arXiv:cs/9907031v1 [cs.CG] 20 Jul 1999

Beta-Skeletons Have Unbounded Dilation

David Eppsteii
June 23, 2021

Abstract

A fractal construction shows that, for amy> 0, the 3-skeleton of a point set can have arbitrarily
large dilation. In particular this applies to the Gabriedgin.

1 Introduction

A number of authors have studied questions of diiation of various geometric graphs, defined as the
maximum ratio between shortest path length and Euclidestardie.

For instance, Chew][2] showed that the rectilinear Delauriapgulation has dilation at most10 and
that by placing points around the unit circle, one could firdmeples for which the Euclidean Delaunay
triangulation has dilation arbitrarily close to/2. In the journal version of his papef] [3], Chew added
a further result, that the graph obtained by Delaunay tratmpn for a convex distance function based
on an equilateral triangle has dilation at most 2. Chew'gamiare that the Euclidean Delaunay dilation
was constant was proved by Dobkin et §. [6], who showed ti@Dtelaunay triangulation has dilation at
mogtgmr where is the golden ratiq1 + v/5)/2. Keil and Gutwin [10] further improved this bound to
— s 242,
scosgég) and Josepl|[4] showed that these constant dilation bdwld for a wide variety of planar graph
construction algorithms, satisfying the following two gila conditions:

e Diamond property. There is some angle < w, such that for any edge in a graph constructed
by the algorithm, one of the two isosceles triangles wits a base and with apex angleontains
no other site. This property gets its name because the tangles together form a diamond shape,
depicted in Figurg]1(a).

e Good polygon property. There is some constadtsuch that for each fadeof a graph constructed by
the algorithm, and any two sitesv that are visible to each other across the face, one of the &t p
aroundf from u to v has dilation at mosd. Figure[lL(b) depicts a graph violating the good polygon

property.

Intuitively, if one tries to connect two vertices by a pathairgraph that passes near the straight line
segment between the two, there are two natural types of@ésiae encounters. The line segment one is
following may cross an edge of the graph, or a face of the graphither case the path must go around
these obstacles. The two properties above imply that ndighe of detour can force the dilation of the pair
of vertices to be high.
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Figure 1. (a) Diamond property: one of two isosceles triaagin edge is empty. (b) Graph violating good polygon
property: ratio of diagonal to boundary path is high.

For a survey of further results on dilation, sgle [7]. Ourries¢ here is in another geometric graph, the
skeletongfL, [13], which have been of recent interest for their usenidifig edges guaranteed to take part in
the minimum weight triangulatiof][f] §,]14] As a special case- 1 gives theGabriel graph a subgraph of
the Delaunay triangulation and the relative neighborhaaghly, and a supergraph of the minimum spanning
tree. These graphs have a definition (given below) clostédye® to Das and Joseph'’s diamond property. The
valueg is a parameter that can be taken arbitrarily close to zer@rg point set, as beta approaches zero,
more and more edges are added togkskeleton until eventually one forms the complete grapteréfore
it seems reasonable to guess that, for sufficiently sfathe g-skeleton should have bounded dilation.
Such a result would also fit well with Kirkpatrick and Radkewtivation for introducing5-skeletons in
the study of “empirical networks”: problems such as modglime probability of the existence of a road
between citieg[11].

In this paper, we show that this is surprisingly not the cdser. any 3, we find point sets for which
the 5-skeleton has arbitrarily high dilation. Our constructigses fractal curves closely related to the Koch
snowflake. We show that the point set can be chosen in such dghagathes-skeleton forms a path with
this fractal shape; the fact that the curve has a fractal mioe greater than one then implies that the graph
shortest path between its endpoints has unbounded length.

2 Beta-skeletons

The p-skeleton [1JL[ 13] of a set of points is a graph, defined toaioréxactly those edgesb such that no
point ¢ forms an anglecbgreater thasin=11/4 (if 5 > 1) orm — sin™1 3 (if 3 < 1).

Equivalently, if5 > 1, thes-skeleton can be defined in terms of the unidbof two circles, each having
abas a chord and having diameted(a, b). Edgeabis included in this graph exactly whéh contains no
points other thama andb.

If 5 =1, an edgeabis included in the3-skeleton exactly when the circle havia as diameter contains
no points other thaa andb. The 1-skeleton is also known as tBabriel graph[f].

If0 < 8 < 1, there is a similar definition in terms of the intersectloof two circles, each havingb
as a chord and having diamet#ia, b) /3. Edgeabis included in the3-skeleton exactly whehcontains no
points other thama andb.

Figure[R depicts these regions fér= /2 (union of circles),3 = 1 (single circle), and3 = 1/v/2
(intersection of circles).

As noted aboveS-skeletons were originally introduced for analyzing erwair networks. Gabriel
graphs ang3-skeletons have many other applicationscomputational morpholog{combinatorial meth-
ods of representating shapes). Gabriel graphs can alscedgaisonstruct minimum spanning trees, since



Figure 2. Empty regions foy'2-skeleton, Gabriel graph, ang<{2-skeleton.

N

Figure 3. Fractal curveB(w/4,k) fork = 1,2, 3.

the gabriel graph contains the MST as a subgraph. More fgceatious researchers have shown that
3-skeletons (for certain values 6f> 1) form subgraphs of the minimum weight triangulatiph[J1L8].

Su and Chang[[}2] have described a generalization of Gagmaghs, thek-Gabriel graphs, in which
an edge is present if its diameter circle contains at rkestl other points. One can similarly generalize
[B-skeletons tk-5-skeletons. Our results can be made to hold as well for theserglizations as for the
original graph classes.

3 Fractalsand dilation

Our construction showing that beta-skeletons have untemligtilation consists of a fractal curve with a
recursive definition similar to that of a Koch snowflake. Fogigen anglef define the polygonal path
P(6,1), by following a path of five equal-length line segments: oonezontal, one at anglé, a second
horizontal, a segment at angle, and a third horizontal.

We then more generally define the gragi#, k) to be a path of 5line segments, formed by replacing the
five segments dP(6, 1) with congruent copies d?(0, k— 1), scaled so that the two endpoints of the path are



Figure 4. Fractal curve is contained in a diamond.

at distance one from each other. Figlire 3 shows three lefisa@onstruction. In the drawing of Figufe 3,
the orientations of the five copies Bff, k — 1) alternate along the overall path, so that the horizontalesop
are in the same orientation as the overall path and the atleecdpies are close to upside-down, but this
choice of orientation is not essential to our construction.

Note that, if we denote the length Bf6, k) by ¢, = ¢(6), then/, > 1 andly = E'i.

Lemmal. P(6,k) is contained within a diamond shape having the endpointb@phth as its diagonal,
and with angle) at those two corners of the diamond.

Proof: This follows by induction, as shown in Figufe 4, since the Bueh diamonds containing the five
copies ofP(f, k — 1) fit within the larger diamond defined by the Lemma. O

Lemma2. If 6 < (7 —sin~15)/2, P(6,K) is the 5-skeleton of its vertices.

Proof: We show that, ifa andb are non-adjacent vertices in the path, then there is soiorening an angle

of at leastr — sin~! 3. We can assume thatandb are in different copies d?(6, k — 1), since otherwise the
result would hold by induction. But no matter where one pdaweo points in different copies of the small
diamonds containing the copies®f, k— 1) (depicted in Figurg]4), we can choose one of the three imterio
vertices ofP(f, 1) as the third point forming an angleacb > 7= — 26. The result follows from the assumed
inequality relatingg to 3. O

For instance, the grapt®(r/4,k) depicted in Figur¢]3 are Gabriel graphs of their vertices. @xam
careful analysis shows that larger valued atill result in ag-skeleton: if the orientations of the copies of
P(0,k— 1) that formP(6, k) are chosen carefullf(6, k) is contained in only half the diamond of Lemifja 1,
and angleacbin the proof above can be shown to ber — 360/2.

Theorem 1. For any > Othere is a ¢> 0 such that3-skeletons of n-point sets have dilati@iin®).

Proof: We have seen that we can choogesach that the grapt®(d, k) are3-skeletons. Since the endpoints
of the path are at distance one from each other, the dilatid?(@ k) is ¢, = 6'{. Each such graph has
n = 5¢+ 1 vertices and dilatiod = n'°%‘1-°(%) Sincel; > 1, logs ¢4 > O. O

4 Upper Bounds

We have shown a lower bound €fn°) for the dilation of3-skeletons, where is a constant depending on
6, and approaching zero @gsapproaches zero. This behavior of having length a fractipoaer ofn is
characteristic of fractal curves; is it inherentnskeletons or an artifact of our fractal construction? We
now show the former by proving an upper bound on dilation efsame form.
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Figure 5. Tree of triangles and corresponding abstract tree

To do this, we define an algorithm for finding short pathgiskeletons. As a first start towards such an
algorithm, we use the following simple recursion: to find @ghpimom sto t, test whether edgst exists in
the 5-skeleton. If so, use that edge as path. If not, sorfoems a large anglert; concatenate the results of
recursively finding paths fromto r andr tot.

For 5 < 1, sr andrt are shorter thast, so this algorithm always terminates; we assume throughout
the rest of the section tha < 1. We can represent the path it finds as a tree of triangletagihg an
angle of at least — sin~! 3, rooted at trianglesrt (Figure[b). The hypotenuse of each triangle in this tree is
equal to one of the two shorter sides of its parent. Note teatrtangles may overlap geometrically, or even
coincide; we avoid complications arising from this podgipby only using the figure’s combinatorial tree
structure. We will bound the length of the path found by thgoethm by manipulating trees of this form.
For any similarly defined tree of triangles, we define tlmeindary lengthof the tree to be the following
formula:

T| =dist(s,t) + Y _ (perim(A) — 2 hypotenusgA)).
AeT
In other words, we sum the lengths of all the short sides oftiilaagles, and subtract the lengths of all
non-root hypotenuses. If the tree forms a non-self-inteirsg polygon, such as the one shown in the figure,
this is distance fronsto t “the long way” around the polygon’s perimeter

Lemma3. For the tree defined by the algorithm abovye&| is the length of the path constructed by the
algorithm.

Proof: This can be shown by induction using the fact that the patm o t is formed by concatenating
the paths fronsto r andr tot. |

Our bound will depend on the number of leaves in the tree medabove. However, this number may
be very large, larger tham, because the same vertex of our input point set may be inyofvériangles in
many unrelated parts of the tree. Our first step is to prunéréigeto produce one that still corresponds in a
sense to a path in the-skeleton, but with a good bound on the number of leaves.

Lemma4. For any 3 < 1, we can find a tree like the one described above, with at ro$taves, for
which|T| is the length of some path in titkeskeleton from s to t.

Proof: Define a “leaf vertex” to be the vertex opposite the hypotenofsa leaf triangle inif. We prune
the tree one step at a time until each vertex appears at mizcst &8 a leaf vertex. At each step, the path
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Figure 6. Making single-leaf tree longer: subdivide trieasgincrease angles, add children.

Figure 7. Logarithmic spiral formed by keeping fixed angleéstination point.

corresponding td (and with length at mosfT|) will visit all the leaf vertices in tree order (as well as
possibly visiting some other vertices coming from intenodes of the tree).

Suppose some vertexappears three or more times. Then we priify removing all subtrees descend-
ing from the path between the first and last appearanedafcurring between the two appearences in tree
order), and we shorten the corresponding path by removimgahtion of it between these two appearances
of v. At each step, the change|fb| comes from subtracting some triangle short side length®sponding
to the subtrees removed from as well as adding some hypotenuses of triangles from the saivtrees.
Each subtracted side length that is not cancelled by an dagmatenuse corresponds to one of the edges
removed from the path, so the total reductior{Tihis at most as great as the total reduction in the length
of the path, and the invariant thgt| bounds the path length is maintained. After this pruningretwill
be no leaves between the two appearances ahd no new leaves are created elsewhere in the tree, so the
invariant that the path visits the leaf vertices in order$s anaintained.

This pruning process removes at least one appearanc@dl so can be repeated at most finitely many
times before terminating. O

We use induction on the number of leaves to prove bound3 oM he following lemma forms the base
case:

Lemmab. LetT be atree of triangles, all having an angle of at least /2 opposite the edge connecting
to the parent in the tree, with exactly one leaf triangle, aodled so that the hypotenuse of the root triangle
has lengthl. Then|T| < —1/cos#6.

Proof: Since|T| does not depend on the ordering of tree nodes, we can assuhwilbss of generality
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Figure 8. Exponent in the bound of Theorﬂm 2, as a functigh of

that each node’s child is on the left. For any such tree, weinerease T| by performing a sequence of
the following steps: (1) If any triangle has an angle gretitanf, change it to one having an angle exactly
equal to#d, without changing any other triangle shapes. (2) If anyngla has a ratio of left to right side
lengths less than some val@z split it into two triangles by adding a vertex on the rigtdesi (3) Add a
child to the leaf ofT. These steps are depicted in Figlire 6.

The result of this sequence of transformations is the cenadibn of many triangles with angles equal
to 0, very short left sides, and right sides with length closehtat bf the hypotenuse. In the limit we get
a curve fromsto t formed by moving in a direction forming an angte— 6 to t, namely thelogarithmic
spiral (Figure[}). Integrating the distance traveled on this $pigainst the amount by which the distance
tot is reduced shows that it has the length formula claimed idghmama. Since we reach this limit by a
monotonically increasing sequence of tree lengths, stawith any finite one-leaf tree, any finite tree must
have length less than this limit. O

More generally, we have the following result.

Lemma6. LetT be atree of triangles, all having an angle of at least 7 /2 opposite the edge connecting
to the parent in the tree, with k leaf triangles, and scaledisd the hypotenuse of the root triangle has
length1. Then|T| < (—1/ cos 8)1+10G2K]

Proof: We prove the result by induction dg Lemma[b forms the base case. If there is more than one leaf
in T, form a smaller tre@’ by removing fromT each path from a leaf to the nearest ancestor with more than
one child. These paths are disjoint, and each such remqalces a subtree with one leaf by the edge at
the root of the subtree, so using Lemfha 5 again showgThat —|T’|/ cos 6. Each leaf inT’ has two leaf
descendants ifi, so the number of leaves Tis at mostk/2 and the result follows. O

This, finally, provides a bound gf+skeleton dilation.

Theorem 2. For 8 < \/§/2 ~ 0.866025 any 3-skeleton has dilation @), where c< 1 is a constant
depending org and going to zero in the limit a8 goes to zero.

Proof: We have seen (Lemnié 4) that we can connect any pair of veiticé® skeleton by a path with
length bounded byT|, whereT is a tree of triangles in which all angles are at least sin—! 3, and where
T has at most2leaves. By Lemm§ 6, the length of such a tree is at most

logy ———=——
(—=1/ cos(m — sin~! ﬁ))l-i-Ung 2n| _ O(nOQZ cos(m—sin™=5) ) = O(n—% |092(1—62))



which has the form specified in the statement of the theorem. O

Figure[$ shows the growth of the exponerds a function of3. Forv/3/2 < 3 < 1, the theorem does
not give the best bounds; a boundnef 1 on dilation can be proven using the fact that the skeletotagus
the minimum spanning tree.
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