
be considered generally much less sensitive to initial conditions. When compared to any gradient descent or second 
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order optimization technique that can only find local optimum in a neighborhood of the initial solution, evolutionary 
algorithms always try to search for a global optimal solution. Performance by using the above approach will directly 
depend on the problem. 

3.2.1.2 Evolutionary Search of Architectures 

Evolutionary architecture adaptation can be achieved by constructive and destructive algorithms. Constructive 
algorithms, which add complexity to the network starting from a very simple architecture until the entire network is 
able to learn the task [35] [56] [59]. Destructive algorithms start with large architectures and remove nodes and 
interconnections until the ANN is no longer able to perform its task [63] [75]. Then the last removal is undone. Figure 
3 demonstrates how typical neural network architecture could be directly encoded and how the genotype is represented. 
For an optimal network, the required node transfer function (Gaussian, sigmoidal, etc.) can be formulated as a global 
search problem, which is evolved simultaneously with the search for architectures [51]. 
 
To minimize the size of the genotype string and improve scalability, when priori knowledge of the architecture is 
known it will be efficient to use some indirect coding (high level) schemes. For example, if two neighboring layers are 
fully connected then the architecture can be coded by simply using the number of layers and nodes. The blueprint 
representation is a popular indirect coding scheme where it assumes architecture consists of various segments or areas. 
Each segment or area will define a set of neurons, their spatial arrangement and their efferent connectivity. Several high 
level coding schemes like graph generation system [49], Symbiotic Adaptive Neuro-Evolution (SANE) [62] [65], 
marker based genetic coding [36], L-systems [13], cellular encoding [38], fractal representation [58] etc are some of the 
rugged techniques. 

1

5

34

2

From
To 1 2 3 4 5 Bias Gene

1 0 0 0 0 0 0 000000
2 0 0 0 0 0 0 000000
3 1 1 0 0 0 1 110001
4 1 1 0 0 0 1 110001

5 0 0 1 1 0 1 001101

Genotype: 000000 000000 110001 110001 001101

Input

Output

 
Figure 3. Architecture chromosome using binary coding 

Global search of transfer function and the connectivity of the ANN using evolutionary algorithms can be formulated as 

follows 

1) The evolution of architectures has to be implemented such that the evolution of weight chromosomes are 

evolved at a faster rate i.e. for every architecture chromosome, there will be several weight chromosomes 

evolving at a faster time scale  

2) Generate an initial population of N architecture chromosomes. Evaluate the fitness of each EANN depending on 

the problem. 

3) Depending on the fitness and using suitable selection methods reproduce a number of children for each 

individual in the current generation. 

4) Apply genetic operators to each child individual generated above and obtain the next generation.  

5) Check whether the network has achieved the required error rate or the specified number of generations has 

been reached. Go to Step 3. 

6) End 
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3.2.1.3 Evolutionary Search of Learning Rules 

For the neural network to be fully optimal the learning rules are to be adapted dynamically according to its architecture 
and the given problem. Deciding the learning rate and momentum can be considered as the first attempt of learning 
rules [48]. The basic learning rule can be generalized by the function 

∏��
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−
==

=
k

1j
))1t(ijxki,..,2i,1i(

n

1ki,...,2i,1i

n

1k
)t(w θ∆      (45) 

Where t is the time, 
w is the weight change, x1, x2,….. xn are local variables and the θ’s are the real values coefficients 
which will be determined by the global search algorithm. In the above equation different values of θ’s determine 
different learning rules. The above equation is arrived based on the assumption that the same rule is applicable at every 
node of the network and the weight updating is only dependent on the input/output activations and the connection 
weights on a particular node. Genotypes (θ’s) can be encoded as real-valued coefficients and the global search for 
learning rules using the hybrid algorithm can be formulated as follows: 

1. The evolution of learning rules has to be implemented such that the evolution of architecture chromosomes are 

evolved at a faster rate i.e. for every learning rule chromosome, there will be several architecture chromosomes 

evolving at a faster time scale  

2. Generate an initial population of N learning rules. Evaluate the fitness of each EANN depending on the problem. 

3. Depending on the fitness and using suitable selection methods reproduce a number of children for each individual 

in the current generation. 

4. Apply genetic operators to each child individual generated above and obtain the next generation.  

5. Check whether the network has achieved the required error rate or the specified number of generations has been 

reached. Go to Step 3. 

6. End 

Several researches have been going on about how to formulate different optimal learning rules [4] [6] [11] [33] [82]. 
The adaptive adjustment of BP algorithm's parameters, such as the learning rate and momentum, through evolution 
could be considered as the first attempt of the evolution of learning rules [40]. Chalmers [23] defined the form of 
learning rules as a linear function of four local variables and their six pair wise products [11] [33]. Global optimization 
of neural network has been widely addressed using several other techniques [22] [28] [34] [64] [71] [72] [73] [74] [86]. 
Sexton et al [72] used simulated annealing algorithm for optimization of learning. For optimization of the neural 
network learning, in many cases a pre-defined architecture was used and in a few cases architectures were evolved 
together. No work has been reported to the best of our knowledge, where the network is fully automated (interaction of 
the different evolutionary search mechanisms) using the generic framework mentioned in Section 3.2. Many a times, 
the search space is narrowed down by pre-defined architecture, node transfer functions and learning rules. 

3.3 Meta Learning Evolutionary Artificial Neural Networks (MLEANN) 
Experimental evidence had indicated cases where evolutionary algorithms are inefficient at fine tuning solutions, but 
better at finding global basins of attraction [2] [82] [43] [80]. The efficiency of evolutionary training can be improved 
significantly by incorporating a local search procedure into the evolution. Evolutionary algorithms are used to first 
locate a good region in the space and then a local search procedure is used to find a near optimal solution in this region. 
It is interesting to consider finding good initial weights as locating a good region in the space.  Defining that the basin 
of attraction of a local minimum is composed of all the points, sets of weights in this case, which can converge to the 
local minimum through a local search algorithm, then a global minimum can easily be found by the local search 
algorithm if the evolutionary algorithm can locate any point, i.e, a set of initial weights, in the basin of attraction of the 
global minimum. Referring to Figure 4, G1 and G2 could be considered as the initial weights as located by the 
evolutionary search and WA and WB the corresponding final weights fine-tuned by the meta-learning technique. 
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Figure 4. Fine tuning of weights using meta-learning  

Figure 5 illustrates the general interaction mechanism with the learning mechanism of the EANN evolving at the 
highest level on the slowest time scale. All the randomly generated architecture of the initial population are trained by 
four different learning algorithms (backpropagation-BP, scaled conjugate gradient-SCG, quasi-Newton algorithm-QNA 
and Levenberg-Marquardt-LM) and evolved in a parallel environment. Parameters controlling the performance of the 
learning algorithm will be adapted (example, learning rate and momentum for BP) according to the problem [2] [6]. 
Figure 6 depicts the basic algorithm of proposed meta-learning EANN. Architecture of the chromosome is depicted in 
Figure 7. 

Backpropagation Scaled Conjugate
Gradient Quasi- Newton Levenberg

Marquardt

Evolutionary search  of learning algorithms and its parameters

Evolutionary search of architectures and node transfer functions

Evolutionary search of connection weights

 

Figure 5. Interaction of various evolutionary search mechanisms 

Figure 6. Meta-learning algorithm for EANNs 

1. Set t=0 and randomly generate an initial population of neural networks with 
architectures, node transfer functions and connection weights assigned at 
random. 

2. In a parallel mode, evaluate fitness of each ANN using BP/SCG/QNA and 
LM 

3. Based on fitness value, select parents for reproduction 

4. Apply mutation to the parents and produce offspring (s) for next generation. 
Refill the population back to the defined size. 

5. Repeat step 2 

6. STOP when the required solution is found or number of iterations has 
reached the required limit. 
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Figure 7. Chromosome representation of the proposed MLEANN framework 

3.3.1 MLEANN: Experiment Setup  
We have applied the proposed meta learning framework to the three-time series prediction problems discussed in 
Section 2.2. For performance comparison, we used the same set of training and test data that were used for 
experimentations with conventional design of neural networks. For performance evaluation, the parameters used in our 
experiments were set to be the same for all the 3 problems. Fitness value is calculated based on the RMSE achieved on 
the test set. In this experiment, we have considered the best-evolved neural network as the best individual of the last 
generation. As the learning process is evolved separately, user has the option to pick the best neural network (e.g. less 
RMSE or less computational expensive etc.) among the four learning algorithms. All the genotypes were represented 
using binary coding and the initial populations were randomly generated based on the following parameters shown in 
Table 8. The parameter settings, which were evolved for the different learning algorithms, are illustrated in Table 9. 
The parameter settings mentioned in Table 8 and 9 were finalized after a few trail and error approaches. We also 
investigated the performance of the proposed method with a restriction of architecture (no of hidden neurons). We set a 
maximum number of 4 hidden neurons and evaluated the learning performance. The experiments were repeated three 
times and the worst RMSE values are reported. 

3.3.2 MLEANN: Experimentation Results 

Table 10 displays empirical values of RMSE on test data for the three time series problems without architecture 
restriction. For comparison purposes, test set RMSE values using conventional design techniques are also presented in 
Table 10 (adapted from Table 1,2 and 3). Table 11 illustrates the RMSE values on training/test set data using the meta-
learning technique when the architecture restriction was imposed. Run times for the two different experimentations are 
also presented. 

Table 8. Parameters used for evolutionary design of artificial neural networks 

Population size 40 
Maximum no of generations 40 
Number of hidden nodes • Experiment 1: 5-16 hidden nodes 

• Experiment 2: maximum 4 neurons 
Activation functions tanh (T), logistic (L), sigmoidal (S), tanh-

sigmoidal (T*), log-sigmoidal (L*) 
Output neuron linear 
Training epochs 500 
Initialization of weights  +/- 0.3 
Ranked based selection 0.50 
Elitism 5 % 
Mutation rate 0.40 
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Table 9. Parameters settings of the learning algorithms  

Learning algorithm Parameter Setting 
Learning rate 0.25-0.05 Backpropagation 
Momentum 0.25-0.05 
Change in weight for second 
derivative approximation 

0 - 0.0001 Scaled conjugate 
gradient algorithm 

Regulating the indefiniteness of the 
Hessian 

0 – 1.0 E-06 

Step lengths 1.0E-06 – 100 
Limits on step sizes 0.1 – 0.6 
Scale factor to determine 
performance 

0.001 – 0.003 

 
Quasi-Newton 
algorithm 

Scale factor to determine step size. 0.1 - 0.4 
Levenberg Marquardt Learning rate 0.001 – 0.02 

  

 

Figure 8. Mackey Glass time series: Average test set RSME values during the 40 generations and meta-learning  

 

Figure 9. Gas furnace time series: Average test set RSME values during the 40 generations and meta-learning  
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Figure 10. Wastewater time series: Average test set RSME values during the 40 generations and meta-learning  

Table 10. Performance comparison between MLEANN (without architecture restriction) and ANN 

EANN  ANN 
RMSE Time 

series 
Learn 
Algo. 

Training Test Architecture RMSE Architecture 

BP 0.0072 0.0077 7 T, 3 L 0.0437 24 T* 
SCG 0.0030 0.0031 11 T 0.0045 24 T* 
QNA 0.0024 0.0027 6 T, 4 T* 0.0034 24 T* 

 
Mackey 

Glass 
LM 0.0004 †0.0004 8 T, 2 T* 1 L* 0.0009 24 T* 
BP 0.0159 0.0358 8 T 0.0766 18 T* 

SCG 0.0110 †0.0210 8 T, 2 T* 0.0330 16 T* 
QNA 0.0115 0.0256 7 T, 2 L* 0.0376 18 T* 

 
Gas 

Furnace 
LM 0.0120 0.0223 6 T, 1 L, 1 T* 0.0451 14 T* 
BP 0.0441 0.0547 6 T, 5 T*,1 L 0.1360 16 T* 

SCG 0.0457 0.0579 6 T, 4 L* 0.0820 14 T* 
QNA 0.0673 0.0823 5 T, 5 TS 0.1276 14 T* 

 
Waste 
Water 

LM 0.0425 †0.0521 8 T, 1 LS 0.0951 14 T* 

Table 11. Performance results and run time comparison of MLEANN  

EANN  
RMSE Run time in minutes Time 

series 
Learn 
Algo. 

Training Test Architecture ++A +B 

BP 0.0166 0.0168 4T 1181 288 
SCG 0.0062 0.0067 3 T, 1 T* 2066 504 
QNA 0.0059 0.0058 3 T*, 1 L 2169 528 

Mackey 
Glass 

LM 0.0056 ††0.0061 2 L*, 2 T* 2463 602 
BP 0.0189 0.0371 3 L 305 62 

SCG 0.0179 0.0295 1 T*, 2 L 629 121 
QNA 0.0156 0.0295 2 T*, 1 L*, 1 L 661 128 

Gas 
Furnace 

LM 0.0181 ††0.0290 1 T, 1 L, 1 T* 696 132 
BP 0.0647 0.0639 2T, 2T* 702 146 

SCG 0.0580 0.0600 2 T*, 1 T, 1 L 1254 267 
QNA 0.0590 0.0596 3 T*, 1L* 1291 279 

Waste 
Water 

LM 0.0567 ††0.0591 2 L, 1 T, 1 T* 1176 294 
++ without architecture restriction, + with architecture restriction 
† Lowest RMSE error 
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3.3.3 Comparison with Neuro-Fuzzy Systems 
In this section we compare the performance of MLEANN (RMSE values on training and test sets) with two popular 
neuro-fuzzy models. The neuro-fuzzy models [1] considered were Dynamic Evolving Fuzzy neural networks 
(dmEFuNN) [24] [47] implementing a Mamdani fuzzy inference system [55] and an Adaptive Neuro-Fuzzy Inference 
System (ANFIS) [42] implementing a Takagi-Sugeno fuzzy inference system [76]. The same training and test sets of 
the three time series were used to compare the performance with the neuro-fuzzy systems. The empirical results are 
depicted in Table 12. 

Table 12. Performance comparison between MLEANN and Neuro-Fuzzy Systems 

RMSE 
EANN Mamdani – NF Takagi Sugeno - NF Time 

series 
Training Test Training Test Training Test 

Mackey 
Glass 0.0004 0.0004 0.0023 0.0042 0.0019 0.0018 

Gas 
Furnace 0.0110 0.0210 0.0140 0.0490 0.0137 0.0570 

Waste 
Water 0.0425 0.0521 0.0019 0.0750 0.0530 0.0810 

4. Discussions and Conclusions 
Table 10 shows comparative performance between MLEANN and a conventional ANN without any architecture 
restriction. For Mackey glass series, using 500 epochs of BP learning, RMSE on test set was reduced by 82% (BP), 
31% (SCG), 29% (QNA) and 56% (LM). At the same time, number of hidden neurons got reduced by approximately 
58% (BP), 54% (SCG), 58% (QNA) and 55% for LM. LM algorithm gave the best RMSE error on test set (0.0004) 
even though it is highly computational expensive as demonstrated in Table 7. 
 
For the gas furnace time series, RMSE on test set was reduced by 53%% (BP), 36% (SCG), 69% (QNA) and 73% 
(LM). Savings in hidden neurons amounted to 55% (BP), 37% (SCG), 50% (QNA) and 55% (LM). SCG training gave 
the best RMSE value (0.0210) for gas furnace series. 
 
For the wastewater time series, RMSE on test set was reduced by 60% (BP), 29% (SCG), 35% (QNA) and 45% (LM). 
Savings in hidden neurons amounted to 25% (BP), 29% (SCG), 29% (QNA) and 36% (LM). LM learning gave the best 
RMSE value (0.0521) for wastewater series.  
 
To have an empirical comparison, we deliberately terminated the local search after 500 epochs (regardless of early 
stopping in some cases) for all the training algorithms. In some cases the generalization performance could have been 
further improved. As depicted in Table 3.4, our experimentations with limited architecture also reveal the efficiency of 
MLEANN technique. The gas furnace time series and wastewater series could be learned just with 4 hidden neurons 
using LM algorithm. However, for Mackey glass series the results were not that encouraging when compared with the 
conventional design using 24 hidden neurons. Perhaps Mackey Glass series requires more hidden neurons to learn the 
problem within the required accuracy. Table 12 depicts empirical comparison between two popular neuro-fuzzy 
systems. As evident, MLEANN has outperformed both neuro fuzzy models in terms of the lowest RMSE vales on test 
set for all the three time series. Selection of the architecture (number of layers, hidden neurons, activation functions and 
connection weights) of a network and correct learning algorithm is a tedious task for designing an optimal artificial 
neural network. Moreover, for critical applications and hardware implementations optimal design often becomes a 
necessity. In this paper, we have formulated and explored; MLEANN: an adaptive computational framework based on 
evolutionary computation for automatic design of optimal artificial neural networks. Empirical results are promising 
and show the importance and efficacy of the technique. 
 
In MLEANN, our work was mostly concentrated on the evolutionary search of optimal learning algorithms for 
feedforward neural networks. Similar approach could be used for optimizing recurrent neural networks and other 
connectionist networks. For the evolutionary search of architectures, it will be interesting to model as co-evolving [27] 
sub-networks instead of evolving the whole network. Further, it will be worthwhile to explore the whole population 
information of the final generation for deciding the best solution. We used a fixed chromosome structure (direct 
encoding technique) to represent the connection weights, architecture, learning algorithms and its parameters. As size 
of the network increases, the chromosome size grows. Moreover, implementation of crossover is often difficult due to 
production of non-functional offspring's. Parameterized encoding overcomes the problems with direct encoding but the 
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search of architectures is restricted to layers. In the grammatical encoding rewriting grammar is encoded. So the 
success will depend on the coding of grammar (rules). Cellular configuration might be helpful to explore the 
architecture of neural networks more efficiently. Gutierrez et al [39] has shown that their cellular automata technique 
performed better than direct coding. 
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