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Abstract

Much attention has been recently devoted to those machine learning procedures known as
kernel methods, the Support Vector Machines being an instance of them. Their performance
heavily depends on the particular ‘distance measurement’ between patterns, function also known
as ‘kernel’, which represents a dot product in a projection space. Although some attempts are
being made to ‘a priori’ decide which kernel function is more suitable for a problem, no de!nite
solution for this task has been found yet, since choosing the best kernel very often reduces to a
selection among di;erent possibilities by a cross-validation process. In this paper, we propose a
method for solving classi!cation problems relying on the ad hoc determination of a kernel for
every problem at hand, i.e., a problem-oriented kernel design method. We iteratively obtain a
semiparametric projecting function of the input data into a space which has an appropriately low
dimension to avoid both over!tting and complexity explosion of the resulting machine, but being
powerful enough to solve the classi!cation problems with good accuracy. The performance of
the proposed method is illustrated using standard databases, and we further discuss its suitability
for developing problem-oriented feature extraction procedures.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Kernel methods (KM) have become a powerful technique within the machine learn-
ing community, due to the possibility of building non-linear versions of classical linear
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algorithms in an easy and elegant way [15]. The main idea underlying KM consists in
projecting the input space onto a higher-dimension space and applying the correspond-
ing linear algorithm in that space. Support Vector Machines (SVM) [17] stand as the
most popular members of KM. They implement linear classi!ers in the projected space
that yield nonlinear decision boundaries in the input space. SVM-based classi!ers are
able to determine maximal margin boundaries which are an implementation of struc-
tural risk minimization, what leads to excellent generalization capabilities. Examples
of other kernel-based algorithms are Nonlinear PCA [16], and SVM Regressors [18],
among several others.
An open issue in KM literature focuses on the design of kernel functions that pro-

vide the best conditions for a particular problem to be solved. Common kernels in the
literature are the linear, sigmoidal, polynomial, or Gaussian ones. The latter are consid-
ered to behave well in general, since they imply a projection onto an in!nite-dimension
space, where any linear algorithm can then be successfully applied (for instance, any
classi!cation problem can be solved with minimal error, since enough degrees of free-
dom are always available); another issue is that of correct generalization, though, which
is guaranteed by the hyperparameter selection and the capacity control imposed by the
SVM learning method. Special attention should be paid to those kernels speci!cally
designed to deal with a particular non-numerical-input signal, such as those proposed
for text classi!cation [9] or in genomic processing [4]. We will not cover these is-
sues here, since the avenues opened in this case are too numerous to be approached
in a general way. We will assume, therefore, that only numerical inputs are avail-
able, and propose a general method for Problem-Oriented Kernel (POKER) design in
this case.
The commonly used kernel functions (Gaussian and polynomial) tend to project

data onto very high-dimension spaces, such that a tendency to over!tting exists. SVMs
tend to limit this e;ect by controlling the capacity of the machine through the max-
imization of the margin and hyperparameter selection. In any case, a large number
of support vectors (SVs) is usually found (every SV represents an axis in the pro-
jection space to represent new data), which does not bene!t the generalization nor
the complexity control of the machine. If we are mainly interested in solving a de-
cision problem, we may ask the projection function to build the minimal represen-
tation of the input patterns in the projection space, by focusing from the beginning
on the relevant data to solve the problem. Since the boundary is not known before-
hand, an incremental procedure is mandatory. In this sense, the aim of this paper is
to explore a method for constructing a POKER that better !ts the characteristics of
the problem at hand, and that also provides a more compact solution for the !nal
classi!er.
The outline of the paper is as follows: Section 2 introduces the formulation of the

training algorithm for support vector classi!ers (SVCs) with semiparametric kernels and
Section 3 presents an iterative scheme to construct those POKERs leading to compact
machines. Experimental results in several benchmark problems (both synthetic and real)
are shown in Section 4 and !nally, Section 5 collects the main conclusions of this paper
and identi!es lines for future research.
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2. Building SVCs with semiparametric kernels

We will consider here a binary classi!cation problem in which we have a train-
ing dataset {̃x1; : : : ; x̃l} belonging to an input space Rn and the corresponding targets
yi ∈{−1;+1}; i=1; : : : ; l. Nonlinear SVMs project input data onto a higher-dimension
space F, by means of a function 	̃(̃x) and solve the problem in F with a linear
classi!er

ŷ = sign(f(̃x)) = sign (w̃T	̃(̃x) + b); (1)

where w̃ is itself a linear combination of certain 	̃(̃xi) (those with 
i ¿ 0 are called
SV in SVM terminology):

w̃ =
l∑

i=1


iyi	̃(̃xi): (2)

Since the equations to solve the linear classi!er only involve inner products in F,
there is no need to explicitly compute 	̃(̃x), providing we can calculate the inner
product 〈	̃(̃xi); 	̃(̃xj)〉 directly from x̃i and x̃j [3]. Mercer’s theorem [17] identi!es
certain functions or kernels associated to those projections, whose evaluation on a
pair of vectors x̃i ; x̃j equals the inner product in F. This way, the kernel function is
de!ned as

k(̃xi; x̃j) = 〈	̃(̃xi); 	̃(̃xj)〉: (3)

By means of this kernel trick we can even consider in!nite dimension spaces F
as long as we know the corresponding kernel function (this is the case of the widely
used Gaussian kernel). In consequence, suitable projection design has been converted
into suitable kernel design. Under SVM formulation (see by instance [3,15,17]) the
classi!er is expressed according to

ŷ = sign(f(̃x)) = sign

(
NSV∑
i=1


iyik(̃x; x̃i) + b

)
: (4)

The above summatory incorporates only the kernel terms belonging to some of the
training patterns (the SVs), but usually this number (NSV ) is very large (in some
problems even 20–40% of the database). Another inconvenience of this approximation
is that we cannot analyze vectors directly in F, what could be interesting in other tasks
di;erent from that of classi!cation (such as feature selection). Some works [9,10,12,15]
have tried to get more compact solutions (i.e., with less kernel evaluations per pattern)
by assuming the following expansion of the weight vector:

w̃ =
R∑

i=1

�i	̃(̃xi): (5)

Doing so, the classi!er evaluation involves the calculation of just R kernel functions
for each pattern (usually R�NSV ).

f(̃x) =
R∑

i=1

�ik(̃x; x̃i) + b: (6)
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In [11,12], the algorithm for Growing Support Vector Classi!ers (GSVC) is intro-
duced as a method to iteratively construct a semiparametric approximation to a non-
linear SVC using the standard SVM formulation. As it will be explained in Section
3, GSVC combines a heuristic to select the columns that are added to the reduced
kernel matrix with the algorithm WLS-SVC (Weighted Least Squares SVC) [10] to
determine the coeQcients of the classi!er built at each iteration. Other works, such as
[9,15], present methods that !rst approximate the kernel matrix by a reduced number
of columns in a sense that some matrix norm is minimized and then solve a sim-
pler optimization problem. The work in [7] proposes to !rst consider a subset of the
columns of the kernel matrix at random, and then, regularize by minimizing the norm
of the vector formed with the subset of the Lagrange multipliers (dual variables) cor-
responding to the selected columns, besides some other modi!cations in the original
SVM formulation.
However, the above-mentioned methods (with the exception of [7]) maintain an

in!nite-dimensional F. In particular, GSVC’s projection and kernel functions have
not changed at all and, by using this formulation, the goal is to !nd the �i that best
approximates the exact SVM solution in F; in fact, these coeQcients can be exactly
calculated by !rst solving the complete SVM problem and then solving a pseudoinverse
problem (as shown in [15]). Since the projection space has not changed in this new
approach, this method still makes opportunities diQcult for a further data analysis
in F.
In this paper, we follow a di;erent approach and focus on designing a mapping

function 	̃(̃x) of !nite dimension which allows both to control machine complexity
and to operate in the projection space, while still achieving a good solution for the
classi!cation problem in terms of maximal margin. To do so, we propose to reinterpret
Eq. (6) by introducing the following projection function that maps data onto a di;erent
space FPO (problem-oriented, PO): 1

	̃PO(̃x) = [k(̃x; x̃1); : : : ; k(̃x; x̃R)]T;

kPO(̃x; z̃) =
R∑

i=1

k(̃x; x̃i)k(̃z; x̃i); (7)

where 	̃PO(̃x) is a projection function that incorporates some information about the
projection of data in space F (in fact, FPO as de!ned in Eq. (7) is a subspace
of F), but it also opens the possibility of grouping together information obtained
from di;erent spaces Fk with di;erent kernel functions (multikernel (MK) mapping
function):

	̃MK(̃x) = [k′1(̃x; x̃1); : : : ; k
′
R(̃x; x̃R)]T;

kMK(̃x; z̃) =
R∑

i=1

k′i (̃x; x̃i)k′i (̃z; x̃i): (8)

1 Note that the components of 	̃PO(̃x) are calculated with the kernel function corresponding to F.
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The above de!nition of 	̃PO(̃x) and kPO(̃x; ỹ) enables us to obtain the exact SVM
solution in FPO (instead of the approximate one in F given by Eq. (6)). Moreover,
since FPO is a !nite (and relatively low) dimension space, we can also analyze patterns
projected in FPO, what would open up a promising line for feature selection algorithms
from SVM classi!ers as we discuss in Section 4.
The remaining of this section is devoted to reviewing the formulation of the para-

metric kernel SVC so that it can be solved in a computationally eQcient fashion with
WLS-SVC [10], that also enables the application of growing schemes for the construc-
tion of a PO architecture (see Section 3).
In what follows, we review the formulation of the parametric kernel SVC so that

the exact linear SVC in FPO is solved with WLS-SVC [10]. Afterwards, in Section 3,
we describe a growing scheme for the construction of the POKER. Before, we brieRy
comment that other algorithms apart from WLS-SVC could be applied to determine the
linear SVC in the projected space FPO. We have opted for using WLS-SVC because
it is computationally eQcient, especially when combined with incremental algorithms
for the construction of the architecture of the classi!er (such as the one used in this
work). This is due to the fact that WLS-SVC can take advantage of the classi!er built in
the previous iteration to construct the classi!er for the present iteration. Furthermore,
WLS-SVC does not involve any change or modi!cation in the formulation of the
minimization problem of the standard SVM.
Let us now consider a linear classi!cation function in FPO

2

ŷ = sign(f(̃x)) = sign(w̃T	̃PO(̃x) + b); (9)

where w̃ and b result from the minimization of

Lp =
1
2
‖w̃‖2 + C

l∑
i=1

�i (10)

subject to constraints

yiw̃T(	̃PO(̃xi) + b)¿ 1− �i

�i¿ 0

}
∀i = 1; : : : ; l (11)

with respect to w̃, b and �i. After the incorporation of constraints into the functional
with Lagrangian multipliers 
i¿ 0 and �i¿ 0, respectively, and by introducing the
variables

ei = yi − (	̃PO(̃xi)w̃ + b); (12)

ai =
2
i

1− yiw̃T(	̃PO(̃xi) + b)
=

2
iyi

ei
; (13)

2 Note that in this case all vectors 	̃PO(̃xi) and w̃ can be explicitly calculated.
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we can rewrite (10) as

Lp =
1
2
‖w̃‖2 + 1

2

l∑
i=1

aie2i +
l∑

i=1

(C − 
i − �i)�i (14)

which, apart from the last term that vanishes at the minimum, is a WLS functional.
Taking derivatives with respect to w̃, and b, and forcing them to be 0 at the solution,
we get the following matrix expressions:

w̃ +�Da�Tw̃ +�ãb =�Daỹ;

ãT�Tw̃ + ãTb = ãTy; (15)

where

�= [	̃PO(̃x1); : : : ; 	̃PO(̃xl)]; ã = [a1; : : : ; al]T; (Da)ij = aij�(i − j):

We can now group both equations into a single system of linear equations
 (�Da�T + I) �ã

ãT�T ãT1̃



[

w̃

b

]
=


�Daỹ

ãTỹ


 : (16)

Note that (16) is an equation in w̃, b and ã that cannot be solved simultaneously
for all these variables. Thus, we use an iterative scheme consisting of two steps; after
randomly initializing w̃ and b:

• First, we calculate the corresponding ai values 3 by using (13).
• Then, we consider the ai values as constants and use (16) to update w̃ and b.

This procedure continues until the minimum of (14) is reached. This type of iterated
WLS scheme has asymptotic convergence as shown in [13]. The proof is based on the
“Convergence of Block Coordinate Descent” theorem [1].

3. Growing scheme for designing a POKER

In this section, we present an iterative scheme for constructing a POKER that in-
corporates the knowledge about the decision boundary that has been learned by the
classi!er in the previous iterations. This growing algorithm, named GSVC, has already
been proposed in [11,12] to construct compact semiparametric approximations to SVCs.
The main idea underlying GSVC is to start with a very reduced machine (a few cen-
troids for each class) and to iteratively add new centroids in order to achieve better

3 Computation of 
i is straightforward, please refer to [10] for details.
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representations of the decision boundary. At each iteration, the partial classi!cation
boundary is determined through the solution of a WLS-SVC problem [10]. Therefore,
the classi!er is initialized with M=2 (typically M = 2 or 4) centroids from each class,
picked up at random from the input data (̃c1 · · · c̃M ). Then, the initial projection is
computed as

	̃PO(̃x) = [k(̃x; c̃1); : : : ; k(̃x; c̃M )]T (17)

and after the application of WLS-SVC, the !rst classi!er is given by

f̂(̃x) = sign

(
M∑

k=1

wkk(̃x; c̃k)

)
: (18)

Afterwards, the decision boundary is improved by increasing the complexity of the
projection 	̃PO. For this goal, some new centroids are incorporated to the projection
function. These new centroids are selected using the heuristic introduced in [11]. Ac-
cording to SVM principles, the SVs are the critical input data that determine the
boundary, i.e. all the information needed to construct the decision boundary that min-
imizes the structural risk is contained in these samples. WLS-SVC has solved the
optimal SVM classi!er in FPO, so this result can be used to identify the data points
that support the initial boundary. Therefore, the heuristic to select the new centroids
consists in choosing them from the current SVs. In addition, to obtain good projec-
tions, orthogonality is largely preserved by selecting as new centroids samples lying
far apart from those which have already been selected. To proceed this way, the se-
lection is re!ned by sorting the candidates according to their distance to the near-
est centroids, and forming the !nal pool of candidates with those lying farther from
the previous centroids. This procedure incurs in no additional cost since the value
of the already computed components of 	̃PO can be used as a measure of distance
for this maximal orthogonality purpose (the i-th component of 	̃PO(̃x) is considered
to be the distance between x̃ and the i-th centroid). Finally, the new N centroids
are selected at random from the !nal candidates. After this update, projection 	̃PO

is enhanced by centroids c̃M+1 to c̃M+N (with N not necessarily equal to M) and
given by

	̃PO(̃x)new = [	̃T
PO(̃x); 	̃

T
PO(̃x)

inc]T

with 	̃PO(̃x)inc = [k(̃x; c̃M+1); : : : ; k(̃x; c̃M+N )]T: (19)

The growing stage continues with the application of WLS-SVC and the whole pro-
cedure is iterated until the quality of projection 	̃PO is observed to worsen because of
over!tting. To detect this fact, a cross-validation procedure is applied after each iter-
ation to determine whether to stop or continue incorporating centroids. This stopping
criterion, carried out on a separate subset of the training patterns that are not fed into
WLS-SVC, has proved to endow the machine with excellent generalization capabilities
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[11]. Moreover, it is worth remarking the eQciency of POKER in terms of computa-
tional resources since there is no need to recalculate from scratch the � matrix after
each iteration. Furthermore, WLS-SVC provides a classi!er of maximum margin since
it actually solves an SVM problem.

4. Experimental work

In this section, the proposed POKER algorithm is !rst applied to two bidimensional
datasets in order to illustrate the Problem-Oriented (PO) built kernels, as well as serv-
ing for an initial discussion on the implicit feature extraction performed by the method.
Then, we present results on several real-world datasets extracted from the UCI ma-
chine learning repository [2] to evaluate its performance against other SVM technolo-
gies: classical SVM, SVM pruned with a cross-validation-driven strategy [15] (p-SVM,
pruned-SVM), and a linear SVM on a subspace Frandom determined by means of an
a priori random selection of centroids. We call the last procedure RRSVM (randomly
reduced SVM).
Through all the experimental work, Gaussian kernels have been used for all the

coordinates of the PO mapping function, 	̃PO(̃x):

k(̃x; c̃i) = exp
(
−‖̃x − c̃i‖2

2"2

)
: (20)

4.1. Graphical interpretation of the ‘ad hoc’ built kernels

We use here two simple bidimensional datasets to graphically illustrate the kernel
designed by POKER. The !rst one is that of separating two classes drawn in concentric
circles. The results have been depicted in Fig. 1.
Notice how the obtained boundary perfectly represents the maximal margin solu-

tion (Fig. 1(a)), equivalent to the solution which could have been obtained with a
second-degree polynomial kernel (known to be optimal for this particular problem).
Therefore, POKER is able to semi-parametrically approximate the best kernel for the
problem at hand (without ‘a priori’ information about the problem to be solved). A
trivial feature extraction would be that of separating between ‘positive’ and ‘nega-
tive’ contributions to the decision, what results in a mapping of input patterns into a
bidimensional space (	+; 	−). This way, the components of the projection that push
towards the positive class are grouped in 	+ =

∑
wi¿0 wi	̃i (̃x) and those pushing to-

wards the negative are 	−=
∑

wi¡0 wi	̃i (̃x). Fig. 1(b) displays 	− in the vertical axis
and 	+ in the horizontal one. The problem is linearly separable in that space, and the
maximal margin is also preserved. Preliminary representation of these two extracted
features can be observed in Fig. 1(c) (contour plot of 	+) and Fig. 1(d) (contour plot
of 	−). These features tend to concentrate their inRuence area nearby the boundary, so
they are appropriate to determine the decision boundary. Possibly, further processing
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Fig. 1. Results of POKER on the concentric circle problem. The obtained boundary is shown in (a), the
representation of patterns in (	+; 	−) space, where they become linearly separable in (b). Contour plots for
features 	+ and 	− in input space are displayed in (c) and (d), respectively. Plots are completed with the
decision boundaries (solid) and margins (dotted) determined by POKER.

of the projected data could lead to !ner grain feature analysis, but that exceeds the
scope of this paper, and it is proposed as further work.
Analogous results have been represented for Kwok’s dataset [6] in Fig. 2, where

similar comments could be done. Note, however, that the problem is no longer sepa-
rable, which is reRected in both input space (Fig. 2(a)) and projected (	+; 	−) space
(Fig. 2(b)), as well as in the extended area of inRuence of features 	+ (Fig. 2(c))
and 	− (Fig. 2(d)). It should be pointed out how the kernel adapts to the decision
boundary, reRected by the extracted features concentrating on the decision boundary,
not in the areas of few relevance for the decision.
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Fig. 2. Results of the POKER on Kwok’s training dataset. The obtained boundary is shown in (a), the
representation of patterns in (	+; 	−) space in (b), as well as the area of inRuence of feature 	+ (c) and
	− (d) in input space. Contour plots for features 	+ and 	− in input space are displayed in (c) and (d),
respectively. Plots are completed with the decision boundaries (solid) and margins (dotted) determined by
POKER.

4.2. Other experiments

We have selected for performance comparison a binary synthetic dataset kwok
presented in [6] and several benchmark problems from the UCI Machine Learning
Repository [2]: pima, waveform, image and abalone. The last dataset has been con-
verted into a two-class problem according to [14]. Kwok has a two-dimensional input
space; its training and test data sets are formed by 500 and 10 200 patterns, respec-
tively. Pima has eight-dimensional inputs and the training and test sets sizes are 576
and 192 patterns. Waveform has inputs of 21 dimensions and the training and test sets
sizes are 4000 and 1000 patterns. Image has 18-dimensional inputs and the number
of training and test patterns are 1848 and 462. Finally, the partition of abalone re-
sulted in a training set of 2507 patterns and a test set of 1670, with inputs of eight
dimensions.
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The algorithms involved in the empirical comparison with POKER are the following:
!rst, RRSVM consists in selecting at random the kernels to be included instead of using
the heuristic described in Section 3. This method resembles that of RSVM [7] and the
modi!cation proposed in [8], but we solve the exact SVM optimization problem, instead
of the modi!ed optimization problem of [7] or [8], respectively. Comparison with this
method will point out how POKER e;ectively !nds kernels that eQciently represent
the problem being solved. Then, standard SVM serves as a baseline result to evaluate
the classi!cation accuracy of our method. We have used the SVM-light implementation
of [5] to carry out the experimental work. The third algorithm, p-SVM consists in a
standard SVM pruned until the error in a validation set reaches a minimum, following
the procedure indicated in [15] for obtaining the new weights. For this purpose, the
SVMs that are going to be pruned are trained with only 80% of the training patterns,
reserving the remaining 20% for the validation set. Comparison with p-SVM will give
an idea about POKER ability to achieve compact machines.
For all the classi!ers, we have selected the value of both " (Gaussian kernel para-

meter) and C (SVM regularization parameter) using a !ve-fold cross-validation method
and exploring a range of values of {0:1; 0:2; 0:5; 1; 2; 5; 10} for " and {1; 5; 10; 50; 100;
500; 1000; 5000; 10 000} for C. RRSVM needs to set a priori the number of columns of
the reduced kernel matrix. According to [7], we have explored values of 1%, 5% and
10% of the total training dataset for the size of this matrix. All the results involving
non-deterministic models (POKER and RRSVM) correspond to the average value and
standard deviation obtained through 20 experiments.
Table 1 shows the test classi!cation error (CE) and machine size in terms of number

of nodes in the classi!er obtained by POKER, SVM, p-SVM and RRSVM. Field
Machine size refers to the number of kernel evaluations required to classify a pattern.
We also display in the !eld % Patterns the percentage of training patterns that are
used to determine the architecture of the classi!er.
The results in Table 1 show that POKER and RRSVM achieve similar CE rates

to those of SVM in all the studied problems, although they involve classi!ers with
a very reduced number of nodes. However, pruned SVM has only reached POKER
and RRSVM good performances in both machine size and CE in kwok. In addition to
this, neither SVM nor p-SVM enable any analysis in feature space, since they use a
projection 	̃ of in!nite dimension.

In relation to POKER and RRSVM comparison, both systems achieve similar CE
percentages. A deeper analysis of the results in Table 1 points out that in the problems
where the machine sizes are similar (image and kwok), POKER performs slightly bet-
ter than RRSVM. On the other problems (abalone, pima and waveform), RRSVM’s
CE percentages are better than POKER’s, although RRSVM implies more complex
architectures (between 0.5 and 3 times more nodes). These results show that, in cer-
tain problems, POKER classi!cation rate could be slightly improved by the addition
of more nodes to the architecture, although this increase in machine complexity may
not be worthy. However, this fact must be interpreted in the perspective of the main
objective of this paper: the design of a problem-oriented kernel that focuses in the
representation of the decision boundary. Fig. 3 displays the contour plots of features
	+ and 	− obtained by RRSVM best performance in problem kwok. A comparison
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Table 1
Performance comparison between POKER, SVM, p-SVM and RRSVM in several benchmark problems

Problem POKER SVM p-SVM RRSVM

Abalone CE 19:5± 0:3 20.9 44.9 18:9± 0:2
Machine size 41:3± 16:6 1248 569 126
% Patterns 1.65 49.78 22.7 5.03
("; C) (0:5; 10000) (10; 5000) (0:5; 50) (0:5; 10000)

Image CE 3:8± 0:7 3.5 2.8 4:5± 0:7
Machine size 170± 50:2 209 397 185
% Patterns 9.2 11.31 21.48 10.01
("; C) (2; 500) (5; 1000) (1; 100) (2; 10000)

Kwok CE 12:1± 0:2 11.9 12.4 12:4± 0:4
Machine size 25± 6 134 21 25
% Patterns 5.00 26.80 4.20 5.00
("; C) (2; 100) (2; 10) (1; 1) (0:5; 1)

Pima CE 23:6± 2 22.4 22.9 22:5± 0:4
Machine size 19:3± 6:8 304 248 29
% Patterns 3.35 52.78 6.60 5.03
("; C) (1; 1000) (2; 50) (1; 5) (2; 1000)

Waveform CE 8:6± 0:3 8.4 22.8 8:4± 0:5
Machine size 97:2± 16:4 1012 134 400
% Patterns 2.43 25.30 3.35 10.00
("; C) (5; 100) (5; 1) (5; 1) (2; 5)

Test classi!cation error (in percentage) and standard deviation are showed, as well as !nal machine sizes
and the percentage of training patterns that are used to determine the architecture of the classi!ers.

of Figs. 2(c) and (d) with the corresponding Figs. 3(c) and (d) shows that POKER
features focus on the boundary, while RRSVM ones are spread all over the region
within the margins. The reason for this behavior is that POKER classi!ers are grown
by expanding the kernel only with terms near the boundary (those critical to improve
the de!nition of the boundary) and discarding the irrelevant data, what agrees with
SVM philosophy of selecting the critical input data. On the other hand, RRSVM’s
kernel includes terms from the whole input space since it positions the centroids at
random. Therefore, POKER classi!er performance could be slightly improved by ex-
panding the kernel with components that characterize other parts of the input space
than the boundary, but it would mean the loss of the PO characteristic, and the closing
of opportunities for a feature selection analysis oriented to the interpretability of the
decision boundary.
We !nish the discussion of the results by commenting on the ability of POKER

to project data into a space where vector images can be explicitly calculated. We
illustrate the potential feature representation and extraction capabilities with projections
onto feature space (	+; 	−) for some of the datasets (Fig. 4). It seems clear that further
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Fig. 3. Results of the RRSVM on Kwok’s dataset. The obtained boundary is shown in (a), the representation
of patterns in (	+; 	−) space in (b), as well as the area of inRuence of feature 	+ (c) and 	− (d) in input
space. Contour plots for features 	+ and 	− in input space are displayed in (c) and (d), respectively. Plots
are completed with the decision boundaries (solid) and margins (dotted) determined by RRSVM.

processing of these somewhat ‘aggregated’ two features could lead to more detailed
features, for instance by applying Vector Quantization methods on this space or by
di;erently aggregating kernels into more than two features. We propose this topic as
future work, though.

5. Concluding remarks and future work

We have proposed a problem-oriented kernel extraction method, relying on a growing
procedure to build SVCs. Experimental results reveal the good generalization capabili-
ties of the method and the compactness of the resulting machines in terms of number
of nodes. Furthermore, the graphical analysis of the implicit feature extraction carried
out by the POKER method shows that it actually extracts features that concentrate on
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Fig. 4. Projections of input patterns onto feature space (	+; 	−) for image (a), waveform (b), pima (c) and
kwok (d) test datasets. Patterns of both classes are plotted using di;erent symbols.

the areas close to the decision boundary, or, alternatively interpreted, that the method
is able to build ad hoc kernels for a given problem. Preliminary analysis of the projec-
tion onto a bidimensional feature space indicates that it would be possible to further
process these features to extract a !ner-grain feature representation, for instance by
performing di;erent groupings in the semiparametric kernels built by the algorithm.
Furthermore, this method is directly extensible to multiclass problems: we believe that
exploiting this information could lead to feature extraction methods that !nd common
features across categories, and which may help in many cases to obtain interpretability
in complex classi!cation tasks.
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