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Abstract

We tackle the problem of computing the Voronoi diagram of a 3-D polyhedron whose faces are planar. The main
difficulty with the computation is that the diagram’s edges and vertices are of relatively high algebraic degrees. As
a result, previous approaches to the problem have been non-robust, difficult to implement, or not provenly correct.

We introduce three new proximity skeletons related to the Voronoi diagram: (Mpteoi graph(VG), which
contains the complete symbolic information of the Voronoi diagram without containing any geometry; (2) the
approximate Voronoi graplfAvVG), which deals with degenerate diagrams by collapsing sub-graphs of the VG
into single nodes; and (3) thegroximity structure diagram(PSD), which enhances the VG with a geometric
approximation of Voronoi elements to any desired accuracy. The new skeletons are important for both theoretical
and practical reasons. Many applications that extract the proximity information of the object from its Voronoi
diagram can use the Voronoi graphs or the proximity structure diagram instead. In addition, the skeletons can be
used as initial structures for a robust and efficient global or local computation of the Voronoi diagram.

We present a space subdivision algorithm to construct the new skeletons, having three main advantages. First, i
solves at most uni-variate quartic polynomials. This stands in sharp contrast to previous approaches, which require
the solution of a non-linear tri-variate system of equations. Second, the algorithm enables purely local computation
of the skeletons in any limited region of interest. Third, the algorithm is simple to impleme2@02 Elsevier
Science B.V. All rights reserved.
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1. Introduction

The Voronoi diagram is a fundamental geometric structure [2,7,12]. We are interested in Voronoi
diagrams of 3-D linear polyhedra (i.e., polyhedra whose faces are planar), because they support man
important applications in geometric computation [1,13,21]. The Voronoi diagram of an object is closely
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related to its medial axis. In the case of linear polyhedra, the Voronoi diagram of an object can be easily
constructed from its medial axis, and vice versa.

The Voronoi diagram of a non-convex linear polyhedron contains non-linear algebraic entities. Its
faces lie on quadratic surfaces, its edges are intersections of two quadratic surfaces, and its vertices ar
intersections of three quadratic surfaces. The combination of a complex connectivity structure and non-
linear geometric elements makes the construction of the Voronoi diagram of a polyhedron a difficult
problem. Computing the exact diagram requires solving systems of tri-variate non-linear equations [8,
14,15,18], resulting in algorithms that are not robust, difficult to implement, and difficult to prove correct.

Since construction of the exact geometry of the Voronoi diagram cannot avoid intersecting non-
linear 3-D surfaces, several approximate structures have been suggested. Canny and Donald [4] defin
‘simplified Voronoi diagrams’ based on a distance measure that is not a true metric. While this measure
is appropriate for robot motion planning, it is not clear whether it can be used for other applications.
Sudhalkar et al. [22] proposes the box-skeleton, which uses the maximum norm instead of the Euclidean
norm, and therefore does not provide proximity information. Rezayat [16] builds a so-called ‘midsurface’
of an object, which is only implicitly defined by an algorithm to construct it. The algorithm is heuristic in
nature, and user intervention is recommended. Reddy and Turkiyyah [14] construct approximate Voronoi
diagrams in the sense that the geometry of the edges and surfaces of the Voronoi diagram is not compute
exactly. However, the exact location of the vertices is computed, thus still requiring the computations
of non-linear intersections. Milenkovic [11] uses a numeric predicate that identifies vertices without
necessarily computing their exact locations, but its convergence is not guaranteed.

Another type of approximate Voronoi diagram of an object is the Voronoi diagram of a set of points on
the object’s boundary. Bertin and Chassery [3] prove that the Voronoi diagram of such points converges
toward the Voronoi diagram of the polyhedron when the step of discretization tends to zero. Etzion [5]
constructs a finite set of points on the boundary of a 2-D polygon, whose Voronoi diagram carries the
complete symbolic information of the Voronoi diagram of the polygon. Several works [17,23,25] use a
Delaunay triangulation of points on the polyhedron’s boundary to build the medial axis of the polyhedron.
However, the convergence of these algorithms has not been proven.

Lavender et al. [9] use an octree in order to provide an elegant ‘black box’ to answer proximity queries
concerning specific points. For answering such gueries, the method is general, easy to implement, an
very practical. However, it does not provide any information regarding the symbolic structure of the
Voronoi diagram, hence is not suitable for skeletal shape analysis. Vleugels and Overmars [24] also use
a space subdivision to construct a geometric approximation of the Voronoi diagram of a set of disjoint
convex sites. The symbolic information analyzed is limited to the connectivity of the Voronoi diagram;
the different Voronoi elements are not identified.

Contribution

In this paper we introduce a new approach for dealing with non-linear Voronoi diagrams, based
on computing their symbolic and geometric parts separately. We use thevtgomoi Graph (VG)
to describe the symbolic part. We present a simple space subdivision algorithm for computing the
Voronoi graph of a 3-D linear polyhedron. The algorithm construd®soximity Structure SubdivisigmR
subdivision whose cells are labeled according to relative proximities to polyhedron entities. The Voronoi
graph is constructed from the subdivision in three stages: computing withesses of Voronoi edges, using
them to identify Voronoi vertices, and finally determining the connectivity structure. The algorithm
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utilizes only distance comparisons and 2-D geometric computations, the most complex of which is
intersecting two conic sections. The algorithm has been implemented.

To tackle degeneracies, we define and computeAggroximate Voronoi GraplAVG), in which
degenerate and almost-degenerate parts of the Voronoi graph are identified and simplified. The spac
subdivision allows us to also compute a well-defined approximation to the geometric part of the Voronoi
diagram to any desired accuracy. We refer to this type of approximate Voronoi diagraPrasraity
Structure Diagram(PSD. Computation of the PSD is very stable, since it does not involve symbolic
decisions, and it utilizes the same simple geometric operations used in the computation of the Voronoi
graph.

The algorithm has several important advantages over previous approaches. First, it utilizes only
relatively simple 2-D geometric computations, thus avoiding complex and unstable intersections of
3-D surfaces. Second, all three proximity skeletons can be computed locally, in a given spatial region
of interest. Third, the algorithm allows purely local computationpaftial information contained in
the skeletons, such as the identities and approximate locations of Voronoi vertices or edges, and it
does so efficiently without requiring global curve tracing. Finally, its correctness has been formally
proven.

The proximity skeletons we introduce are important by themselves for several reasons. First, they
preserve proximity information, unlike approximations that use a different metric. Second, many
applications that currently compute the Voronoi diagram or medial axis are actually only interested
in partial proximity information present in the VG, AVG or PSD. Third, these skeletons can be
used in order to efficiently identify regions of interest in which more detailed information is needed.
Finally, the skeletons constitute initial structures for robust and efficient computation of the Voronoi
diagram.

The paper is organized as follows. In Section 2 we formally define the Voronoi graph, and provide
notations and basic definitions. In Section 3 we discuss properties of the Voronoi diagram and of the point
sets used to define it. In Section 4 we define the proximity structure subdivision and give an algorithm
for constructing it. In Section 5 we describe how the Voronoi graph is constructed from the subdivision.
In Sections 6 and 7 we define the two other proximity skeletons and describe their construction. For
clarity of exposition, in Sections 4 and 5 we assume that the Voronoi diagram of the polyhedron is not
degenerate. Handling of degenerate Voronoi diagrams is done in Section 6. A detailed proof for the fact
that Voronoi edges are 1-manifold curves is given in Appendix A. The discussion in Section 8 includes
a description of a single minor configuration for which the proof of correctness of our algorithm has not
been completed.

2. Definitions and notations

Let O be a bounded 3-D linear polyhedron having a 2-manifold connected boundary composed of
convex faces [10]. The requirement thathas convex faces does not limit the range of polyhedra. For
any polyhedronQ, we can decompose its faces into convex pieces, compute the Voronoi diagram (or
Voronoi graph or proximity structure diagram) of the resulting polyhedporand then easily obtain the
Voronoi diagram ofQ from the Voronoi diagram o)’ (see Section 8).

Theentitiesof Q are the vertices, edges and faceg)gfand are denoted by lower-case lettes$, c.

The entities are closed sets, i.e., an edge contains its vertices, and a face contains its edges and vertice
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Fig. 1. A 2-D example:v is a vertex incident on edge. If CloserEqis defined in the standard way,
then CloserEqu, ¢) N CloserEde, v) is the 2-D gray region. IfCloserEqis defined as in this paper, then
CloserEqu, e) N CloserEde, v) is the dotted line, which is a 1-D region.

For two entitiesa andb, we say thatt C b (or a C b) if the point set ofz is a proper subset (or subset)
of the point set ob.

d(x, y) denotes the distance of two points as well as the distance between a point and an entity. The
distance between a pointand an entitya is defined as int, d(x, y). For a pointx, B(x,r) denotes
the locus of pointsy s.t. d(x, y) < r. For two pointsy, z, [y, z] denotes the locus of points s.t.
x=ty+ (A -1tz for 0<t <1, and(y, z) denotes the locus of points s.t. x =ty + (1 — )z for
0 <t < 1. Forapoint sefd, dA denotes the boundary df, int(A) denotes the interior of, andcl(A)
denotes the closure df. 9 A, int(A) andcl(A) are defined relative to the affine hull af dim(A) denotes
the dimension of the affine hull A.

,(x) denotes therojection of a pointx on an entitya, i.e., the point oru nearest toc. ,(x) is a
single point, since is either a vertex or an edge or a convex facéd@{pointof a pointx on a polyhedron
Q is a pointy s.t.d(x, y) < d(x, z) for every pointz € Q. Thecarrier of an edge (face) is the infinite
line (plane) containing the entity, i.e., itis the affine hull of the entity. The carrier of a vertex is the vertex
itself. The carrier of an entity is denoted bycar(a). Sets of entities are denoted by lower-case Greek
letterse, B, y. ax denotes a set of entities containiaag|«| denotes the number of entitiesdn

Let a and b be two entities. We would have liked to use the following standard definitions for the
point setsClosen(a, b) andCloserEda, b): Closefa, b) = {x|d(x, a) < d(x, b)} andCloserEda, b) =
{x|d(x,a) <d(x,b)}. However, ifa andb intersect each other, thebloserEda, b) N CloserEqb, a)
might be a 3-D region (a 2-D example is shown in Fig. 1).

In order to ensure that Voronoi faces are two-dimensional, we d€fosera, b) andCloserEda, b)
as follows. IfaNb =@ or a C b, then CloserEda, b) = {x|d(x,a) < d(x,b)} and Closefa, b) =
int(CloserEda, b)). OtherwiseClosenra, b) = {x|d(x, a) < d(x, b)} andCloserEda, b) = cl(Closer(a,

b)). In addition we defineCloser(a, a) = ¥ andCloserEda, a) = %3. In Section 3 we study the proper-
ties of theCloser(a, b) andCloserEda, b) sets.

Let o be a set of entities. Thbisector of « is bis(a) =, ,c, CloserEda, b). The bisector of
the carriers ofx is carbis(a) = {x | V,»eqd(x, Car(a)) = d(x, car(b))}. The Voronoi regionof « is
Ry = Nyea.peo ClOserEda, b). If a pointx € R,, then we say that the entities énare thegovernors
of the point. Note that for every set of entities R, < bis(«).

The boundaries of the Voronoi regiom, for |«| = 1 comprise thé/oronoi diagramof Q, VD(Q).

A point x onVD(Q) satisfies that there exists a set of entitiewhose size is greater than 1, s.tc R,,.
For a specific set of entities, consider a maximal connected regiBnn R, S.t. R ¢ Ry forany D «.
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If the region is a surface, then it isface f, of VD(Q). If the region is a curve, then it is atgee, of
VD(Q). If the region is a point, then it is\eertexv, of VD(Q).

The medial axisof Q, MA(Q), is the locus of points it having more than one footpoint on the
boundary ofQ.

The Voronoi graph

The Voronoi diagram oD defines a labeled graph whose nodes are the elements (vertices, edges and
faces) of the diagram, and whose arcs connect elements that are co-incident. Every node of the graph i
labeled by the governors of the corresponding Voronoi element. We call this graph the Voronoi graph of
0, which is formally defined as follows.

Let G be an undirected graph such that every node is labeled by: (1) a set of entifleq2)ftype:

f ace, edge orvert ex. G is aVoronoi Graphof Q if there exists a bijectiorF from the set of nodes
of G to the set of elements &fD(Q) such that: (1) For every nodee G, if type of n is f ace then
F(n) is a Voronoi face. Similarly for typesdge andver t ex. (2) For every node € G, if the set of
entities ofn is «, then F(n) is governed byx. (3) n; andn, share an arc ii7 iff there is an incidence
relationship betweel (n,) and F (n,) in VD(Q).

We say that the Voronoi graph contains all the symbolic information present in the Voronoi diagram;
it does not contain any geometry.

3. Properties of the Voronoi diagram

In this section we study the properties of the point sets and structures defined in the previous
section. Lemmas 1-2 are auxiliary lemmas. Lemmas 3-9 give properties of the pdiitssga, b),
CloserEda, b), R,, bis(a), carbis(w). Lemmas 10-14 give properties MD(Q). The proofs of
Lemmas 1-4 are simple and therefore omitted.

Lemmal (The triangle inequality between two points and an entltgla be an entity. Lek, y be two
points.(1) d(x,a) <d(x,y) +d(y,a). (2) If d(x,a) =d(x,y) +d(y, a), then there exists a points.t.
z=m,(y) =m,(x) andy € [x, z].

Lemma 2 (The conditions in which the interior df | d(x, a) = d(x, b)} is empty).Leta andb be two
entities. Letx be a point s.td(x, a) = d(x, b) and there does not exist a poins.t.z = 7, (x) = 7, (x).
For everye > 0 there exists a poing € B(x, &) s.t.d(y,a) > d(y, b).

Throughout this section we will use the table of Fig. 2. The table is implied from the definitions of
CloserandCloserEqtogether with Lemma 2.

Lemma 3 (Basic properties o€loserandCloserEq. Leta, b be two entities.
1. Closef(a, b) C CloserEda, b).

2. Closen(a, b) is an open set.

3. CloserEda, b) is a closed set.

4. %3\ Closen(a, b) is connected and unbounded.
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Closen(a, b) CloserEda, b)
a=b 0 n3
anb=40y d(x,a) <d(x,b) d(x,a) <d(x,b)
aCb int(d(x,a) =d(x, b)) d(x,a)=d(x,b)
bCa d(x,a) <d(x,b) cld(x,a) <d(x,b))
anNnb=c#a,b d(x,a) <d(x,b) cld(x,a) <d(x,b))

Fig. 2. The point set€losera, b) andCloserEda, b).

Lemma4 (The relationship betweeBloser(a, b) andCloserEdb, a)). Leta, b be two entities.
1. lifa=borachorbCaoranb=p,thenh®= Closera, b) UCloserEdb, a).
2. Closef(a, b) N CloserEdb, a) = 0.

Lemma 5 (Closerand CloserEqof co-incident entities)Let a, b be two entities s.tb C a. d(x,a) =
d(x,b) =d(x, car(b)) iff x € CloserEqb, a) \ U.., Closer(c, a).

Proof. Consider the three cases:

1. aisavertex. Thew =a, and it is clear.

2. ais an edge. Ib is a vertex thenl(x, a) = d(x, car(b)) & d(x,a) =d(x,b) & x € CloserEdqb, a).
If b =a, thend(x,a) =d(x,car(a)) < mcara)(x) € a < for everyc C a and for everyes > 0 there
exists a pointy s.t.d(x, y) < e andd(y, a) < d(y,c) < x ¢ Closerc, a) for everyc C a.

3. a is a face. Ifb is a vertex theni(x, a) = d(x, car(b)) < d(x,a) = d(x,b) & x € CloserEdqb, a).
If b is an edge theni(x,a) = d(x,b) = d(x,car(b)) < x ¢ Closenc, b) for everyc Cc b and
x € CloserEdb, a). If b=a thend(x, a) = d(x, car(a)) < mcarq) (x) € a < for everye there exists a
pointy s.t.d(x, y) < e andd(y,a) < d(y, c) foreveryc C a & x ¢ Closenc, a) foreveryc Ca. O

Lemma6 (Properties obis(a, b)). Leta, b, ¢ be three entities.

1. dim(bis(a, b)) < 2.

2. Leta andb be two entities s.u N b =c # a, b. Letx be a point S.tcar,) () € a andmeanp) (x) € b.
If x € bis(a, ¢) Nbis(b, ¢) thenx € bis(a, b).

3. If x e carbis(a, b), wcar@)(x) € a andmearp (x) € b, thenx e bis(a, b).

Proof.

1. If x € bis(a, b) thenx € CloserEda, b) NCloserEqb, a). Lemma 4.2 implies that € CloserEda, b)

\ Closen(a, b). The definitions ofCloserEgandCloserimply that the dimension of the locus of points
{x|x € CloserEda, b) \ Closer(a, b)} is not greater than 2.

2. We show in the following that for every> 0 there exist pointsy, y,» S.t.d(x, y1) < ¢, d(x, y2) <&,
d(y1,a) < d(y1, b) andd(y,, b) < d(y2, a). This implies thatx € bis(a, b). Consider the following
cases:

() a andb are edges, andis a vertex. LetP be the plane ofi andb. x € bis(a, ¢), and therefore
x is on the plane orthogonal wat c. x € bis(b, ¢), and thereforer is on the plane orthogonal
to b atc. If a andb are not colinear, then these planes intersect in a/liothogonal toP atc.
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x €1, and therefore for every > 0 there exist pointsy, y, s.t.d(x, y;) < ¢, mp(y1) € int(a) and
p(y2) €int(b). d(y1, a) < d(y1, b) andd(y,, b) < d(y,, a). If a andb are colinear on the ling,
thenx is on the plane orthogonal ibatc. Therefore for everg > 0 there exist pointgy, y, s.t.
d(x,y;) <e,mpy(y1) €int(a) andmy(y,) €int(b). d(y1,a) < d(y1, b) andd(yz, b) < d(yz2,a).

(b) a andb are faces, and is a vertex.x € bis(a, ¢) and satisfies thatcar,)(x) € a. Thereforex
is on the line orthogonal toar(a) at c. Similarly x is on the line orthogonal toar(b) atc. If
car(a) # car(b), then these lines intersect in Thereforex = c. In this case for every > 0
there exist pointyy, y, S.t. d(x, y;) < €, y1 € int(a) and y, € int(b). d(y1,a) < d(y1,b) and
d(y2,b) < d(y2,a). If car(a) = car(b) = P, thenx is on the line orthogonal t® at c. In this
case for every > 0 there exist points;, y, s.t.d(x, y;) < &, wp(y1) € int(a) andmp(y2) € int(b).
d(y1,a) <d(y1,b) andd(y,, b) < d(y,, a).

(c) a and b are faces, and is an edgex € bis(a, ¢) and satisfies thata.,) (x) € a. Therefore
Tear(a) (X) € c. Similarly meanp) (x) € c. If car(a) # car(b), thenx € c. In this case for every > 0
there exist pointsyy, y» s.t. d(x, y;) < &, y1 € int(a) and y, € int(b). d(y1,a) < d(y1,b) and
d(y2,b) < d(y2,a). If car(a) = car(b) = P, thenmp(x) € c. In this case for every > 0 there
exist pointsys, y, s.t.d(x, y;) < e, mp(y1) € int(a) andmp(y) € int(b). d(y1,a) < d(y1, b) and
d(y2,b) < d(y2,a).

(d) ais afacep is an edge, andis a vertex.x € bis(a, ¢) and satisfies thatca,) (x) € a. Therefore
x is on the lind orthogonal tacar(a) atc. x € bis(b, ¢) and therefore is on the plareorthogonal
tob ate. If I ¢ P thenl N P =c. In this case there exist poings, y, s.t.d(x, y;) < ¢, y1 € int(a)
andy, € int(b). Therefored(y1, a) < d(y1, b) andd(y2, b) < d(y2,a). If I C P thena andb share
a planeQ. In this case for every > 0 there exist pointsy, y, S.t.d(x, y;) < ¢, mp(y1) € int(a)
andmy(y2) € int(b). d(y1,a) <d(y1, b) andd(yz, b) < d(y», a).

3. We show in the following that € CloserEda, b). mcanq)(x) € a therefored(x, car(a)) = d(x, a).
Similarly d(x,car(b)) = d(x,b). Therefored(x,a) = d(x,b). Suppose on the contrary ¢
CloserEda, b). Thenb Cca or bNa =d # a, b, and there exists an> 0 s.t. if y € B(x, &), then
d(y,a) >d(y,b). Consider the two cases:

(@) b Ca. mearq)(x) € a. Therefore (Lemma 5 ¢ Closen, a). Contradiction (Lemma 4.1).

(b) bNa=d +# a,b. wcarw(x) € a. Therefore (Lemma 5Sx ¢ Closend, a). Thereforex e
CloserEda, d) (Lemma 4.1). Similarlyx € CloserEqb, d). Lemma 2 implies thatr,(x) =
7, (x), and thereford (x, a) = d(x, b) = d(x, d). Thereforex € CloserEdqd, a) NCloserEdd, b).
Thereforex € bis(a, d) N bis(b, d). Lemma 6.2 implies that € bis(a, ). Contradiction. O

Lemma7 (Transitivity of CloserandCloserEq. Leta, b, ¢ be three entities.

1. Closefa, b) N Closenb, ¢) < Closena, c).

2. CloserEda, b) N Closerb, c) € CloserEda, c).

3. Letx be a point S.trrcarq) (x) € a. If x € CloserEda, b) N CloserEdb, ¢) thenx € CloserEda, c).

Proof.

1. If a = c then Lemma 4.2 implies th&losenra, b) N Closerb, ¢) = 0. If a # ¢ letx € Closenra, b) N
Closenb, ¢). d(x,a) <d(x,b) andd(x,b) <d(x,c). If d(x,a) <d(x,b) ord(x,b) < d(x,c) then
we are done. Otherwisé(x,a) =d(x,b) andd(x, b) =d(x, c). x € Closena, b), thereforea C b,
and there exists an > 0 s.t. everyy € B(x, ¢) satisfies thati(y,a) = d(y,b). x € Closenb, ¢),
thereforeb C ¢, and there exists an > 0 s.t. everyy € B(x, ¢) satisfies thatd(y, b) = d(y, ¢).
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Thereforea C ¢, and there exists an > 0 s.t. everyy € B(x, ¢) satisfies that/(y,a) = d(y, ¢).
Thereforex € Closen(a, ¢).

If a =b, thenitis implied from Lemma 3.1. Late CloserEda, b) N Closenb, ¢). d(x,a) < d(x, b)
andd(x, b) < d(x,c). Suppose on the contrany ¢ CloserEda, ¢). Then (1)d(x,a) = d(x,b) =
d(x,c),(2)cCa,orcNa=d#a,c, (3)b Cc, and (4) there exists an> 0 s.t. everyy € B(x, &)
satisfies thatl(y, a) > d(y, ¢). x € Closer(b, c), therefore there exists an> 0 s.t. everyy € B(x, &)
satisfies thati(y, b) < d(y, ¢). Therefore there exists an> 0 s.t. everyy € B(x, ¢) satisfies that
d(y,a) > d(y,b). (2) and (3) imply that: ¢ b, and therefore ifc € CloserEda, b) then for every
¢ > 0 there is a poiny s.t.d(x, y) <&, andd(y, a) < d(y, b). Contradiction.

. x € CloserEda, b) therefored(x,a) < d(x,b). x € CloserEqb, ¢) therefored(x,b) < d(x,c).

Therefored(x,a) <d(x,c). lIf d(x,a) <d(x, c) we are done. Otherwist(x, a) =d(x, b) =d(x, ¢).
Suppose on the contrany¢ CloserEda, ¢). Then (1)c Ca oranNec=d # a, ¢ and (2) there is an
e>0s.t.ify € B(x, ¢) thend(y, a) > d(y, ¢). Consider the two cases:

(@) ¢ Ca. Thenx € Closer(c, a) (Lemma 4.1). Themcayq) (x) ¢ a (Lemma 5). Contradiction.

(b) a Nec=d #a,c. The existence oB(x, ¢) implies thatd(x, a) = d(x, ¢) = d(x,d) (Lemma 2).
Thereforex € CloserEdd, a) N CloserEdd, ¢). mcarq)(x) € a, thereforex e CloserEda, d)
(Lemma 5), therefore < bis(a, d). If mcarc)(x) € ¢, thenx e CloserEdc, d) andx € bis(c, d).
In this case Lemma 6.2 implies thate CloserEda, ¢), and contradiction. Ifrcarc) (x) ¢ c, then
x € Closerd, ¢). In this case Lemma 7.2 implies thak CloserEda, ¢), and contradiction. O

Lemma8 (Properties oiR,). Leta be a set of entities.

1. R, is aclosed set.

2. R, C carbis(a).

3. If x e R, andb ¢ «, then there exists an entitye « s.t.x € Closena, b).

4. If x € 9R, in the relative topology of carbi{&), and din{carbis(«)) > 0, thenx € Ry for g D «.

5. dim(R,) = dim(carbis(«)).

Proof.

1. Finite intersection of closed sets is a closed set.

2. Letx € R,. Let a, b be two entities inx. x € bis(a, b). Therefored(x,a) =d(x,b). If d(x,a) #
d(x, car(a)), then there exits’ C a s.t. x € Closera’, a) (Lemma 5). Thenx ¢ CloserEda, a’)
(Lemma 4.1) in contradiction to being in R,. Therefored(x, car(a)) = d(x,a) = d(x,b) =
d(x,car(b)).

3. We first show that ib ¢ «, then there exists an entigys.t. x € Closer(e, b). Then we show that this

implies that exists an entity € « s.t.x € Closen(a, b).

Suppose on the contrary that¢ Closer(e, b) for any entitye. If . (car(b)) ¢ b, then there exists
an entitye C b s.t. x € Closerne, b) (Lemma 5), and contradiction. Therefore (car(b)) € b.

b ¢ «a, therefore there exists an entitys.t. x ¢ CloserEdqb,e). bNe=c # b,e (Lemma 4.1)x ¢
Closere, b) therefored(x, ¢) > d(x, b). x ¢ CloserEqb, ¢) therefore there exists an> 0 s.t. every
y € B(x, ¢) satisfies thati(y, e¢) < d(y,b). Therefore (Lemma 2)(x, ¢) = d(x,b) =d(x,c), and

x € CloserEdc, e). If x € CloserEdb, c¢) thenx € CloserEqb, ¢) (Lemma 7.3) and contradiction.
Thereforex € Closer(c, b) (Lemma 4.1). Contradiction.

Suppose on the contrary that there does not exist an entityr s.t. x € Closena, b). We have
shown that there exists an entiéy s.t. x € Closen(ey, b). e; ¢ «, therefore there exists an entity
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es S.t.x € Closef(e,, e1). x € Closer(e,, b) (Lemma 7.1). Therefore there exists an infinite sequence
of entities{e;} s.t.x € Closer(e;, ¢;) for any j > i. Contradiction.

4. Letb be a governor of a neighborhood.ofn carbis(e) \ R,. x € R, (Lemma 8.1). Ifv ¢ «, then we
are done. Otherwisk € «. Let y be a point in this neighborhood. We show in the following that there
exists an entity: € a S.t. ear) () ¢ a.
Suppose on the contrary that for everye o mcarq)(y) € a. Then for everya € «, y € bis(a, b)
(Lemma 6.3). Therny € R, (Lemma 7.3), and contradiction.
Teara)(y) € a, therefore there exists an entityC a s.t. y € Closena’, a) andmwcanq)(y) € a’ (Lem-
ma 5).x € CloserEdad’, a) (Lemma 8.1). Therefore € R, (Lemma 7.3). Ifa’ ¢ «, then we are
done. Otherwise’ € «. Thend(y, a) > d(y, car(a)) =d(y, car(a’)) =d(y, a’). Contradiction, since
a Ca.

5. Implied from Lemma 8.2 and Lemma 8.40

Lemma9 (Starness oR,). If x € R, then[x, 7,(x)] C R,.

Proof. x € R, thereforemcy ) (x) = m,(x) (Lemma 5), and for every € Q x € CloserEda, ¢). Lety

be a point in[x, 7, (x)]. We have to show that € CloserEda, ¢). d(x,a) —d(y,a) =d(x, y). By Lem-

ma 1d(x,y) > d(x,e) —d(y, e). These two equations imply thdtx, a) — d(y,a) > d(x,e) —d(y, e).

x € CloserEda, ¢) and thereforel(x, a) < d(x, e). The last two equations imply thd(y, a) < d(y, e).

Consider the following cases:

1. ane=@ora Ce. The fact that/(y, a) < d(y, e) implies thaty € CloserEda, ¢).

2. a D e. The fact thatx € CloserEda, ¢) implies thaty € CloserEda, ¢).

3. aNe=b+#a,e.lf y ¢ CloserEda, ¢), the fact thati(y, a) < d(y, e) implies thatd(y, a) =d(y,e) =
d(y,b) (Lemma 2). Thereforey € CloserEdb, ¢). The fact thatx € CloserEdqa, b) implies that
y € CloserEda, b). Thereforey € CloserEda, ¢) (Lemma 7.3). O

Lemma 10 (The endpoint of a Voronoi edge (face) is a Voronoi vertex (edgefx be a set of entities

of the polyhedrorQ.

1. Lete, be an edge of VD). If x is a point onde, in the relative topology of carbig), thenx is a
vertexvg of VD(Q) s.t.a C B.

2. Let f, be aface of VIDQ). If x is a point ondf, in the relative topology of carbig), thenx is on an
edgees of VD(Q) s.t.a C B.

Proof. Implied from Lemma 8.4. O

Lemmal1l (A lower bound to the number of governors of a Voronoi element).
1. If £, is a Voronoi face, thefx| > 2.

2. If ¢, is a Voronoi edge, theju| > 3.

3. If v, is a Voronoi vertex, thefx| > 4.

Proof. If « contains one entity, theoarbis(o) = %2. Therefore if £, is a Voronoi face, them| > 2
(Lemma 8.5). Item 2 and item 3 are implied from item 1 by Lemma 10.

Lemma 12 (The relationship between the Voronoi diagram and the medial &adsh set of entitiesr
defineE(a) =a \ {a: a D b,bea}. MA(Q) =VD(Q) \ U{R,: |E(x)| = 1}.
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Proof.
1. MA(Q) Cc VD(QO) \ U{R,: |E(x)| = 1}. Let x € MA(Q). First we show thatt € VD(Q). Let
p1,---, pn b€ the footpoints ok on Q. x € MA(Q), thereforen > 2. Let a; be the entityp; is

incident on. If a pointp; is incident on more than one entity, then we take the lowest dimensional

among these entities. Let= {a, ..., a,}. In order to show that € VD(Q), it is enough to show

thatx € R, since|x| > 2. We have to show that € CloserEda;, b) for everya; € « andb € Q.

d(x,a;) <d(x,b) sinced(x, p;) <d(x, q) for everyg € d Q. Consider the following cases:

(@) ainb=@Yora; Cb. Thend(x,a;) <d(x,b) implies thatx € CloserEda;, b).

(b) b C a;. If x ¢ CloserEda;, b) thend(x, a;) = d(x, b). In this casep; € b, andb € «. Therefore
a; ¢ a. Contradiction.

(€) aiNb=c#a;,b. If x ¢ CloserEda;, b) thend(x,a;) = d(x,b) and there exists an > 0
s.t. everyy € B(x, ¢) satisfies that/(y,a;) > d(y, b). Thereforen, (x) = mp(x) (Lemma 2),
andd(x,a;) = d(x,b) = d(x,c). Thereforex € CloserEdc, b). The previous item implies that
x € CloserEda;, ¢). mcarq;) (x) € a;, since otherwiser € Closend, a;) for somed C a; (Lem-
ma 8), in contradiction to previous item. Therefare CloserEdq;, b) (Lemma 7.3).

Now we show thatE(«)| > 2. It is enough to show thaf («) = «, since|a| > 2. Suppose on the

contrary there is an entity; € o \ E(«). Then there exists an entitye « s.t.b C a;. p; € b therefore

a; ¢ o, contradiction.

2. MA(Q) D VD(Q) \ U{Ry: |E(@)] =1}. Letx € VD(Q) \ U{Rs: |E(x)| = 1}. Let o be a set of
entities s.tx € R, and|E(a)| = 1. Letay, ..., a, be the entities oE («). n > 2. x € CloserEda;, b)
for everya; € « andb € Q. Therefored (x, a;) < d(x, b) for everya; e « andb € Q. Let p; = 7, (x).
d(x, p;) <d(x,q) for everyqg € Q. In order to prove that € MA(Q), it is enough to show that
pi # pj for everyi # j. If p, = p;, thena; Na; #0. Letb=a; Na;. b Ca; or b C a; or both.
Thereforea; ¢ E(a), ora; ¢ E(x) or both. Contradiction. O

Lemma 13 (Voronoi faces are simply connectetf)the boundary ofQ is connected, and the faces @f
are simply connected, then the faces of(@p are also simply connected.

Proof. Sherbrooke [19] proves this claim for the facesMA(Q). In order to complete the proof of
the present lemma, we have to show that a fice VD(Q) \ MA(Q) is simply connected. Lemma 12
implies that such a facé, satisfies thatE(«)| = 1. Thereforew contains an entity s.t. every entity
a € o satisfies thab C a. Letx € R,. 7, (x) € a for everya € «, therefore[x, 7, (x)] C R, (Lemma 9).
ThereforeRr, is connected.

Suppose on the contrary thR}, is not simply connected. Thesarbis(«) is a plane, and there exists
a pointx e carbis(a) \ R, which is enclosed by a loop € R,. Consider the line\ throughx and
m,(x). M C carbis(a). Let y be the intersection point df and M which is farthest fronr,(x). y € R,,.
Thereforely, 7, (x)] € R, (Lemma 9). Contradiction, sincee [y, 7, (x)]. O

Lemma 14 (VD(Q) does not contain a loop of edgeg..). Let Q be a polyhedron whose boundary is
connected, and whose faces are simply connectedf,Lbé a bounded Voronoi face of ¥D). There
does not exist a set of entitigsD « s.t. all the edges of, are governed byg,.

Proof. Suppose on the contrary that there exists such a set of ergiitiége first show that there do
not exist two entitiesz, b € B s.t. a D b. Suppose there are. Lete g8\ {a, b}. df, < carbis(a, b)
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(Lemma 8.2).carbis(a, b) is either a line or a plane. Sincg, is a bounded face;arbis(a, b) cannot
be a line, so it is a plane. Lat be a point inf,. The line throughk andr,(x) intersectsaf, in two
pointsx; andx,. d(x1, b) = d(x1, ¢) and alsad (x2, b) = d(x,, ¢). Thereforer,(x) = n.(x) (Lemma 1).
ThereforeE (8) = 1. Thereforedf, is a line. Contradiction.

Leta,b € «, andc € B\ {a, b}. DefineS§, to be the solid composed of the projection segmentg, of
ona. Define S, similarly. Let C. be the projection off, on c. Sincec is simply connected, the region
bounded byC. is in c. Define T, to be the surface composed of the projection segmenég,0bn ¢
together with the part of enclosed byC.. S, € R,, S, C Ry, T, € R. (Lemma 9). Thereforént(S,)
does not intersec§, and T, andint(S,) does not intersec§, and 7.. ThereforeS, (or S;) is in the
interior of the solid defined b¥,.. Thereforea is in the interior of the solid defined bE.. We show in
the following that this implies that andc are not in the same connected component of the boundary of
Q, in contradiction to the assumption of the lemma.

Entitiesa andc¢ are not incident one on the other, therefore if they are connected, there is anientity
that intersectqd.,. SinceT, C R., d must intersect, in a point incident orr andd. Therefored is wholly
in the interior of the solid defined by, andd either containg or is adjacent ta. In this case there
exists a point € 9f, s.t.x € Closer(d, ¢) in contradiction tdf, C R.. O

4. The space subdivision algorithm

In this section we define the proximity structure subdivision and give an algorithm for constructing
it. We prove that the algorithm halts, and show that when utilizing cells with linear boundaries, the
geometric operations involved amount to solving a quadratic equation in a single variable.

Intuitively, the general idea is to recursively subdivide space according to the distances of the cells
from the entities of the polyhedron, such that all the points in a cell share the same nearest entities. We
would like the cells to separate Voronoi vertices, i.e., that each cell will contain no more than one Voronoi
vertex. Therefore we stop the subdivision process when the number of entities attached to a cell is smallel
than or equal to four. This subdivision process might not halt, since it is possible that a point has more
than four governors. For example, every vertexdohas a set of governors that includes all the entities
of Q containing that vertex. Note that this situation is not degenerate, since a small perturbation of the
polyhedron does not necessarily modify the symbolic structure of the Voronoi diagtsamma 18
states the situations in which a point has more than four governors in a non-degenerate diagram. Thes
situations are added to the halting criteria of the recursion.

4.1. Definition and algorithm

Definition 1. A proximity structure subdivisioliPSS is a space subdivisighin which each cellC is
labeled by a set of polyhedron entities, such that two conditions hold. Cgtbe a cell that is labeled
by a setx of polyhedron entities. The two conditions are the following:

1. b ¢ « iff there exists an entity of O such thaiC, C Closer(a, b).

1 As aresult, it is inaccurate to define ‘degeneracy of a Voronoi diagram of a polyhedron’ by saying that there exists a point
with more than four nearest sites.
2\We treat all subdivision cells as closed sets, hence they include their boundaries.
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2. Atleast one of the following holds:

@) || <4.

(b) || =5, ande includes an edge and two coplanar faces containing that edge.

(c) |le| =5, anda includes a vertex and two colinear edges containing that vertex.

(d) || =6, anda is composed of two disjoint sets, each consists of an edge and two coplanar faces
containing that edge.

(e) |e| =6, anda is composed of two disjoint sets, each consists of a vertex and two colinear edges
containing that vertex.

() |« =6, anda is composed of two disjoint sets, one consists of an edge and two coplanar faces
containing that edge, and the other consists of a vertex and two colinear edges containing that
vertex.

(g) Allthe entities ine share a vertex.

(h) All the entities ina except one share a vertex and a plane.

The first condition serves for reducing the number of polyhedron entities relevant to proximity
information of a cell, and is thus similar in purpose to the condition used in [9]. The second condition
refines the subdivision to enable extraction of the structure of the Voronoi graph. The following lemmas
give basic properties of the subdivision.

Lemma 15. LetC, be acell in a PSS. Létbe an entity. Ib ¢ «, thenC, N R, = @.

Proof. If b ¢ «, then there exists an entitys.t. C, C Closera, b). Therefore, by Lemma 4.2,

C, N CloserEqb, a) = 0. O

Lemma 16. LetC, be a cell in a PSS. Lét be an entity. Ih ¢ «, then there exists an entityc « s.t.
C, C Closena, b).

Proof. We show in the following that ib ¢ « and there does not exist an entiye « s.t. C, C
Closef(a, b), then there is an infinite number of entitiesdh Leta; = b. a; ¢ «, therefore there exists
an entitya, of Q such thatC, C Closenay, a1). a; ¢ «, therefore there exists an entity of Q such
thatC, C Closefas, az). Lemma 7.1 implies thaf, C Closer(as, a;) and thereforeis ¢ «. Thus there

exists an infinite sequence of entitigs} s.t.C, € Closena;, a;) for anyi < j. Therefore for any # j
a; 75 aj. Oa

Subdivision process

A proximity structure subdivision is easily computed recursively. We start with a cell that bounds the
world of interest. For each cell, the sets computed according to the first condition. Cells for which the
second condition does not hold are subdivided, and the algorithm is invoked recursively on the sub-cells.
Obviously, if C, € Cg thena C g, and the computation af for sub-cells can be done efficiently by
considering only the entities attached to the parent cell. In practice, the simplest way to implement the
algorithm is by using an octree to represent the subdivision.
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4.2. Halting of the subdivision process

In this section we prove that the subdivision process hak&ifQ) is not degenerate. ND(Q) is
degenerate then an additional halting condition is needed (Section 6).

Definition 2. For a pointx, let f1(x), ..., fi(x) be the footpoints ok on Q, and letw; (x) be the set of

entities governing: and containingy; (x). We say thaVD(Q) is non-degeneratdf for every pointx the

two following conditions are satisfied:

1. For any permutation ofw;}: Let a(x) = a1(x) U--- Ua;(x) for 1 <i <k — 1. dim(carbis(a (x) U
a;11(x))) < dim(carbis(x(x))).

2. For every 1< i <k and 1< j #i <k, if |oj(x)] > 1, then dim(carbis(; (x) U «;(x))) <
dim(carbis(e; (x))) — 1.

The first item of the above definition is closely related to the definition usually used for degeneracy
of the medial axis or of the Voronoi diagram of disjoint sites. This item states that if the diagram is not
degenerate, then the dimension of the locus of points equidistant from a partial set of the footpoints of a
point decreases as additional footpoints are added to the set.

The second item of the above definition handles the case of non-disjoint sites. Consider a point with
two footpoints f; and f> incident ona; anda;,, respectively. The locus of points equidistant from the
entities ofa; U r, is the intersection of three sets: (1) the set of points equidistantdroif?) the set of
points equidistant frona,, and (3) the set of points equidistant from an endifye «; anda; € . If it
is not a degenerate case, then the dimension of the intersection set decreases as each of the three set:
added.

In Lemmas 17-19 we assume tRdD(Q) is not degenerate. Lemma 18 states the conditions in which
a point has more than four governors. Lemma 17 is an auxiliary lemma of Lemma 18.

Lemma 17 (The carbis of entities sharing a vertexl.et v be a vertex ofD. Letey, ..., e, be edges of

Q containingv. Let f1, ..., fi be faces oD containingv. Leta = {v, ey, ..., €., f1,..., fr}. Suppose

n>1ork >0 (or both.

1. If there exists a lind. s.t.a C L for everya € «, then carbisx) is a plane orthogonal td. at v.

2. If all the entities ofx share a planeP, and do not share a line, then carls is a line orthogonal to
P atv.

3. If the entities otx do not share a plane, then carléis) = v.

Proof.

1. The bisector of a line and a point incident on the line is a plane orthogonal to the line at the point.

2. Let L be the line orthogonal t@ at v. First we prove that. C carbis(e). Letx € L. d(x, P) =
d(x,v). Therefored (x, car(f;)) = d(x, v) for every 1< i < k, sincecar(f;) = P for every 1< i < k.
Similarly, d(x, car(e;)) = d(x, v) for every 1< i < n, sincev € car(e;), andcar(e;) C P for every
1<i<n.
Now we prove thatarbis(a) C L. Letx € carbis(«). If k > 0 thend(x, v) = d(x, P), and therefore
x e L. If k=0thenn > 1. Lete; ande, be two edges im s.t. car(e;) # car(ez). carbis(v, e;) and
carbis(v, e;) are two different planes, and their intersection is a line.

3. Itis clear thab C carbis(«), sincev is incident on all the entities @f. We prove in the following that
carbis(o) C v. Let 8 be a maximal subset of s.t. all the entities ir8 share a plané. Lemma 17.2
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implies thatcarbis(g) is a line L orthogonal toP atv. Leta € « \ 8. If a is a face, ther. and
carbis(v, a) are two different lines, and their intersection is a point. Otherwigs an edge. Let
R =carbis(v, a). R is a plane orthogonal tcar(a) atv. Suppose on the contrary tharbis(a) £ v,
thenL C R. Thereforecar(a) is orthogonal ta. atv, andcar(a) C P. Contradiction. O

Lemma 18 (The number of governors of a point)et O be a polyhedron s.t. V@®) is not degenerate.
Let @ be a set of entities of) s.t. R, # @. One of the conditiona—2hof the definition of the PSS
(Definition 1) holds.

Proof. Supposdw| > 4. Letx be a point inR,. Lemma 8.2 implies that € carbis(«). Let k be the
number of footpoints of on Q. Definition 2.1 implies that < 4. Letay, ..., o, be the subsets of, s.t.
«; is the set of entities sharing the footpoifit Let! = |«|, andl; = |¢;|. The sets, ..., o, are disjoint,
since otherwise ifi € o; N; for i # j, thena includes two different footpoints of, in contradiction
to the linearity and convexity af. Therefore the sets,, ..., o, are disjoint, and_; ;, /i = [. Claim:
there exists K i < k s.t.dim(carbis(«;)) > 4 — ;.

Suppose on the contrary that for everg I < k dim(carbis(e;)) < 4 — ;. Consider the two cases:

1. There exist two setg; anda; s.t./; > 1 and/; > 1. Then Definition 2.2 implies thatim(carbis(c; U
oj)) <min(4—1;,4—1;) — 1. Consider the two cases:

(@) I; > 2orl; > 2. Thendim(carbis(e;; U «j)) < 0, in contradiction to the existence of

(b) I; =2 and/; = 2. Thendim(carbis(e;; U ;)) =0.1; +1; =4 < I, therefore there exists a third
footpoint f,,. Definition 2.1 implies thatlim(carbis(c;; U ; U @) < O, in contradiction to the
existence of.

2. Only one sety; satisfies that; > 1.1, =1 — (k — 1). Definition 2.1 implies thatdim(carbis(«;)) >
k — 1. These two equations imply thdim(carbis(«;)) > 1 — I; > 4 — [;. Contradiction.
3. There does not exist a 3gts.t./; > 1. Then/ < 4, and contradiction.
This completes the proof of the claim, i.e., there existsil< k s.t.dim(carbis(e;)) > 4 —I;.
Let f; be a footpoint s.tdim(carbis(¢;)) > 4 —I;. f; is either a vertex of Q, or incident on an edge
e of Q. Consider the two cases:
1. f; is avertex ofQ. Lemma 17 implies that:

(a) If the entities ofw; do not share a plane, thelim(carbis(«;)) = 0. Definition 2.1 implies that
[ =1;, i.e., Definition 1.2g is satisfied.

(b) If all the entities ofw; share a plane, and do not share a line, tlén(carbis(¢;)) = 1.
Definition 2.1 implies thak < 2. If k = 1, then Definition 1.2g is satisfied. = 2, let f; be
the other footpoint. Definition 2.1 implies thdf| < 1, and therefore Definition 1.2h is satisfied.

(c) If all the entities ofw; share a line, i.e.q; consists of the vertey; and two colinear edges
containing that vertex, thedim(carbis(«;)) = 2. Consider the two cases:

i. k> 2. Definition 2 implies that there are two additional footpoinfifsand f,, s.t.l; =1, = 1.
Therefore Definition 1.2c is satisfied.

ii. k=2.Let f; be the other footpoint. If; = 1, then Definition 1.2a is satisfied. If = 2,
then Definition 1.2c is satisfied. Suppose> 2. [; = 3, thereforedim(carbis(e;)) > 2
(Definition 2.2), and because > 2, dim(carbis(«;)) > 4 —[;. f; is a footpoint satisfying
thatdim(carbis(«;)) > 4 — [}, and therefore the discussion in the previous items (item 1a and
item 1b) applies also tg; as well. Therefore iff; is a vertex, then it is a vertex incident on
two colinear edges. Recall that ando; are disjoint. Therefore Definition 1.2c is satisfied. If
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f;isonan edge, them; consists of the edge and two coplanar faces containing that edge, and
Definition 1.2f is satisfied.
2. f;isonanedge 00. In this casey; consists of the edge and two coplanar faces containing that edge.
Therefore|e;| = 3 anddim(carbis(«;)) = 2. This case is analogous to item 1c. Therefore in this case
one of items 2a, 2b, 2d and 2f of Definition 1 is satisfied:

Lemma19. If VD(Q) is not degenerate the subdivision process halts.

Proof. Suppose the subdivision process does not halt. Then there exists an infinite sequencepf cells
s.t. (1)sizgC,,) — 0, (2) for everyi, C,, is not a leaf, and (3f,,,, < C,,. The sequence converges. Let
x bey; Cy. Leta(x) be the set of governors af. For every entityb ¢ «(x) there exists an entity

s.t.x € Closera, b) (Lemma 8.3)Closer(a, b) is an open set (Lemma 3.2). Therefore for every entity
b ¢ a(x) there exists an entity, ande(b) > 0 s.t. if pointy € B(x, ), theny € Closena, b). Let D, be

the minimum of thes,, for all b ¢ a(x). There exists an integey s.t. for everyi > N, Cy, € B(x, D,).

Leti > N. If ¢ € ; then there does not exist an entitys.t. C,, < Closer(d, c) (definition of PSS), and
thereforec € a(x). Therefore foii > N, a; C a(x), andC,, is a leaf (Lemma 18). Contradiction.O

4.3. Geometric operations of the subdivision process

In order to compute the set of entities attached to a cell, we have to answer the query: Given a cell
C, and entitiesu, b, is C C Closera, b)? Lemma 3.4 implies that testing wheth@rC Closer(a, b) is
equivalent to testing wheth@iC C Closefa, b).

Using linear cell boundaries, the algorithm in Fig. 3 tests wheildec Closer(a, b). In order to test
whether a face of C is in Closef(a, b), it is not enough to test the vertices Bf Even if all vertices of
F are inClosera, b), there might still be a point € F s.t.x ¢ Closera, b). Therefore we have to test
whetherF intersects the bisecttnis(a, b).

a and b are linear entities, thereforgis(a, b) is a piecewise quadratic surface. The bisector is a
piecewisequadratic surface, and not a quadratic surface, becaas®l b are polyhedron entities, not
infinite lines or planes. Each section bis(a, b) is a part ofcarbis(a’,b’) s.t.a’ Ca and b’ C b.
carbis(a’, b') is a quadratic surface for any two entit€¥sand?’.

In order to work with quadratic surfaces, and not piecewise quadratic surface, we first decompose eact
face ofC into polygonsP, . s.t. (1)a’ C a, (2)b' C b, and (3) a poink € P,y iff d(x,a) =d(x, car(a’))
andd(x, b) = d(x, car(b’)) (line 2). The part obis(a, b) in P, is equal tocarbis(a’, '), and therefore
the location ofP,,, with respect tdis(a, b) can easily be tested (lines 4-23).

If ' =0 then P, ¢ CloseKa, b) iff a ¢ b or there exists a vertex df,,,, on bis(a, b) (lines 5-11).
Note that in this caseu(C b) bis(a, b) is a piecewisdinear surface which can be easily computed. If
a’ # b’ then P, € Closena, b) iff d(x, car(a’)) < d(x, car(d’)) for all pointsx € P, (lines 12-23).
This condition is tested by comparing the distances from an arbitrary pdmtar(a’) andcar(®’). If
d(x,car(a’)) > d(x,car(b)),thenP,, Z Closena, b) (lines 12—-14). Otherwise},,; Z Closer(a, b) iff
carbis(a’, b') intersectsP,,, (lines 15-23). This is tested by testing whetbarbis(a’, ') intersects the
plane containing?,, (lines 16—-17), the boundary &, (lines 18-20), or the interior a®,/,; (lines 21—
23).

The algorithm of Fig. 3 uses three auxiliary functions. The funcBamtOnPolygo(P) picks any
point on the polygorP, and the functiofPointOnConicSectidiB) picks any point on the conic sectidh
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CelllsCloser (CellC, Entity a, Entity b)

1 for every faceF of C

2 PL = DecomposeCellFa¢g, a, b);
3 for every polygonP, s in PL

4 ifad =b

5 ifach

6 for every vertexv of P,y
7 if v ebis(a, b)

8 return NO;

9 continue;

10 ese

11 return NO;

12 v = PointOnPolygotP,);
13 if d(v, car(a’) >d(v, car(d))
14 return NO;

15 B = carbiga’, b") N plang P,);
16 if B=0

17 continue;

18 for every edgeE of P,y

19 if BNE#Y

20 return NO;

21 x = PointOnConicSectidiB);
22 if x € Py

23 return NO;

24 return YES;

Fig. 3.CelllsCloserC, a, b) returns YES iffC C Closena, b). The function solves at most a quadratic equation.

The functionDecomposeCellFa¢€, a, b)) decomposes a facgé of a cell C into polygons P, s.t.
QD a Ca, (2 b Cb,and (3)x € Py iff d(x,a) =d(x,a’) =d(x,car(a’)) andd(x,b) =d(x,b) =
d(x, car(b)).

Each polygonP,, is the intersection of two polygon®, and P,. P, = F N H(d',a) where
H@',a) ={x|d(x,a) =d(x,a’) = d(x,car(d’))}. Py is defined similarly.H (a’, a) is an intersection
of a finite number of half-spaces each defined by a single plane. Consider the three cases:

1. aisavertexv. Thena’ = v andH (v, v) is the whole space.

2. ais an edge:. If v is a vertex ofe then H (v, ¢) is the half-space defined by the plane orthogonal to
at v, and which does not contain H (e, e) is the intersection of two half-spaces defined by the two
planes orthogonal te at its vertices, and which contain

3. aisafacef. If vis avertex off, thenH (v, f) is the intersection of{ (v, e;) and H (v, e2) Where
e; ande, are the two edges containingin f. If e is an edge off, thenH (e, f) is the intersection
of H (e, e) and the half-space defined by the plane orthogongl &t e and which does not contain
f. H(f, f) is the intersection of half spaces each defined by the plane orthogofiattone of its
edges, and which contains

Lemmas 20 and 21 prove that the algorithm of Fig. 3 is correct.
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Lemma 20. Leta, b,a’ Ca,b’ C b be entities. LeP,,; be a planar polygon s.ic € P,y iff d(x,a) =

d(x,car(a’)) andd(x, b) =d(x, car(d’)).

1. Ifa’=b"anda ¢ b, thenP,, € Closena, b).

2. If a’ =b"anda C b, thenP,,, C Closena, b) iff every vertexw of P, satisfies thav ¢ bis(a, b).

3. Ifa’ # b’ then P,y C Closer(a, b) iff V,cp , d(x,car(a’)) < d(x, car(b)).

Proof.

1. For everyx € P,y d(x,car(a’)) =d(x, car(b’)), and thereforel(x, a) = d(x, b). ThereforeP,,y &
Closera, b), sincea ¢ b.

2. Suppose there exists a vertegf P, s.t.v € bis(a, b). Thenv € CloserEdqb, a), and by Lemma 4.2
v ¢ Closer(a, b).

Suppose every vertex of P, satisfies that ¢ bis(a, b). For everyx € P,y d(x,car(a’)) =
d(x,car(d")), and therefored(x, a) = d(x, b). Therefore P, C CloserEda, b). Suppose on the
contrary that there is a point € P, s.t. x ¢ Closer(a, b). Therefore for every > 0 there exists
a pointy s.t.d(x,y) <e andd(y,b) < d(y,a). y ¢ Pyy. Thereforex € dP,,y. We show in the
following that if there exists a point € bis(a, b) N d Py, then one at least of the vertices Bf,
satisfies thab < bis(a, b).

Suppose on the contrary that there exists such a poiahd no vertex satisfies thav € bis(a, b).
Let v; and v, be the vertices of the edge &, containingx. vy, v, € Closer(a, b). If a is a vertex
thenCloser(a, b) is convex, and contradiction. Otherwiges an edge, andl is a face. Lei; andu»
be the two vertices af. Closer(a, b) is composed of three regions: (€)osera, b) N Closeus, a),
(2) Closen(a, b) N Closeu,, a) and (3)Closena, b) N Closena, u;) N Closera, u,). Each of the
three regions is convex. Therefore and v, are in two different regions. I#; is in the first region,
thena’ = u;. If v; is in the second region, theri = u,. If v; is in the third region, them’ = a.
Contradiction.

3. SupposeP,,y C Closera, b). Letx € P,y a ¢ b since ifa C b thenm,(x) = m,(x), and therefore
a’ = b’ (sincea’ and?d’ is the lowest dimensional entity @@ containingr,(x) = m,(x)). The facts
thata ¢ b and P,y C Closer(a, b), imply that for everyx in P, d(x,a) < d(x,b), and therefore
d(x,car(a’)) <d(x,car(d)).

SupposeV,cp , d(x,car(a’)) < d(x,car(b’)). ThenV.cp, d(x,a) < d(x,b). Then V,cp, x €
Closef(a, b). O

The following lemma justifies lines 21-23 of the algorith®.= carbis(a’, ") N plane(P, ), and
therefore a conic section. We show in this lemma thag iloes not intersect any edge of a polygon
(lines 18-20), then it is enough to test one pointBofh order to determine whetha® intersects the

polygon.

Lemma?2l. LetB be a conic section, an#t a polygon. IfBN P # @, andBNd P =@, thenB is wholly
in the interior of P.

Proof. Itis clear thatB N P is wholly in the interior ofP. B is not wholly in the interior ofP, if B has
more than one connected component, and one of the connected components is bounded. This is not th
case, sinceB is a conic section. O
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The only geometric operations used in the algorithm are the ones used in order (1) to decompose &
planar polygon by planes, (2) to decide whether a poirg closer to the carrier of entity than to the
carrier of entityb, (3) to decide whether an edge of a polygon intersects a conic section, and (4) to pick
a point on a conic section. The first two queries are answered by linear operations. The last two queries
are answered by solving a uni-variate quadratic equation.

5. Extraction of Voronoi elements
In this section we show how to construct the Voronoi graph from a proximity structure subdivision.
5.1. Computing Voronoi edge witnesses

As a first step, we find which Voronoi edges intersect the boundaries of the cells. Only cells labeled
by three or more entities should be considered, since the other cells do not intersect Voronoi edges. The
computation is done separately for each cell fAgg-ig. 4). For a given cell’,, a faceF of the cell, and
three entitiesu, b, ¢ € «, CellFaceVoronoiEdgelntersection computes the intersection poinks arfd
Voronoi edges; S.t.a, b, c € B.

A point is on a Voronoi edge; iff it lies on bis(a, b) for any a,b € g, and is not closer to any
other polyhedron entity than to the entities &f The algorithm intersects the bisectors of the carriers
of a, b, c € B with the plane of the facé (lines 1-2), resulting in two conic sections, which are then
intersected (line 3). Intersection points that are outside of the face (lines 5-6) or that do not obey the above

CellFaceVoronoiEdgelntersection
(CellEntitiesa, CellFaceF, Entity a, Entity b, Entity ¢)

1  Wgyp=carbiga, b) Nplang F);

2 Wac= carbiga, c) Nplang F);

3 W =WapN Wy

4  for every pointr € W

5 ifx¢F

6 goto 4;

7 if (7car(a) (x) ¢ @) OF (carp)(x) & b) OF (car(c) (X) ¢ ¢)
8 goto 4;

9 Bx)={a,b,c};

10 for every entitye € « \ {a, b, ¢}

11 if (x € carbis(a, e)) and (mcar) (x) € €)
12 B(x) = p(x)U{e};

13 goto 10;

14 if x € Closene, a)

15 goto 4;

16 output (x, B(x));

17 return;

Fig. 4. Computing the intersection points of a facef C = C, and Voronoi edgesg S.t.a, b, c € 8. The function
computes the intersection of two conic sections, i.e., the roots of at most a quartic uni-variate polynomial.
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criterion (lines 7-8 and lines 14-15) are removed. Voronoi edges having more than three governors are
detected in lines 11-12.

If W includes an infinite number of points, thé¥ is part of a conic section contained i In this
caseW is modified to contain only the intersection points betw@émando F .

Lemma 22 (The algorithm of Fig. 4 is correct).et the set of pair$(x;, 8;)} for 1 <i < n be the output
of the algorithm of Fig. 4. LeK = {x;} for 1 <i < n.

1. Foreveryl <i <n:x; €eg,.

2. X =eagpa NF.

Proof.
1. (a) x; € bis(a, b) for everya, b € g;. Implied by Lemma 6.3.

(b) For every pair of entitiese € « and b € B; x; ¢ Closere, b). Suppose on the contrary that
x; € Closefle, b). mcarp)(x;) € b, and thereforee Z b (Lemma 5). Therefore; € Closere, b)
implies thatd(x;, ¢) < d(x;, b). x; ¢ Closene, a) (lines 14-15), thereford(x;, ¢) > d(x;, a).
Therefored (x;, b) > d(x;, a), in contradiction to item 1la.

(c) For every pair of entitiese € Q and b € B; x; ¢ Closer(e, b). Suppose on the contrany e
Closere, b). e ¢ o (item 1b), therefore there exists an entjtye « s.t. x; € Closer(f, ¢) (Lem-
ma 16). Therefora; € Closer f, b) (Lemma 7.1). Contradiction to item 1b.

(d) For every pair of entitiese € Q and b € g; x; € CloserEdb, e), i.e., x; € eg,. If b C e or
eCbhborbne=4y, then it is implied from item 1c (Lemma 4.1). Suppas@ b =d # b, e.
x; ¢ Closere, b), therefored(x;, b) < d(x;,e). Suppose on the contrary ¢ CloserEdb, ¢).
Then there exists an > 0 s.t. if y € B(x;,¢) thend(y,b) > d(y,e). Therefored(x;, b) =
d(x;,e) = d(x;,d) (Lemma 2). Therefore; € CloserEdd, b) N CloserEdd, ¢). By the result
of the present item fad andb, x; € CloserEdb, d). Thereforex; € CloserEqb, ¢) (Lemma 7.3).
Contradiction.

2. (&) X CeapaNF.Letx; € X.x; € F (lines 5-6).x; € eg, (item 1).a, b, c € p; (lines 9, 12). Therefore
X; € eape N F.

(b) X D eaps N F. Let x € egpe N F. We show in the following that there exists<li < n
s.t.x = x;. Let B be a set of entities s.k € e N F and g = abcx. Let b be an entity in
B. x € eg, thereforex € CloserEdb, e), for any entitye of Q, and in particular fore C b.
Therefored(x, b) = d(x, car(b)) (Lemma 5). Thereforercar ) (x) € b. If a is also an entity
in B, then x € CloserEda, b) N CloserEdb, a), and therefored(x,a) = d(x, b). Therefore
d(x,car(a)) =d(x, car(b)). Itis clear thatx ¢ Closere, b) sinceClosen(e, b) NCloserEdb, e¢) =
¢ (Lemma4.2). O

In lines 7-8 and 11 we test whethega,) (x) € a for every entitya € . If mearq)(x) ¢ a, then the
facts thatx € carbis(a, b) andx ¢ Closel(e, b) for any entitye € Q do not imply thatx ¢ Closere, a).

This case is demonstrated in Fig. 5. In this figure carbis(a, b) N R,. Howeverx € Closere, a).

The highest degree operation performed in the algorithm of Fig. 4 is the intersection of two conic
sections in line 3. Therefore the geometric operations performed in the algorithm of Fig. 4 amount to
solving a uni-variate polynomial whose degree is (1) 1, if all three entitiésc are faces or all are
vertices, (2) not more than 2, if two of the entities are faces or two are vertices, or (3) not more than 4, in
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Fig. 5.x € carbis(a, b) N R,. In spite of thatx € Closenv, a).

all other cases. In the last two cases, the degree is lower than 2 or 4 when (1) the entities are incident or
each other, or (2) two of the entities are edges sharing a plane. In summary so far, we have

Lemma 23. All intersection points between Voronoi edges and subdivision cell boundaries can be
computed using linear operations, distance comparisons, and computing roots of at most quartic uni-
variate polynomials.

5.2. Extraction of Voronoi vertices

After computing edge witnesses, we identify Voronoi vertices. In the following we prove that a cell
C,, does not contain a vertex ®D(Q) not labeled byw. Assuming that a cell does not contain two
different vertices with the same governors, we provide a simple criterion to determine whether a cell
contains a vertex or not, using the set of Voronoi edge witnesses computed earlier. The implications of
the assumption are discussed in Section 8.

Lemma?24. LetC, be acellin a PSS. If it contains a vertex of UD), it is v,.

Proof. Suppose on the contrary that there exists a vertei C,, S.t.a # . Lemma 15 implies that
B C «, and therefore8 C «. In the following we show thatim(carbis(8)) > 0, in contradiction to
Lemma 8.5« satisfies one of the conditions 2a—2h of Definition 1. Consider the following cases:
1. Condition 2a of Definition 1 hold$x| < 4. Then|B| < 4 in contradiction to Lemma 11.
2. One of the conditions 2b—2f of Definition 1 holds. The proof is identical for all these cases. Consider
for example that condition 2b holds:| = 5, ande includes an edge and two coplanar faceg and
f2 containinge. Let P be the plane carrying, fi1, f>. If two of e, f1, f> are ing, thenmp(vg) € e,
and therefore the third is also ph Therefore = {e, f1, f2, a}.

dim(carbis(8)) = dim(carbis(e, f1, f2) N carbis(a, e)) > dim(carbis(e, f1, f2)) —1=1.

3. Condition 2g of Definition 1 holds. All the entities afshare a vertex. v = v, # vg. Let R be the
ray fromv throughvg. Let S = R N C,. We show in the following thas C carbis(8). Therefore
dim(carbis(g8)) > 0.
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Let b be an entity ing. Letx be a pointinS. There exists a real numbep 0 s.t.x =rvg + (1 —1t)v.
We show in the following that/(x, car(b)) = td(vg, car(b)). This implies thatx e carbis(p), i.e.,

S C carbis(8).

If b= v thenitis clear thad (x, car(b)) = td(vg, car(b)). Otherwisecar(b) is a line or a plane passing
throughv. Consider the two trianglegivx mearp) (x) and Avvgmeans) (vg). They are similar triangles,
and therefore

d(vg, car(b)) B d(x, car(b))
d(vg,v)  d(x,v)

4. Condition 2h of Definition 1 holds. All the entities afexcept oned) share a vertex and a plane
P. |B8] = 4. Therefores contains at least three entities incident Brand containingy. The bisector
of the carriers of three such entities is the lih@rthogonal toP atv. Thereforevs € L. Every point
on L is equidistant fromall the carriers of entities incident aR and containingy, and therefore if
vg € L, thena \ {a} C B. If a € B, thena = B, and contradiction. It: ¢ g, thencarbis(g) is L and
thereforedim(carbis(8)) > 0. O

Lemma 25. LetC be a cell in a PSS. Ldt > 0 be the number of intersection points of a Voronoi edge
eg anddC. There exists a vertex of (D) in C iff k is odd.

Proof. carbis(8) is a 1-manifold curve (Lemma A.10). Thereforedrbis(8) N C # @, thencarbis(8) N

C is composed of disjoint portions ofirbis(8), each homeomorphic to a linear segmé&uppose there

does not exist a vertex &fD(Q) in C. Hence, ifcarbis(8) entersC in a point ineg, it exits C in a point

in eg (Lemma 10). Suppose there exists a verteXDf{ Q) in C. This vertex isvg,. Assuming that the

cell does not contain two vertices with the same governors, Lemma 24 states that there exists a single
vertex inC. Therefore there is exactly one connected portionawbis(8) in which it enters intaC in a

point ineg, and exits in a point outside ef (Lemma 10). O

Lemma 25 provides a criterion to decide whether a cell contains a Voronoi vertex. If no Voronoi edge
intersects the cell, then the cell does not contain a \Voronoi vertex, otherwise either there exists more thar
one Voronoi vertex in the cell, or the edge is a closed loop, in contradiction to Lemma 14. Voronoi vertices
that are on the boundary of a cell are detected when computing Voronoi edge witnesses. There is one typ
of vertices that the criterion of Lemma 25 might not detect. The criterion will not detect a Voronoi vertex
vy S.t. for every edges emanating fromy,, there exists another edgg emanating fromy,. Such a
vertex v, cannot be detected without computing its exact location. Such vertices can be thought of as
vertices lying in the interior of edges; their presence results from a degenerate configuration.

5.3. Extraction of Voronoi edges

After computing edge witnesses and identifying Voronoi vertices, we identify Voronoi edges. We
describe how to determine the edgesv@(Q) and the incidence relationships between the edges and
the vertices oVD(Q). We first prove that the algorithm of Fig. 4 computes witnessesveryedge of
VD(Q) (Lemma 26).

3 Unlesscarbis(8) is tangent taC. This situation is avoided as explained in Section 5.1.
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Fig. 6. vapc and vaps Share a path of cells intersectilgp, but do not share an edggp. Edges of the Voronoi
diagram are shown by solid curves. The dashed curve shows a partid(«, b) that is not a Voronoi edge.

Lemma 26. Lete be an edge of V). There exists a cell’ in a PSS s.te intersects the boundary
of C.

Proof. Suppose on the contrary that there exists a€edind an edge s.t.e C int(C). Assuming that
the cell does not contain two vertices with the same governors, there is at most one v&HEQ0fin
C (Lemma 24). Therefore is a closed loop, in contradiction to Lemma 142

Lemma 26 implies that all edges ¥D(Q) are witnessed. In order to complete the identification of
Voronoi edges, we have to determine which witnesses share the same Voronoi edge. Note that there ma
be several Voronoi edges having identical labels. We would like to say that two points R, share
the same edge, if there exists a path of cells connecting them s.t. every pair of consecutive cells in the
path shares a witness af. This might be incorrect, as shown for the 2-D case in Fig. 6. Therefore we
subdivide leaf cells with more than two witnessescafbis(«). Lemma 27 proves that this refinement
process halts. We call the resulting structurefaed proximity structure subdivisioNlote that the new
generated sub-cells also satisfy the halting conditions of the PSS process.

Lemma 27. The refinement process defined above halts.

Proof. Let C be a cell in a PSSarbis(e) is an intersection of two quadratic surfaces, and therefore
intersects a plane in a finite number of points 4).* Therefore it intersect€ in a finite number of

points. Therefore there is a finite number of portiongafis(«) in C. Sincecarbis(«) is a 1-manifold

curve (Lemma A.10), these intervals are disjoint, and each of them is homeomorphic to a linear segment.
Let m(C) be the minimal distance between two of these intervals. Since these intervals are disjoint
m(C) > 0. A cell of size smaller tham:(C) contains only one interval ofarbis(«), and therefore
intersectcarbis(«) in no more than two points. O

Lemma 28 (A criterion to determine whether two points share a Voronoi edgs)s be a refined PSS.
Let o be a set of entities s.t. diwarbis(e)) = 1. Let x and y be points ine,. Let C, be a cell ofS
containingx, and letC, be a cell ofS containingy. x andy are incident on the same Voronoi edgge
iff there exists a sequence of cells, ..., C, s.t.C1 =C,, C, = C,, andC; and C;;1 share a witness
of e,.

4 Unlesscarbis(«) is incident on the plane. This situation is avoided as explained in Section 5.1.
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Proof. If x andy are incident on the same edgg then it is clear that the condition is satisfied. Suppose
now that the condition is satisfied. First we show that there exists a connectd®l glactirbis(c) which
connectst andy and which is contained in the celly, ..., C,. Then we prove tha® is wholly in e,.

If Cq,...,C, do notinclude a connected part odrbis(«), then the boundary of one of these cells
intersectscarbis(«) in more than two points, contradicting the fact tisais a refined PSS. Suppose on
the contrary thatP contains a poink € C; s.t. x ¢ ¢,. ThenC; contains two Voronoi vertices (Lem-
ma 10), in contradiction to Lemma 24 (assuming that the cell does not contain two vertices with the same
governors). O

Lemma 28 determines which witnesses share the same Voronoi edge. It also determines which
Voronoi vertices share the same Voronoi edge. Thus determining the edgBg@j and the incidence
relationships between the edges and the vertic&gD).

5.4. Extraction of VVoronoi faces

Lemma29. AsetE = {e, ..., ¢,} of Voronoi edges defines a Voronoi faggiff the following conditions
are satisfied

1. dim(carbis(e)) = 2.

2. Every edgee € E is governed byrx.

3. There does not exist a set of entitigs « s.t. every edge € E is governed byx.

4. E is connected, i.e., every two edgesnde; . ; share a vertex of VD).

Proof. Suppose there exists a set of ed@eas defined above. The set of eddesstablish a connected
region inR,. dim(carbis(«)) = 2, therefore this region is a Voronoi fagg iff there does not exist O «
s.t. the region is contained iRg.

Suppose there exists a fage Thendim(carbis(«)) = 2 (Lemma 8.5).f,, is simply connected (Lem-
ma 13). Lemma 10 implies that, is bounded by a set of edges.. Lemma 14 implies that it cannot be
that all the edges of, are governed by for 8 > «. O

6. Dealing with degener ate diagrams

In Section 4 we assumed thdD(Q) is not degenerate. ND(Q) is degenerate, then the subdivision
process might not halt. In the following we describe the modifications that should be applied to the
algorithm in order to handle degenerate diagrams as well.

The modifications are the following:

1. Subdivision process: An additional halting condition is added. The subdivision process is stopped also
when the diameter of a cell is smaller than a given tolerance parameiethe following we will

refer to such cells ascells.

2. Extraction of the Voronoi graph from the subdivision:
(a) ¢ cells are ignored in the extraction of Voronoi vertices.
(b) The condition of Lemma 28 used in the extraction of Voronoi edges is modified as follows. Two
points are incident on the same Voronoi edge iff there exists a sequence of gells, C,, as
defined in Lemma 2&ndthe intermediate cells are notells.
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In Section 5 we did not assume that the diagram is not degenerate, but we handled only cells that
satisfy the conditions 2a—2e of a PSS cell (Section 4.1). Therefore applying the algorithm (with the
above modifications) on a degenerate diagram, yields a correct Voronoi graph in the cells that are not
¢ cells. In thes cells we know the governing entities, but we do not know how these governors share
the cell. Ane cell is a small area where a degeneracy or an almost-degeneracy occurs. We do not want
to further investigate these small areas, therefore we regardsezalhas a single node in the Voronoi
graph. Note that the extraction of the Voronoi edges emanating fromahbs is correct.

The graph extracted by applying the above algorithm on a degenerate diagram is cAlgmi@aimate
Voronoi Graph(AVG). An AVG approximates the Voronoi graph ¢fto a tolerance of in the sense that
a connected subgraph of the Voronoi graph that lies in a region of space of size smalkeisthgplaced
by a single graph node.

Formally we define an approximate Voronoi graph as follows.d é&te an undirected graph s.t. every
node is labeled by: (1) a set of entities @f (2) type: ‘subgraph’, ‘face’, ‘edge’ or ‘vertex'G is an
g-approximation of the Voronoi graph @ if for every noden of type ‘subgraph’ there exists a subgraph
G, of the Voronoi graph ofQ s.t. (1) G, is governed only by the entities attachedutq(2) the part of
VD(Q) corresponding td@, is bounded by a sphere of radigisand substitution of all such nodeshy
their corresponding subgraplis, results in the Voronoi graph af.

7. Theproximity structure diagram

The main contribution of this paper is the introduction and computation of the Voronoi graph,
containing thestructure of the Voronoi diagram of a polyhedron. In addition, the specific space
subdivision algorithm that we use enables us to easily compute a quantifiable approximation to the
geometryof the diagram as well.

We define &roximity Structure DiagraniPSD) of Q with a parametes to be a Voronoi graph o
s.t. every node of the Voronoi graph carries also a geometric approximation (of the appropriate type) to
the corresponding elementYfD(Q), to an accuracy of. Formally, if 4 is a Voronoi element and,, its
geometric approximation, therx € 4,3y € h, s.t.d(x,y) <§andVy € h,,Ix e h s.t.d(x, y) <.

We use the term ‘proximity structure diagram’ for what many readers would informally call an
‘approximate Voronoi diagram’. We feel that the latter term is misleading, because it does not specify
whether the approximation is of the connectivity of the Voronoi diagram, its geometry, or both. In our
terminology, an AVG has approximate connectivity, and a PSD has exact connectivity and approximate
geometry. The parameter controlling the connectivity approximatian &nd the one controlling the
geometry approximation i&

An easy way to construct a PSD is to first construct the Voronoi graph using the proximity structure
subdivision algorithm, and then subdivide each cell that intersects a Voronoi edge until its diameter is
smaller thars. To obtain the desired approximation, we can either approximate directly in 3-D or work
in the parameter space of the carrier surfaces of the entity bisectors. Direct 3-D approximation works best
for vertices and edges, since centers of cells that contain Voronoi vertices, and piecewise linear curves
connecting Voronoi edge witnesses, obviously providepproximations to the vertices and edges of
VD(Q). Faces are most efficiently approximated by representing them as trimmed surfaces in parameter
space. Note that in this case if it is desired that the vertex, edge and face approximations be self-consisten
then they must all be represented by mappings from parameter space.
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8. Discussion

In this paper we introduced the Voronoi graph, the approximate Voronoi graph, and the proximity
structure diagram of a polyhedron, and presented a simple approach to construct them for 3-D linear
polyhedra. The Voronoi graph contains the complete symbolic information of the Voronoi diagram. The
AVG and PSD complement each other in the sense that the first approximates the symbolic part of the
Voronoi diagram and the second approximates the geometric part of the Voronoi diagram.

The skeletons are important for both theoretical and practical reasons. The main advantages of out
computational approach are that it uses relatively low-degree algebraic operations in a single variable anc
that it enables local computation of the skeletons. Our results thus constitute a substantial improvement
over the many previous approaches for computing Voronoi diagrams of 3-D polyhedra and for defining
related approximations.

The algorithm has been implemented. Examples of its output are given in Figs. 7-9. Each of these
figures includes a polyhedron and part of its Voronoi graph. The polyhedron edges are shown in black.
The Voronoi graph does not contain any geometry; in order to visualize it, spheres denoting Voronoi
vertices are displayed in the centers of the subdivision cells containing them, and gray polylines denoting
Voronoi edges connect their Voronoi vertices while passing through the edge witnesses. Note that these
edge polylines are not geometric approximations to the edges and are given only for visualization
purposes. A geometric approximation could easily be made much more accurate.

In order to make the figures less cluttered, only part of the graph is displayed. The displayed part is the
‘central’ part of the graph: only its portion inside the polyhedron, and without Voronoi elements that are

Fig. 7. Visualization of the central part of the Voronoi graph of the polyhedron. Polyhedron edges are shown as
black lines, Voronoi edges as gray lines, and Voronoi vertices as spheres.
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Fig. 8.¢ cells are shown as cubes.

Fig. 9. A more complex example.
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incident on polyhedron vertices (equivalent to the medial axis, without elements touching convex vertices
and edges).

Fig. 7 shows a simple example. The polyhedron of Fig. 8 is degenerate, and therefore its PSS contains
¢ cells, denoted by small cubes. The geometry of the cubes is not identical to the geometry of the
cells—a connected set efcells is displayed by a constant size cube. Fig. 9 shows a more complex part
with three holes.

We assumed in this paper that the polyhedron’s boundary is connected, and composed of convex
faces. When the boundary is disconnected, the polyhedron contains cavities. In this case there migh
be (1) Voronoi edges that are loops, and (2) Voronoi faces that are multiply connected. A Voronoi edge
that is a loop might be wholly in the interior of a cell (we have no example for such an occurrence). Such
an edge will not be detected by the algorithm. The criterion to extract Voronoi faces should be extended
if multiply connected Voronoi faces exist. If two Voronoi edges share the same loop in a Voronoi face
fan, then there exists a sequence of Voronoi edggsconnecting them. If two Voronoi edges share the
same facefyp, but not the same loop ofyy, then there is a path icarbis(a, b) connecting points in the
two edges s.t. the interior of the path does not intersect an eggeand the path includes a point in
R,. While the first criterion can be implemented by finding paths in the already computed edge graph,
the second criterion requires a search in the PSS and additional numerical computations similar to those
executed when computing Voronoi edge witnesses.

Requiring that the faces of the polyhedron are convex makes both the proofs and the implementation
simpler. This requirement does not limit the range of polyhedra handled by the algorithm. For any
polyhedronQ, we can decompose its faces into convex pieces, compute the Voronoi diagram (or Voronoi
graph or proximity structure diagram) of the resulting polyhedgdnand then easily obtain the Voronoi
diagram ofQ from the Voronoi diagram o’ in the following manner. For every element\b(Q’) we
know its set of governors i@’, and therefore its set of governorsdh VD(Q) is obtained froniVD(Q")
by removing Voronoi elements whose set of governorgiconsist of a single entity, and by merging
Voronoi edges (faces) whose connecting vertices (edges) were removed. This is how the part in Fig. 9
was handled.

The proofs in this paper are correct when assuming that there does not exist a cell with a multiplicity
of Voronoi vertices all possessing the same set of governors (Section 5). If there exists a cell containing
a multiplicity of Voronoi vertices, and all of these vertices are labeled by the same set of governors,
then our algorithm might miss these vertices and identify the edges connecting them as the same edge
In all other cases the algorithm computes the correct result. Even in the former case, the inaccuracy in
the Voronoi graph is limited to this specific cell, and the construction of the rest of the Voronoi graph is
correct.

The skeletons introduced in this paper have many applications in geometric computing. For
example, [20] presents a hexahedral mesh generation algorithm that uses the Voronoi graph to decompos
the polyhedron into simple sub-volumes that are easy to mesh by basic methods. The medial axis of ar
object provides a natural subdivision of the object into simple parts. This application demonstrates that
the exact location of the Voronoi elements is not always needed. The Voronoi graph contains enough
information needed in order to determine where to decompose the polyhedron. If the polyhedron should
be decomposed with respect to a specific Voronoi element, then a geometric approximation of this specific
Voronoi element is computed. Fig. 10 shows the mesh generated using the algorithm of [20].

The focus in this paper has been on the new concepts and the correctness of the algorithm. The
computational aspects, including implementational issues and timing are discussed in another paper [6]
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Fig. 10. Hexahedral mesh generation using the Voronoi graph: (a) the initial polyhedron; (b) the Voronoi graph of
the polyhedron; (c) the decomposition faces generated based on the Voronoi graph; (d) the final mesh.

Additional topics for future work include enhancing the domain to curved polyhedra, and demonstrating
further applications of the new skeletons.
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Appendix A. carbis(a, b, ¢) is 1-manifold

Let ¢ be a set of entities of). In this appendix we show that dim(carbis(«)) = 1, thencarbis(«)
is a 1-manifold curve. Ifdim(carbis(w)) = 1 thena contains three entities, b, ¢ s.t. carbis(a) =
carbis(a, b, ¢). Therefore it is sufficient to show thatrbis(a, b, ¢) is a 1-manifold curve for any three
entities ofa, b, ¢ of Q.

This section is composed of two parts. In Appendix A.1, cases in wtéehis(a, b, ¢) might not
be 1-manifold are identified, and the definition adrbis(a, b, ¢) is slightly modified accordingly. In
Appendix A.2 we prove thatarbis(a, b, ¢) is a 1-manifold curve, when using the new definition.

A.1. Splitting the bisectors

carbis(a, b, ¢) might not be 1-manifold whea, b, ¢ includes a plane, or two edges sharing a plane. In
these casesarbis(a, b, ¢) is composed of few 1-manifold parts. In order to spétbis(a, b, ¢) into its 1-
manifold components we use the notion of signed distance. The signed digtdreteveen a point and
a planeP is defined as follows. Ik € In(P), thend*(x, P) = d(x, P), otherwised*(x, P) = —d(x, P).
The signed distance between a poirdnd an oriented liné with respect to a plan® containingL, is
defined as follows. Ifrp(x) € In(L, P), thend*(x, L) =d(x, L), otherwised* (x, L) = —d(x, L).

LemmaA.l. Leta andb be two faces o). Supposer and b are not parallel, and are not coplanar.
carbis(a, b) is composed of two pland and P, s.t.x € P iff d*(x, car(a)) = d*(x, car(b)), andx € P,
iff d*(x, car(a)) = —d*(x, car(b)).

LemmaA.2. Leta be aface ofQ, andb be a vertex ofD. Suppose 2 b. carbis(a, b) is a paraboloid
s.t.x € carbis(a, b) iff d*(x, car(a)) = sign(d* (b, car(a))) * d(x, b).

In the following when we say “half a cone”, we mean one part of the two parts of a cone obtained by
intersecting the cone with a plane that intersects it only in its apex.

Lemma A.3. Let a be a face ofQ, and b be an edge ofQ. Supposez % b, and a and b are
not parallel. carbiga, b) is a cone composed of two halves of a cdige and H, s.t. x € H; iff
d*(x,car(a)) =d(x, car(b)), andx € H, iff d*(x, car(a)) = —d(x, car(b)).

Lemma A.4. Leta and b be two edges 0® sharing a planeP. Supposea: and b are not parallel,
and are not colinear. carbig, b) is composed of two plane®, and P, s.t.x € P, iff d*(x, car(a)) =
d*(x, car(b)), andx € P, iff d*(x, car(a)) = —d*(x, car(b)), whered* is w.r.t. P.

Leta andb be two entities that satisfy one of the following:
1. a andb are faces that are not parallel and are not coplanar.
2. a andb are two edges sharing a plameandb are not parallel and are not colinear.
3. aisaface and is an edgea % b, anda andb are not parallel.

Lemmas A.1-A.4 imply thatarbis(a, b) is composed of two parts, either two planes, or two halves
of a cone. In the rest of Appendix A when we sayrbis(a, b, ¢), anda andb are of the types mentioned
above, we mean the partcédirbis(a, b, c¢) that is incident on a specific half o&rbis(a, b). Lemmas A.5—
A.6 prove that a Voronoi edgey,. cannot be incident on two different halvesaafrbis(a, b),
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LemmaA.5. Lete, be a Voronoi edge, s.tH («)| > 1.° Leta be an entity inx that is a face ofQ. Let
x1, xo be two points ire,. d*(x1, car(a)) * d*(x,, car(a)) > 0.

Proof. Consider the two cases:

1. d*(x;, car(a)) = 0. Thenx; € car(a). Sincex; € R,, x; € a. x; € ey, thereforex; € b for everyb € «.
Therefore| H («)| = 1. Contradiction.

2. d*(x1, car(a)) > 0 andd*(x,, car(a)) < 0. Then there exists a poipte ¢, S.t. y € car(a). y € eg,
and thereforercar,)(y) € a. Thereforey € a. y € e,, thereforey € b for every b € «. Therefore
|H ()| = 1. Contradiction. O

Lemma A.6. Let ¢, be a Voronoi edge, s.tH («)| > 1. Leta and b be two entities ofx that are
edges ofQ, and share a plane. Let;, x, be two points ire,. d*(x1, car(a)) * d*(x, car(a)) > 0 and
d*(xq, car(b)) x d*(xo, car(b)) > 0, whered* is w.r.t. P.

Proof. Consider the two cases:

1. d*(x;, car(a)) = 0. Thenx; € car(a). Sincex; € R,, x; € a. x; € ey, thereforex; € ¢ for everyc € a.
Therefore|H (o)| = 1. Contradiction.

2. d*(x1, car(a)) > 0 andd*(xy, car(a)) < 0. Let R be the plane orthogonal tB8 at a. There exists
a pointy € e, s.t. wp(y) € car(a) Ncar(b). y € ey, thereforemcar,)(y) € a. Thereforerp(y) € a.
Similarly 7p(y) € b. Thereforerp(y) is a vertex ofa, b. Therefore| H («)| = 1. Contradiction. O

A.2. carbiga, b, ¢) is 1-manifold

Lemma A.10 proves thatarbis(a, b, ¢) is 1-manifold. Lemmas A.7-A.9 are auxiliary lemmas of
Lemma A.10.

LemmaA.7. Letg be a point. Lef. aline or aplane s.tg ¢ L. Let p be a point on big, L). If a plane
T is tangent to bigg, L) at p, thenT = bis(q, 7. (p)).

Proof. In order to prove thabis(q, 7; (p)) is tangent tdois(q, L) at p, it is sufficient to show that (1)
every pointx € bis(g, 7, (p)) satisfiesd(x, L) < d(x, g) and (2)p € bis(q, 7. (p)). (1) is correct since
if x € bis(g, 7. (p)) thend(x,L) <d(x,n;(p)) =d(x,q). (2) is correct sincel(p,q) = d(p,L) =
d(p,mr(p)). O

LemmaA.8. Let L, and L, be two lines that do not share a plane. Lebe a point on bi€L,, L,). If a
planeT is tangent to bi6L4, L) at p, thenT = bis(w.,(p), 7w1,(p)).

Proof. Let p1 = 7., (p). Let po = m1,(p). Let Ry be the plane orthogonal th, at p;. Let C1 =
R1 N bis(Ly, Ly). We show in the following thatC; = R1 N bis(p1, L,). Let x be a point inCj.
d(x, p1) =d(x, L) =d(x, Ly). Thereforex € Ry N bis(py, Ly). Let x be a pointRy N bis(pi, Ly).
d(x,L1) =d(x, p1) =d(x, Ly). Thereforex € C;. ThereforeC; = R, N bis(p1, L,). ThereforeC; is
intersection of a plane and a swept parabola, and therefore 1-manifald;. Letz; be the line tangent
to C; at p. SinceC; C bis(pi, L), t; is incident on the plane tangent bis(p1, L,) at p. Lemma A.7

5Recall thatH () = « \{a: aDb,bea}.If |H(x)| =1, then no splitting otarbis(«) is done.
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implies that this plane ibis(py, p»). Similarly we definer,, C, andt,. t; andt, are both incident ofT’
and onbis(p1, p2). We show in the following that; # z,. This implies thatl’ = bis(p1, p2).

Suppose on the contrary that=t,. Let r be t; = .. C1 C Ry, thereforet = 1, C R;. Similarly
t =t, € Ry. Also t C bis(pi, p2). Therefore every poink € ¢ satisfies that/(x, L) = d(x, p1) =
d(x, p2) = d(x, Ly). Thereforer is a line incident on the swept parabdd&s(py, L2). Thereforer is
orthogonal to the plane g#; and L,. Similarly ¢ is orthogonal to the plane qf, and L. ThereforeL,
andL, share a plane. Contradiction

LemmaA.9. LetR be aplane. LeL be aline s.tL € R. Let p be the point on biR, L). Let P be the
plane passing through; (p) and whose normal igp, 7, (p)].

1. LCP

2. IfaplaneT is tangent to biéR, L) at p, thenT = bis(R, P).

Proof.

1. Letx e L. [x, m;(p)] is orthogonal td p, 7, (p)]. Thereforex € P. ThereforeL C P.

2. p ebis(R, P)sinced(p, R) =d(p, L) =d(p, 7. (p)) =d(p, P). Every pointx € bis(R, P) satisfies
thatd(x, R) =d(x, P) <d(p,L),sinceLC P. O

LemmaA.10. If dim(carbis(a, b, ¢)) = 1, then carbisa, b, ¢) is a 1-manifold curve.

Proof. Consider the following cases:

1. a, b, c are vertices. Thenar(a), car(b) andcar(c) are points, an@arbis(a, b, ¢) is a line.

2. a, b, c are faces. Thenar(a), car(b) andcar(c) are planes, andarbis(a, b, ¢) is a line.

3. a andb are vertices, andis a facecar(a) andcar(b) are points, andar(c) is a planecarbis(a, b)
is a plane, andtarbis(a, c) either is a line or a paraboloid. Therefararbis(a, b, ¢) is either a line
an intersection of a plane and a paraboloid. Theredarbis(a, b, ¢) is 1-manifold.

4. a andb are vertices, andis an edgecar(a) andcar(b) are points, andar(c) is a line.carbis(a, b)
is a plane, anatarbis(a, ¢) is either a linear swept parabola or a plane. Theredarbis(a, b, ¢) is
either the intersection of two planes or the intersection of a plane and a linear swept parabola, and
therefore 1-manifold.

5. a andb are faces, and is a vertexcar(a) andcar(b) are planes, andar(c) is a point.carbis(a, b)
is a plane, an@arbis(a, ¢) is either a line or a paraboloid. Therefararbis(a, b, ¢) is either a line
or the intersection of a plane and a paraboloid. Therefarbis(a, b, ¢) is 1-manifold.

6. a andb are faces, and is an edgecar(a) andcar(b) are planes, andar(c) is a line.carbis(a, b) is
a plane, andarbis(a, ¢) is either a plane, or half a cone, or a swept parabola. The intersection of a
plane with a plane or half a cone is a 1-manifold curve. The intersection of a plane with half a cone
is not 1-manifold curve only if the plane is tangent to the cone. In this case, Lemma A.9 implies
thatcar(c) C car(b). Thereforecarbis(b, ¢) is a plane, andarbis(a, b, ¢) is aline, i.e., a 1-manifold
curve.

7. a is a vertex and andc are edgescar(a) is a point, anctar(b) andcar(c) are lines. Consider the
two cases:
(a) a e car(b) ora € car(c). Thencarbis(a, b, c) is the intersection of a plane and a swept parabola,

and therefore it is a 1-manifold curve.
(b) a ¢ car(b) anda ¢ car(c). Suppose on the contrary thedrbis(a, b, c¢) is not 1-manifold. Then
there exists a poinp € carbis(a, b, ¢) s.t. the tangent planes oérbis(a, b) andcarbis(a, ¢) at
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p are the same plane. Therefd®(a, mcarp) (p)) = bis(a, mcar) (p)) (Lemma A.7). Therefore
Tearw) (P) = Teare)(p). Thereforecar(b) andcar(c) intersect, and therefore share a plane. In
this casecarbis(b, ¢) is a plane, anatarbis(a, ¢) is either a linear swept parabola or a plane.
Thereforecarbis(a, b, ¢) is either the intersection of a plane and a linear swept parabola, or the
intersection of two planes, and therefore a 1-manifold curve.

8. a is a vertexp is an edge, and is a face.car(a) is a point,car(b) is a line, anccar(c) is a plane.

Consider the three cases:

(a) a € car(b). Thencarbis(a, b) is a plane, andarbis(a, c¢) is a paraboloidcarbis(a, b, ¢) is the
intersection of a line and a paraboloid, i.e., a 1-manifold curve.

(b) a e car(c). Thencarbis(a, c) is a line. Sincalim(carbis(a, b, ¢)) = 1, carbis(a, b, ¢) is a line.

(c) a ¢ car(b) anda ¢ car(c). Suppose on the contrary tharbis(a, b, ¢) is not 1-manifold. Then
there exists a poinp € carbis(a, b, ¢) s.t. the tangent planes oérbis(a, b) andcarbis(a, ¢) at
p are the same plane. Therefd®(a, mcarp) (p)) = bis(a, mcar) (p)) (Lemma A.7). Therefore
Tearv) (P) = Teare) (p). Consider the two cases:

i. car(b) c car(c). Thencarbis(b, ¢) is a plane, andarbis(a, b, ¢) is the intersection of a plane
and a paraboloid, and therefore 1-manifold.

ii. car(b) ¢ car(c). Thencar(b) andcar(c) intersect in a point. g = mcarp)(P) = Teare)(P)-
If ¢ # p, then[p,q] is orthogonal tocar(b), and also[p, ¢] is orthogonal tocar(c),
and thereforecar(b) C car(c). Thereforep = g, and g = 7carq)(p) = a. Thereforea €
car(b) Ncar(c).

9. a is a face and andc are edgescar(a) is a plane, andar(b) andcar(c) are lines. Consider the
three cases:

(a) car(b) C car(a) or car(c) C car(a). Suppose w.l.gcar(b) C car(a). Thencarbis(a, b) is a
plane, andcarbis(a, ¢) is either a plane, or half a cone, or a swept parabola. The intersection
of two planes is a 1-manifold curve. The intersection of a plane and a swept parabola is a 1-
manifold curve. The intersection of a plane and half a cone is not 1-manifold only if the plane
is tangent to the cone. Harbis(a, b) is tangent tocarbis(a, ¢), then Lemma A.9 implies that
car(c) C car(a). Thereforecarbis(a, ¢) is a plane, andarbis(a, b, ¢) is a line.

(b) b andc share a plane. Therarbis(b, ¢) is a plane, andarbis(a, ¢) is either a plane, or half a
cone, or a swept parabola. The intersection of two planes is a 1-manifold curve. The intersection
of a plane and a swept parabola is a 1-manifold curve. The intersection of a plane and half
a cone is not 1-manifold only if the plane is tangent to the coneatbis(b, c¢) is tangent to
carbis(a, ¢), then Lemma A.9 implies thatar(b) C car(a). Thereforecarbis(a, b) is a plane,
andcarbis(a, b, ¢) is a line.

(c) car(b) ¢ car(a), car(c) ¢ car(a) andb andc do not share a plane. Suppose on the contrary that
carbis(a, b, ¢) is not 1-manifold. Then there exists a pointe carbis(a, b, ¢) s.t. the tangent
planes ofcarbis(a, ) andcarbis(a, ¢) at p are the same plangThereforeb andc share a plane
(Lemma A.9).

10. a, b, ¢ are edgescar(a), car(b) andcar(c) are lines. Letk be the number of pairs of edges in

{a, b, ¢}, s.t. a pair consists of two edges sharing a plane. Consider the following cases:

() k > 2. Thencarbis(a, b, ¢) is the intersection of two planes, and therefore 1-manifold.

61f there does not exist a tangent plane to a cone at a goitlieng is the apex of the cone. If the apgxof the cone
carbis(a, b) is oncarbis(a, b, ¢), thencar(b) andcar(c) share a pointy), and thereforé andc share a plane.
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(b) k = 1. Suppose w.l.ga and b share a plane. Suppose on the contrary ttabis(a, b, ¢)
is not 1-manifold. Then there exists a poipte carbis(a, b, ¢) s.t. the tangent planes of
carbis(a, b), carbis(a, c¢) and carbis(b,c) at p are the same plan&. Since carbis(a, b)
is a plane, T = carbis(a, b). Lemma A.8 implies that? = biS(carq)(P), Tcare)(P)) =
bis(7wcar) (P), Teare) (p)). Thereforemcarq) (p) = mcarpy (p). Thereforemeanq) (p) is the inter-
section point otar(a) andcar(b), and thereforerca. ) (p) € carbis(a, b) = T. Contradiction to
T = bis(mcara) (P), Tcare)(P))-

(c) kK =0. Suppose on the contrary thedrbis(a, b, ¢) is not 1-manifold. Then there exists a point
p € carbis(a, b, ¢) s.t. the tangent planes efrbis(a, b) and carbis(a, ¢) at p are the same
planeT- Lemma A.8 implies tha” = bis(n'car(a)(P), ”car(b)(P)) = bis(ncar(a)(P)» ncar(c)(P))-
Thereforercar) (p) = meare) (p). Thereforecar(b) andcar(c) intersect. Thereforé andc share
a plane. Contradiction. O
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