
122

Queries with Segments in Voronoi Diagrams*

Sergei Bespamyatnikh+ Jack SnoeyinkJ

Abstract

In this paper we consider proximity problems in which the
queries are line segments in the plane. We build a query
structure that for a set of n points P can determine the
closest point in P to a query segment outside the convex
hull of P in O(log n) time. With this we solve the problem
of computing the closest point to each of n disjoint line
segments in O(n log3 n) time. Nearest foreign neighbors
or HausdoriT distance for disjoint, colored segments can be
computed in the same time. We explore some connections
to Hopcroft’s problem.

1 Introduction

Since Knuth [13] posed the post o&e problem-
preprocess a set of points, or sites, in the plane
to quickly report the nearest to a query point-and
Shamos and Hoey [17] suggested Voronoi diagrams as a
solution, there have been a number of proximity prob
lems in the plane whose solution is to build some type
of Voronoi diagram and query with a point.

Note: A Voronoi diagmm of a set of sites is the
partition of the plane into maximal connected regions
that have the same set of nearest sites [4, 8, 15). In
a Voronoi diagram the Voronoi cell of site p is the
region that has p as its nearest site. We use Euclidean
distance in this paper, so for two points a and b,
d(a, b) = J(a - b) . (a - b). As is commoq, we extend
this to the distance between sets of points: d(A,B) =
liminfoEA,bEB{d(a,b)}. When the sets are closed, the
distance is achieved by two points in the set and lim inf
can be replaced by min.

For a further example of the use of the Voronoi
diagram, consider the Hausdorff distance between two
sets of n points A and B, which is defined as
lim supaeA,beB { d(a, B), d(b, A)} _ If we color the points
in the two sets red and blue, and then compute for ev-
ery point the nearest point of the opposite color, the
Hausdorff distance is the maximum. It can clearly be
computed by locating each point of A in the Voronoi

diagram of B and vice versa. -4ggarwal et al. [3] gen-
eralized this to the nearest foreign neighbors problem:
given n points, each assigned one of k colors, compute,
for each point, a nearest neighbor that is of a different
color. Nearest foreign neighbors can also be computed
from Voronoi diagrams [3, 111; we will see this reduction
in a more general setting in Section 3.

Since Voronoi diagrams can be constructed for more
complex sites, such as line segments or polygons [19, 141,
we can represent each post office by the polygon that
forms the outline of the building. If our query remains a
point, then the approach to solve the post office problem
remains the same. However, if the query becomes a line
segment or polygon, or if we solve Hausdorff distance
or nearest foreign neighbor problems for line segments,
then querying a Voronoi diagram may no longer be
efficient. In the worst case, our query segment could
cross linearly-many cells of a Voronoi diagram and we
might have to check the distance to each corresponding
site.

One would not expect that segment queries would
be as efficient as point queries. In fact, one could use
segment queries to solve Hopcroft’s problem: determine
whether any point from a given set of n points lies on
any of n given lines. Erickson [lo] has shown that any
algorithm that can be implemented in a computational
model based on partition trees, which includes our
algorithms, must take R(n4j3) time to solve Hopcroft’s
problem. We found it surprising, therefore, that the
nearest foreign neighbor problem for disjoint segments,
which gives rise to sets of disjoint segment queries
known in advance, can be solved in O(n log3 n) time.

Section 2 describes data structures for solving prox-
imity problems on points in which the queries are seg-
ments. Section 3 uses these data structures, together
with Voronoi diagrams of line segments, to solve the
Hausdorff distance and nearest foreign neighbor prob-
lems for sets of disjoint segments.

Chazelle [6] considered the related problem of seg-
ment dragging queries, which ask to preprocess a set of n
points to answer, for a horizontal query segment, what

‘Restarch supported in part by an NSERC Research Grant.
Some work performed during the second author’s visit to INRIA

point is hit when the segment is translated vertically.

Sophia Antipolis, supported by CIES and the Killam Foundation.
Th e result of a segment dragging query is the closest

tUBC Comp Sci, Vancouver, Canada, besp@cs . abc . ca point to a segment if there is no point that is closer
t UBC Comp Sci, Vancouver, Canada, snoeyinkQcs .nbc . ca to a segment endpoint. Chazelle gave two solutions to

123

the segment-dragging problem: first by a data struc-
ture with O(n logn) space and O(log’ n) query time,
and then a refinement, in a RAM model, to linear space
and O(logn) query time. Both solutions depend heav-
ily on the ordering of points in the horizontal and ver-
tical directions, and do not adapt to queries with non-
horizontal segments. In fact, if they could, we would
be able to solve Hopcroft’s problem by dragging an
infinitesimal-length segment along each line.

2 Segment queries in point Voronoi diagrams

We consider the following problem in three subsections:
given a set P of n points, and a set S of m query seg-
ments, find the closest point of P to each segment of S.
Subsection 2.1 considers the special case in which the
query segments are outside the convex hull ch(P). Sub
section 2.2 extends this solution to handle the case in
which the query segments in S are disjoint, or intersect
only at endpoints. For completeness, subsection 2.3 ex-
plores the case of intersecting queries and its connection
to Hopcroft’s problem.

2.1 Queries outside of the convex hull
In this section we show how to construct a data struc-
ture for a set P of n points that can report, in O(logn)
time, the closest point to a query segment that is outside
the convex hull ch (P) . The structure can be constructed
in O(nlogn) time, or in linear time if the Voronoi dia-
gram of P is given.

Figure 1: Characterizing the closest point

As mentioned in the introduction, one way to
compute the closest point in P to a query segment s
would be to compute the Voronoi diagram of P and to
inspect the distance to each site whose cell intersects s.
To find a more efficient approach, we must further
characterize the solution to a query. For a segment
s, the slab of s, or slab(s), is the region bounded by
the perpendiculars to s through the endpoints of s, as
shaded in Figure 1.

LEMMA 2.1. The minimum distance d(s,P) between a

point set P and a segment s outside ch(P) is achieved
by either an endpoint of s and its closest neighbor in

P or by a point p in the slab of s whose Voronoi Cell
intersects the boundary of ch(P) in the slab.

Proof. Since s and P are closed sets, the distance d(s, P)
is realized by a point of each. Let p be the closest point
in P. If the closest point to p is not an endpoint of s;
then the shortest segment from p to s is perpendicular to
s and remains inside the Voronoi cell of p, as illustrated
in Figure 1. This segment is clearly in slab(s)

The closest points to the endpoints of s are easy to
obtain from the Voronoi diagram of P. We therefore
concentrate on finding the closest point to the interior of
s, subject to the constraints of the Lemma. We remark
that these constraints make our subproblem different
from a segment-dragging query [6], and allow us to use
an ordering that depends on the data rather than on
the query.

Figure 2: The order of projections onto e

OBSERVATION 2.1. Let e be an edge of ch(P). The
order of the Voronoi cells that intersect e is the same
as the order of the projections of the corresponding sites
perpendicularly onto e.

Our data structure consists of three parts. First, we
store the Voronoi diagram for P, with a point location
structure so that we can report the closest point to
segment endpoints that lie outside ch(P). Second, we
store the convex hull A(P) in an array or binary search
tree so that standard operations, such as tangents and
intersections, can be performed in O(logn) time by
binary search.

Third, for each edge e of the convex hull ch(P), we
form a balanced search tree whose leaves correspond to
the sites whose Voronoi cells intersect edge e in order.
Each internal node implicitly represents the convex hull
of the points in its subtree. Before being more precise,
it is important to note that the convex hull of a parent
node can be obtained from the convex hulls of the two
children by computing two common tangents.

LEMMA 2.2. In the data structure, if two nodes are not
related then their convex hulls are disjoint.

124

Proof. Let e be the edge of ch(P) for which the struc- There are at most 2n - 2 intersections between the
ture is built. By construction, the points in the subtrees boundary of c/z(P) and edges of VoD(P): if we traverse
of two unrelated nodes correspond to non-overlapping the boundary of ch(P) and list a site whenever we enter
sequences of Voronoi cells along e. Observation 2.1 im- its Voronoi cell, we obtain a ci:rcular Davenport-Schinzel
plies that their perpendicular projections onto e are also sequence [18] that contains no abab substring. These
separable, so the convex hulls of two disjoint subtrees intersection can be computed in linear time by walking
can be separated by a perpendicular to edge e. around the boundary of ch(P), through the cells of

VoD(P).
The total number of points stored in trees for edges

,,....., of ch(P) is, therefore, at most 3n-2. Since each point is
,.: ., I’

-, - - .- - internal to a chain once, and only two points per node
-- e .----,i -’ -+,;?&L-&g are chain boundaries, total storage is O(n). It is not

hard to compute the tangents in time proportional to
the size of stored chains. Preprocessing for fractional
cascading is also linear time.

Figure 3: Children of the root
in the data structure for e We now describe how to answer a query for a

segment s, which we assume is horizontal and lies below
Now we fully describe the structure built for edge e. the convex hull ch(P). The easy part is to locate the

The root node stores the convex hull of all points whose endpoints of s in the Voronoi diagram of P; the harder
Voronoi cells intersect e as an ordered list of vertices. part is to search for candidates for the closest point to
Any other internal node v stores the portion of its the interior of s.
convex hull that is not stored by its ancestors. If
we consider a convex hull as an ordered sequence of
point/tangent pairs, according to the “kinetic frame-

slab(s) --4,
. .

work” of Guibas, Ramshaw, and Stolfi [12], then we
t _ _. - - - - - - - -
*

. . . . -.
can represent the pairs that are hidden by storing the I, . - .ch w

\ .
chain between the common tangents from v to its sib- \ -t \
ling, and the directions of these tangents. For example,
the dashed lines in Figure 3 show the convex hull and the
solid lines show the portions that would be stored with

-w l
-a

. I
-I I

the two children of the root. This structure is closely re- -w--c
e 0 V

lated to the dynamic hull structure of Overmars and van s

Leeuwen [16], although we use it as a static structure.
Finally, we apply fractional cascading [7] to this Figure 4: Deciding to search hull edge e

structure so that if a tangent to node v is known,
then tangents of the same slope to the children of v First, determine the vertex v of ch(P) with tangent
can be found in constant time. By way of remark, in parallel to s; if v lies in slab(s), then v is the candidate.
applications where the queries are known in advance, If slab(s) does not intersect the hull, then there is
the fractional cascading can be avoided: since the no candidate. Otherwise, the candidate will be in
tangents that we will be concerned with are parallel or the structure associated with the convex hull edge
perpendicular to query segments, we can sort queries by that intersects the left or right boundary of the slab,
slope and update these tangents by linear scans. whichever is closer to s. In Figure 4, the candidate will

be in the structure for the edge e that intersects the
LEMMA 2.3. The data structure for computing the right boundary of the slab.
nearest point in P to a query segment that does not in- Now we search down the levels of the tree structure
terse& ch(P) has linear size and can be computed in construct& for edge e. We start from the root, and
linear time from the Voronoi diagmm of P. keep at most two nodes per level during our search.

During the search we maintain with node v the
Ptoof. The Voronoi diagram and convex hull of P have leftmost point &,, rightmost point r,, and bottommost
linear size. Note that the convex hull ch(P) can be point 6, of the convex hull represented by v. At the
extracted from the unbounded cells of the Voronoi root, these can be found by binary search; at subsequent
diagram in linear time. nodes these are either inherited from the parents or

125

obtained from our fractional cascading data structure
in constant time apiece.

Figure 5: Discards l-3

To carry out the search, replace the (at most
two) nodes on the current level by their children, then
apply the following “discarding” operations illustrated
in Figure 5:
1. If b, is in slab(s), then test if b, is the closest point
to s found so far and discard u.
2. If r, is left of slab(s), or 1, is right of slab(s), then
discard v-none of its descendent lie in the slab.
3. If for two nodes, Y and q, the right boundary of
slab(s) intersects first l,b, and then 1,6,, as in Figure 5,
then discard u.
4. Symmetric to 3: if the left boundary of slab(s)
intersects first 6,r, and then b,r,, then discard Y.

It is clear that at most two nodes survive the
discards: one with bottommost point to the left of
slab(s) and one with bottommost to the right. This
allows the search to complete in O(logn) steps. We
must show that the closest point to s is inspected.

LEMMA 2.4. If the closest point to a segment s outside
the convex hull ch(P) is closest to the interior of s, then
the search described above jinds it in O(logn) time.

Proof. We search the data structure associated with a
single hull edge e, as described above. Since only two
nodes are kept at any level of the search tree, it is not
hard to observe that constant time per level, or O(logn)
total time, is sufficient.

For correctness, we must show that the discard
operations never eliminate a closest point to s that lies
in slab(s). It is not hard to see that discards 1 and 2
are correct: In discard 1 point b, is the best candidate
of node v in slab(s), and in discard 2 no point of Y is in
slab(s).

For discard 3, recall that we are searching the struc-
ture for the hull edge e, and that, by Observation 2.1,

s r

Figure 6: Obtuse angle Lpqr, when q = b,

the hulls for u and q are separable by a line e perpendic-
ular to e. Lines e, -!, and the right boundary of slab(s)
define a right triangle that must contain a point q of
n--we can take q = b, in Figure 6, where the triangle
is to the right of slab(s), or take q = I,, if the triangle is
to the left.

Now, let p be any point of v in slab(s), and let T E s
be the closest point to p. The angle Lpqr is obtuse, since
B crosses e and qr crosses e, thus,

db, s) = d(p, r) > 49, r) 1 49, s).

We conclude that no point in u can be closest to s.
The proof for the fourth discard operation is, of course,
symmetric.

2.2 Disjoint, general queries
Suppose that we are given a set P of n points and a
set S of m disjoint line segments in the plane. Thus,
we remove the restriction of the previous section that
the queries be outside the convex hull, but impose the
restriction that they be disjoint. In this section we
show how to find the closest point to every segment
in 0((n + m) log3 (n + m)) time by using a divide-and-
conquer algorithm that uses the data structure of the
previous section for queries outside the convex hull.

The algorithm proceeds as follows. Compute the
convex hull, H =- ch(P) , and
segments S into three sets:

partition the set of

0 Se consists of all segments
convex hull H,

that lie outside the

l Si consists of all segments having at least one
endpoint inside the convex hull H, and

l Sz consists of all segments that intersect the bound-
ary of the convex hull H in two points.

Build the data structure of the previous section for P
and, for each segment in Se, query for the closest point

126

in P. Handle the segments in St U .S’z by partitioning
the points P into sets P’ and PI’ and recursively call the
algorithm for the pairs (P’, S1 u 5’2) and (P”, SI U Sz).
For a segment s in SZ U S1, we return the closer of the
candidate points returned by the recursive calls.

It should be clear that the algorithm will return a
closest point to every segment. The key to efficiency is
to partition P into a subsets that have disjoint convex
hulls, and for which each segment of Sz intersects at
most one of hulls. We will actually form three subsets,
although we do so in such a way that we can cut off one
at a time so that we can still use a binary tree for our
recursion.

LEMMA 2.5. Given a set of n points P and m seg-
ments Sz that each intersect the boundary of the convex
hull ch(P) in two points, we can partition P into three
subsets whose sizes are bounded by [n/21, whose con-
vex hulls are disjoint, and for which any segment in S2
intersects at most one of these hulls. 0((n + m) logm)
time is suficient if the points are given in lexicographic
order.

Proof. If we cut through the convex hull ch(P) by any
line segment, we partition the points into two sets with
disjoint hulls. If the cut does not intersect a segment of
5, then we also have the property that each segment in
S2 intersects at most one hull. We therefore concentrate
on bounding the sizes of the sets. Since it is possible
that no single segment bisects P and avoids S2, we may
first cut along a segment of s E S2 to make sure that
we can cut what remains without crossing,s.

Figure 7: Segments of S2 partition P

The segments of S2 partition the interior of the
convex hull ch(P) as in Figure 7; the dual graph is a
tree, whose vertices are the regions of the partition and
edges join adjacent regions. We locate the points of P
in these regions and assign a weight to each vertex in
the dual graph equal to the number of points of P in
the corresponding region. Note that some weights may
be zero, and that they sum to n.

The dual tree has a cen,!roid vertex whose removal
leaves no connected component with weight greater than
n/2; let C be the convex region that corresponds to the
centroid, and let S c S:! be the segments that bound
C, which correspond to edges incident to the centroid.
Note that cutting ch(P) along any s E S guarantees
that the fragment not containing C has at most n/2
points; if for some cut the other fragment has [72/2]
points, we take it.

To decide where to
cut, we choose a ‘Lpivot”
point q on the boundary
of C that is also on the
boundary of ch(P). By
a symbolic perturbation,
we may assume that no
two points of P lie on
a line through q. Now,

Figure 8: Partitioning C

sweep a line e through q across C. Let Le denote
the weight to the left of e, which is the weight of the
boundary segments of S and the number of points in
C that lie completely to the left of e. Let Rl denote
the weight to the right of e, which is define-d similarly
except that any point on the line is counted as lying on
the right. The difference n - (Le + Re) is always the
weight of the line segment in S that e intersects. In
Figure 8, Le = 22 and Rl = 4.

If both LL and Rl are at most [n/2], we partition
ch(P) as follows: if f? intersects along a segment s E S,
we first cut along s. Then we cut along e. Neither of
these cuts a segment of S2, and all fragments have the
proper size. What remains is to show that such a line e
exists.

As e sweeps counter-clockwise, RL goes from zero
to greater than /n/21: passing a point decreases Le and
increases RL by one, and passing a segment of S adds
its weight to Re. In either case, just before Re becomes
greater than [n/21, we know that Lt 5 [n/2].

For the running time, if the points are sorted,
then convex hulls can be computed in linear time.
Intersecting segments with the convex hull, sorting, and
locating the points among the regions takes O((m +
n) log m) time. Centroid computation can be done by a
greedy algorithm in O(m) time. The sweep to find f? is
easy to do in O((m + n) log(m + n)), and can be done
in linear time.

To analyze the running time of our recursive algc+
rithm, we consider a recursion tree T in which a node v
corresponds to a recursive call of the algorithm. We
charge non-recursive computation against points and

segments involved on each level; the total computation
will be the sum of all charges to all nodes in T.

Denote the sets of points and segments assigned to
node v by P(V) and S(Y), respectively. In a similar
manner, let S;(V), for i = 0, 1,2, be the sets of segments
outside hull ch(P(v)), with an endpoint inside, and
intersecting hull ch(P(~)) twice.

By the partitioning of P, the recursion tree T
has several properties. For points, the following are
relevant:

l T has depth O(logn).

l A point appears in a set P(V) for at most one node
per level.

Thus, the total number of points in the tree is
O(nlogn).

Now, consider the charges that can be applied
against points. Each point is involved in partitioning
according to Lemma 2.5, for which it charged O(logm),
and in construction of the query data structure of
Lemma 2.3, for which O(logn) is certainly enough.
Thus, the total charges against points are O(n log2 n +
nlognlogm).

For segments, there are additional relevant proper-
ties:

l For two nodes Y and 7 that are not on a common
path to the root, the convex hulls ch(P(~)) and
ch(P(7)) are disjoint.

l If a segment s E So, then s is in Sz for at most
one child of Y.

l If a segment s E SO (v) then s does not appear in
any descendant of V.

The first property implies that a segment appears in Sl
sets on the two paths to its endpoints; that is, there
are O(mlog n) segments in all S1 sets. Each s in an
S1 set can lead to an s in an Sz set in a child; by the
second this can lead to a path on which s is in SZ sets
down the tree. If this occurs at every level, then there
are at most O(mlog2 n) segments in S2 sets. Finally,
every segment in an So more than once is there because
a parent was in an Sl or Sz, which says that the total
number of segments in So sets is also O(m log2 n).

The charges against segments are for queries accord-
ing to Lemma 2.4, which is O(logn) each. This gives
a total of O(mlog3 n) in the entire recursion tree, and
completes the proof of the following theorem.

THEOREM 2.2. Given n points and m disjoint segments
in the plane, the closest point to every segment can be
computed in O(m log3 n + n log2 n + m log m) time.

127

2.3 Intersecting, general queries
For completeness, we note that data structures can
be developed for the general problem: locating the
closest point to query segments that may intersect. We
do not into precise detail because the technology is
more standard and the running times are asymptotically
slower.

.4s mentioned in the introduction, the general prob
lem can be used to solve Hopcroft’s problem: given n
points and n lines, does any point lie on any line. Er-
ickson [lo] has shown that any algorithm that can be
implemented in a computational model based on par-
tition trees, which includes our algorithms, must take
R(n4i3) time to solve Hopcroft’s problem.

When the points are given in advance and the query
segments are given on-line, then we can build a spanning
path with @ stabbing number for the points-that
is, a path that intersects any query line in at most
J;; edges [l, 2, 93. We build the query structures of
Subsection 2.1 according to a balanced merge. Then,
for any query segment s, we use the line through s to
cut the path into at most Jii fragments, each of which is
covered by logn query structures for which s is outside
the convex hull. This would achieve O(,/Xlogk n) query
time per segment, for some constant k.

When both points and segments are given in ad-
vance, then Agarwal and Procopiu (personal commu-
nication) have an algorithm that attains O(n4j3 logk n)
time in total. Such results can be obtained in much the
same way that algorithms for Hopcroft’s problem are
obtained [l, 2,9]-by using random sampling to reduce
the problem to queries outside convex hulls, which can
be answered by our query structure of Subsection 2.1.

3 Nearest foreign neighbors and Hausdorff
distance for disjoint segments

We note that theorem 2.2 allows us, in O(n log3 n) time,
to solve the Hausdorff distance for sets of disjoint red
segments and disjoint blue segments, and to solve the
nearest foreign neighbor problem for disjoint segments.
We begin with a simple lemma for nearest red neighbors
to blue segments.

LEMMA 3.1. Given n disjoint red segments and n dis-

joint blue segments in the plane, the nearest red neighbor

for each blue segment can be computed in O(n log3 n)
time.

Proof, Note that this problem is asymmetric-every
blue segment must discover its nearest red segment, but
not the other way around.

The minimum distance between a red and a blue
segment is realized in one of three ways: by the inter-

128

section of a red and a blue segment, by a blue endpoint
with its closest red segment, or by a red endpoint that
is closest to the relative interior of the blue segment.
(When the interior of two disjoint segments realize the
minimum distance, then the segments are parallel and
the distance is also realized at an endpoint.)

Those blue segments that intersect red segments can
be found by a modification of the Bentley-Ottmann [5]
line-sweep algorithm for segment intersection. When-
ever an intersection is detected it must be between a red
and a blue segment, make the red the nearest neighbor
of the blue and delete the blue. This takes O(nlogn)
time.

The closest red segment for each blue endpoint can
be found by computing the Voronoi diagram of the red
segments and quering with blue endpoints in 0(n log n)
time.

Finally, the closest red point for each biue segment
can be found by Theorem 2.2 in O(n log3 n) time.

These computations give at most four candidates
for the closest red to each blue segment-taking the
minimum completes the computation.

The Hausdorff distance is the maximum of the
distances from red to blue and from blue to red.

COROLLARY 3.1. (HAUSDORFF DISTANCE) Given n
disjoint red segments and n disjoint blue segments in
the piane, the Hausdorff distance between red and blue
sets can be computed in O(n log3 n) time.

The nearest foreign neighbor problem for disjoint
segments can also be reduced to instances of the red
neighbor problem for segments.

COROLLARY 3.2. (NEAREST FOREIGN NEIGHBORS)
Given n disjoint, colored line segments in the plane,
one can compute for every segment the closest neighbor
of a diflerent color in O(n log3 n) time.

Proof. Compute the Voronoi diagram of all line seg-
ments. Now, choose one of the colors: blue, for example.

We claim that the Voronoi cell for a nearest neigh-
bor to a blue segment will be adjacent to some blue
Voronoi cell. Consider a shortest path from a blue seg-
ment b to its nearest neighbor s, but trace it starting
from s. If this path left the Voronoi cell of S at the
boundary of the cell for a segment t # b, then there
is an equal length path from b to t that bends at this
boundary. Thus, either t is also blue, or s was not the
nearest neigbhor.

Thus, we can form a red neighbor subproblem for
the blue segments by taking all blue segments and

taking only the sites of neighboring cells as the red
segments. We form similar subproblems for each of the
other colors.

To bound the total size of all subproblems we can
count all neighbor relations in the Voronoi diagram?
which is equivalent to determining the sum of the
degrees in its dual graph when multiple edges are
collapsed. Since the dual is a planar graph, this is
at most 6n - 12, and the total time is bounded by
O(n log3 n).

Note that if we relax the disjointness restrictions
on any of the above problems, we can use them to
solve Hopcroft’s problem. For example, if we allow
intersecting segments of different colors in the nearest
foreign neighbors problem, then we could color each
point and line a different color. The nearest foreign
neighbors for the points would tell us if any point was
on any line.

References

PI

PI

[31

141

[51

[‘31

PI

if31

PI

P&j K. Agarwal. Partitioning arrangements of lines
II: Applications. Discrete &’ Computational Geometry,
5:533-573, 1990.
Pankaj K. Agand. Intersection and decomposition
algorithms for planar arrangements. Cambridge Uni-
versity Press, 1991.
A. Aggarwal, H. Edelsbrunner, P. Raghavan, and P. Ti-
wari. Optimal time bounds for some proximity prob
lems in the plane. Inform. Process. Lett., 42(1):55-60,
1992.
F. Aurenhammer. Voronoi diagrams: A survey of a
fundamental geometric data structure. A CM Comput.
Surv.,23:345-405, 1991.
J. L. Bentley and T. A. Ottmann. Algorithms for
reporting and counting geometric intersections. IEEE
Tmns. Comput., C28543-647, 1979.
Bernard Chazelle. An algorithm for segment-dragging
and its implementation. Algorithmica, 3:205-221,
1988.
Bernard Chazelle and Leonidas 3. Guibas. Fractional
cascading: I. A data structuring technique. Algorith-
mica, 1:133-162, 1986.
Mark .de Berg, Marc van Kreveld, Mark Overmars,
and Otfiied Schwarzkopf. Computational Geometry:
Algorithms and Applications. Springer-Verlag, Berlin,
1997.
Herbert Edelsbnmner, Leonidas Guibas, John Hersh-
berger, Raimund Seidel, Micha Sharir, Jack Snoeyink,
and Emo Welzl. Implicitly representing arrangements
of lines or segments. Discrete U Computational Geom-
etry, 41433-466, 1989.

129

[lo] Jeff Erickson. New lower bounds for Hopcroft’s prob-
lem. Discrete Comput. Geom., 16:389-418, 1996.

[ll] T. Graf and K. Hinrichs. Algorithms for proximity
problems on colored point sets. In Proc. 5th Canad.
Conf. Comput. Geom., pages 420-425, 1993.

[12] Leonidas J. Guibas, L. Ramshaw, and J. Stohi. A
kinetic framework for computational geometry. In
Proc. 24th Annu. IEEE Sympos. Found. Comput. Sci.,
pages 100-111, 1983.

[13] D. E. Knuth. Sorting and Searching, volume 3 of
The Art of Computer Programming. Addison-Wesley,
Reading, MA? 1973.

[14] M. McAllister, D. Kirkpatrick, and J. Snoeyink. A
compact piecewise-linear Voronoi diagram for convex
sites in the plane. Discrete Comput. Geom., 15:73-105,
1996.

[15] Atsuyuki Okabe, Barry Boots, and Kokichi Sugihara.
Spatial Tessellations: Concepts and Applications of
Voronoi Diagrams. John Wiley & Sons, Chichester,
UK, 1992.

[16] M. H. Overmars and J. van Leeuwen. Maintenance
of configurations in the plane. J. Comput. Syst. Sci.,
23:166-204, 1981.

[17] M. 1. Shamos and D. Hoey. Closest-point problems. In
Proc. 16th Annu. IEEE Sympos. Found. Comput. Sci.,
pages 151-162, 1975.

[18] Micha Sharir and P. K. Agarwal. Davenport-Schinzel
Sequences and Their Geometric Applications. Cam-
bridge University Press, New York, 1995.

[19] C. K. Yap. An O(nlogn) algorithm for the Voronoi
diagram of a set of simple curve segments. Discrete
Comput. Geom., 2:365-393, 1987.

