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Queries with Segments in Voronoi Diagrams* 

Sergei Bespamyatnikh+ Jack SnoeyinkJ 

Abstract 

In this paper we consider proximity problems in which the 
queries are line segments in the plane. We build a query 
structure that for a set of n points P can determine the 
closest point in P to a query segment outside the convex 
hull of P in O(log n) time. With this we solve the problem 
of computing the closest point to each of n disjoint line 
segments in O(n log3 n) time. Nearest foreign neighbors 
or HausdoriT distance for disjoint, colored segments can be 
computed in the same time. We explore some connections 
to Hopcroft’s problem. 

1 Introduction 

Since Knuth [13] posed the post o&e problem- 
preprocess a set of points, or sites, in the plane 
to quickly report the nearest to a query point-and 
Shamos and Hoey [17] suggested Voronoi diagrams as a 
solution, there have been a number of proximity prob 
lems in the plane whose solution is to build some type 
of Voronoi diagram and query with a point. 

Note: A Voronoi diagmm of a set of sites is the 
partition of the plane into maximal connected regions 
that have the same set of nearest sites [4, 8, 15). In 
a Voronoi diagram the Voronoi cell of site p is the 
region that has p as its nearest site. We use Euclidean 
distance in this paper, so for two points a and b, 
d(a, b) = J(a - b) . (a - b). As is commoq, we extend 
this to the distance between sets of points: d(A,B) = 
liminfoEA,bEB{d(a,b)}. When the sets are closed, the 
distance is achieved by two points in the set and lim inf 
can be replaced by min. 

For a further example of the use of the Voronoi 
diagram, consider the Hausdorff distance between two 
sets of n points A and B, which is defined as 
lim supaeA,beB { d(a, B), d(b, A)} _ If we color the points 
in the two sets red and blue, and then compute for ev- 
ery point the nearest point of the opposite color, the 
Hausdorff distance is the maximum. It can clearly be 
computed by locating each point of A in the Voronoi 

diagram of B and vice versa. -4ggarwal et al. [3] gen- 
eralized this to the nearest foreign neighbors problem: 
given n points, each assigned one of k colors, compute, 
for each point, a nearest neighbor that is of a different 
color. Nearest foreign neighbors can also be computed 
from Voronoi diagrams [3, 111; we will see this reduction 
in a more general setting in Section 3. 

Since Voronoi diagrams can be constructed for more 
complex sites, such as line segments or polygons [19, 141, 
we can represent each post office by the polygon that 
forms the outline of the building. If our query remains a 
point, then the approach to solve the post office problem 
remains the same. However, if the query becomes a line 
segment or polygon, or if we solve Hausdorff distance 
or nearest foreign neighbor problems for line segments, 
then querying a Voronoi diagram may no longer be 
efficient. In the worst case, our query segment could 
cross linearly-many cells of a Voronoi diagram and we 
might have to check the distance to each corresponding 
site. 

One would not expect that segment queries would 
be as efficient as point queries. In fact, one could use 
segment queries to solve Hopcroft’s problem: determine 
whether any point from a given set of n points lies on 
any of n given lines. Erickson [lo] has shown that any 
algorithm that can be implemented in a computational 
model based on partition trees, which includes our 
algorithms, must take R(n4j3) time to solve Hopcroft’s 
problem. We found it surprising, therefore, that the 
nearest foreign neighbor problem for disjoint segments, 
which gives rise to sets of disjoint segment queries 
known in advance, can be solved in O(n log3 n) time. 

Section 2 describes data structures for solving prox- 
imity problems on points in which the queries are seg- 
ments. Section 3 uses these data structures, together 
with Voronoi diagrams of line segments, to solve the 
Hausdorff distance and nearest foreign neighbor prob- 
lems for sets of disjoint segments. 

Chazelle [6] considered the related problem of seg- 
ment dragging queries, which ask to preprocess a set of n 
points to answer, for a horizontal query segment, what 
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the segment-dragging problem: first by a data struc- 
ture with O(n logn) space and O(log’ n) query time, 
and then a refinement, in a RAM model, to linear space 
and O(logn) query time. Both solutions depend heav- 
ily on the ordering of points in the horizontal and ver- 
tical directions, and do not adapt to queries with non- 
horizontal segments. In fact, if they could, we would 
be able to solve Hopcroft’s problem by dragging an 
infinitesimal-length segment along each line. 

2 Segment queries in point Voronoi diagrams 

We consider the following problem in three subsections: 
given a set P of n points, and a set S of m query seg- 
ments, find the closest point of P to each segment of S. 
Subsection 2.1 considers the special case in which the 
query segments are outside the convex hull ch(P). Sub 
section 2.2 extends this solution to handle the case in 
which the query segments in S are disjoint, or intersect 
only at endpoints. For completeness, subsection 2.3 ex- 
plores the case of intersecting queries and its connection 
to Hopcroft’s problem. 

2.1 Queries outside of the convex hull 
In this section we show how to construct a data struc- 
ture for a set P of n points that can report, in O(logn) 
time, the closest point to a query segment that is outside 
the convex hull ch (P) . The structure can be constructed 
in O(nlogn) time, or in linear time if the Voronoi dia- 
gram of P is given. 

Figure 1: Characterizing the closest point 

As mentioned in the introduction, one way to 
compute the closest point in P to a query segment s 
would be to compute the Voronoi diagram of P and to 
inspect the distance to each site whose cell intersects s. 
To find a more efficient approach, we must further 
characterize the solution to a query. For a segment 
s, the slab of s, or slab(s), is the region bounded by 
the perpendiculars to s through the endpoints of s, as 
shaded in Figure 1. 

LEMMA 2.1. The minimum distance d(s,P) between a 

point set P and a segment s outside ch(P) is achieved 
by either an endpoint of s and its closest neighbor in 

P or by a point p in the slab of s whose Voronoi Cell 
intersects the boundary of ch(P) in the slab. 

Proof. Since s and P are closed sets, the distance d(s, P) 
is realized by a point of each. Let p be the closest point 
in P. If the closest point to p is not an endpoint of s; 
then the shortest segment from p to s is perpendicular to 
s and remains inside the Voronoi cell of p, as illustrated 
in Figure 1. This segment is clearly in slab(s) 

The closest points to the endpoints of s are easy to 
obtain from the Voronoi diagram of P. We therefore 
concentrate on finding the closest point to the interior of 
s, subject to the constraints of the Lemma. We remark 
that these constraints make our subproblem different 
from a segment-dragging query [6], and allow us to use 
an ordering that depends on the data rather than on 
the query. 

Figure 2: The order of projections onto e 

OBSERVATION 2.1. Let e be an edge of ch(P). The 
order of the Voronoi cells that intersect e is the same 
as the order of the projections of the corresponding sites 
perpendicularly onto e. 

Our data structure consists of three parts. First, we 
store the Voronoi diagram for P, with a point location 
structure so that we can report the closest point to 
segment endpoints that lie outside ch(P). Second, we 
store the convex hull A(P) in an array or binary search 
tree so that standard operations, such as tangents and 
intersections, can be performed in O(logn) time by 
binary search. 

Third, for each edge e of the convex hull ch(P), we 
form a balanced search tree whose leaves correspond to 
the sites whose Voronoi cells intersect edge e in order. 
Each internal node implicitly represents the convex hull 
of the points in its subtree. Before being more precise, 
it is important to note that the convex hull of a parent 
node can be obtained from the convex hulls of the two 
children by computing two common tangents. 

LEMMA 2.2. In the data structure, if two nodes are not 
related then their convex hulls are disjoint. 
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Proof. Let e be the edge of ch(P) for which the struc- There are at most 2n - 2 intersections between the 
ture is built. By construction, the points in the subtrees boundary of c/z(P) and edges of VoD(P): if we traverse 
of two unrelated nodes correspond to non-overlapping the boundary of ch(P) and list a site whenever we enter 
sequences of Voronoi cells along e. Observation 2.1 im- its Voronoi cell, we obtain a ci:rcular Davenport-Schinzel 
plies that their perpendicular projections onto e are also sequence [18] that contains no abab substring. These 
separable, so the convex hulls of two disjoint subtrees intersection can be computed in linear time by walking 
can be separated by a perpendicular to edge e. around the boundary of ch( P), through the cells of 

VoD(P). 
The total number of points stored in trees for edges 

,,....., of ch(P) is, therefore, at most 3n-2. Since each point is 
,.: ., I’ 

-, - - .- - internal to a chain once, and only two points per node 
-- e .----,i -’ -+,;?&L-&g are chain boundaries, total storage is O(n). It is not 

hard to compute the tangents in time proportional to 
the size of stored chains. Preprocessing for fractional 
cascading is also linear time. 

Figure 3: Children of the root 
in the data structure for e We now describe how to answer a query for a 

segment s, which we assume is horizontal and lies below 
Now we fully describe the structure built for edge e. the convex hull ch(P). The easy part is to locate the 

The root node stores the convex hull of all points whose endpoints of s in the Voronoi diagram of P; the harder 
Voronoi cells intersect e as an ordered list of vertices. part is to search for candidates for the closest point to 
Any other internal node v stores the portion of its the interior of s. 
convex hull that is not stored by its ancestors. If 
we consider a convex hull as an ordered sequence of 
point/tangent pairs, according to the “kinetic frame- 

slab(s) --4, 
. . 

work” of Guibas, Ramshaw, and Stolfi [12], then we 
t _ _. - - - - - - - - 
\* 

. . . . -. 
can represent the pairs that are hidden by storing the I, . - .ch w 

\ . 
chain between the common tangents from v to its sib- \ -t \ 
ling, and the directions of these tangents. For example, 
the dashed lines in Figure 3 show the convex hull and the 
solid lines show the portions that would be stored with 

-w l 
-a 

. I 
-I I 

the two children of the root. This structure is closely re- -w--c 
e 0 V 

lated to the dynamic hull structure of Overmars and van s 

Leeuwen [16], although we use it as a static structure. 
Finally, we apply fractional cascading [7] to this Figure 4: Deciding to search hull edge e 

structure so that if a tangent to node v is known, 
then tangents of the same slope to the children of v First, determine the vertex v of ch(P) with tangent 
can be found in constant time. By way of remark, in parallel to s; if v lies in slab(s), then v is the candidate. 
applications where the queries are known in advance, If slab(s) does not intersect the hull, then there is 
the fractional cascading can be avoided: since the no candidate. Otherwise, the candidate will be in 
tangents that we will be concerned with are parallel or the structure associated with the convex hull edge 
perpendicular to query segments, we can sort queries by that intersects the left or right boundary of the slab, 
slope and update these tangents by linear scans. whichever is closer to s. In Figure 4, the candidate will 

be in the structure for the edge e that intersects the 
LEMMA 2.3. The data structure for computing the right boundary of the slab. 
nearest point in P to a query segment that does not in- Now we search down the levels of the tree structure 
terse& ch(P) has linear size and can be computed in construct& for edge e. We start from the root, and 
linear time from the Voronoi diagmm of P. keep at most two nodes per level during our search. 

During the search we maintain with node v the 
Ptoof. The Voronoi diagram and convex hull of P have leftmost point &,, rightmost point r,, and bottommost 
linear size. Note that the convex hull ch( P) can be point 6, of the convex hull represented by v. At the 
extracted from the unbounded cells of the Voronoi root, these can be found by binary search; at subsequent 
diagram in linear time. nodes these are either inherited from the parents or 
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obtained from our fractional cascading data structure 
in constant time apiece. 

Figure 5: Discards l-3 

To carry out the search, replace the (at most 
two) nodes on the current level by their children, then 
apply the following “discarding” operations illustrated 
in Figure 5: 
1. If b, is in slab(s), then test if b, is the closest point 
to s found so far and discard u. 
2. If r, is left of slab(s), or 1, is right of slab(s), then 
discard v-none of its descendent lie in the slab. 
3. If for two nodes, Y and q, the right boundary of 
slab(s) intersects first l,b, and then 1,6,, as in Figure 5, 
then discard u. 
4. Symmetric to 3: if the left boundary of slab(s) 
intersects first 6,r, and then b,r,, then discard Y. 

It is clear that at most two nodes survive the 
discards: one with bottommost point to the left of 
slab(s) and one with bottommost to the right. This 
allows the search to complete in O(logn) steps. We 
must show that the closest point to s is inspected. 

LEMMA 2.4. If the closest point to a segment s outside 
the convex hull ch(P) is closest to the interior of s, then 
the search described above jinds it in O(logn) time. 

Proof. We search the data structure associated with a 
single hull edge e, as described above. Since only two 
nodes are kept at any level of the search tree, it is not 
hard to observe that constant time per level, or O(logn) 
total time, is sufficient. 

For correctness, we must show that the discard 
operations never eliminate a closest point to s that lies 
in slab(s). It is not hard to see that discards 1 and 2 
are correct: In discard 1 point b, is the best candidate 
of node v in slab(s), and in discard 2 no point of Y is in 
slab(s). 

For discard 3, recall that we are searching the struc- 
ture for the hull edge e, and that, by Observation 2.1, 

s r 

Figure 6: Obtuse angle Lpqr, when q = b, 

the hulls for u and q are separable by a line e perpendic- 
ular to e. Lines e, -!, and the right boundary of slab(s) 
define a right triangle that must contain a point q of 
n--we can take q = b, in Figure 6, where the triangle 
is to the right of slab(s), or take q = I,, if the triangle is 
to the left. 

Now, let p be any point of v in slab(s), and let T E s 
be the closest point to p. The angle Lpqr is obtuse, since 
B crosses e and qr crosses e, thus, 

db, s) = d(p, r) > 49, r) 1 49, s). 

We conclude that no point in u can be closest to s. 
The proof for the fourth discard operation is, of course, 
symmetric. 

2.2 Disjoint, general queries 
Suppose that we are given a set P of n points and a 
set S of m disjoint line segments in the plane. Thus, 
we remove the restriction of the previous section that 
the queries be outside the convex hull, but impose the 
restriction that they be disjoint. In this section we 
show how to find the closest point to every segment 
in 0( (n + m) log3 (n + m)) time by using a divide-and- 
conquer algorithm that uses the data structure of the 
previous section for queries outside the convex hull. 

The algorithm proceeds as follows. Compute the 
convex hull, H =- ch(P) , and 
segments S into three sets: 

partition the set of 

0 Se consists of all segments 
convex hull H, 

that lie outside the 

l Si consists of all segments having at least one 
endpoint inside the convex hull H, and 

l Sz consists of all segments that intersect the bound- 
ary of the convex hull H in two points. 

Build the data structure of the previous section for P 
and, for each segment in Se, query for the closest point 



126 

in P. Handle the segments in St U .S’z by partitioning 
the points P into sets P’ and PI’ and recursively call the 
algorithm for the pairs (P’, S1 u 5’2) and (P”, SI U Sz). 
For a segment s in SZ U S1, we return the closer of the 
candidate points returned by the recursive calls. 

It should be clear that the algorithm will return a 
closest point to every segment. The key to efficiency is 
to partition P into a subsets that have disjoint convex 
hulls, and for which each segment of Sz intersects at 
most one of hulls. We will actually form three subsets, 
although we do so in such a way that we can cut off one 
at a time so that we can still use a binary tree for our 
recursion. 

LEMMA 2.5. Given a set of n points P and m seg- 
ments Sz that each intersect the boundary of the convex 
hull ch(P) in two points, we can partition P into three 
subsets whose sizes are bounded by [n/21, whose con- 
vex hulls are disjoint, and for which any segment in S2 
intersects at most one of these hulls. 0( (n + m) logm) 
time is suficient if the points are given in lexicographic 
order. 

Proof. If we cut through the convex hull ch( P) by any 
line segment, we partition the points into two sets with 
disjoint hulls. If the cut does not intersect a segment of 
5, then we also have the property that each segment in 
S2 intersects at most one hull. We therefore concentrate 
on bounding the sizes of the sets. Since it is possible 
that no single segment bisects P and avoids S2, we may 
first cut along a segment of s E S2 to make sure that 
we can cut what remains without crossing,s. 

Figure 7: Segments of S2 partition P 

The segments of S2 partition the interior of the 
convex hull ch(P) as in Figure 7; the dual graph is a 
tree, whose vertices are the regions of the partition and 
edges join adjacent regions. We locate the points of P 
in these regions and assign a weight to each vertex in 
the dual graph equal to the number of points of P in 
the corresponding region. Note that some weights may 
be zero, and that they sum to n. 

The dual tree has a cen,!roid vertex whose removal 
leaves no connected component with weight greater than 
n/2; let C be the convex region that corresponds to the 
centroid, and let S c S:! be the segments that bound 
C, which correspond to edges incident to the centroid. 
Note that cutting ch(P) along any s E S guarantees 
that the fragment not containing C has at most n/2 
points; if for some cut the other fragment has [72/2] 
points, we take it. 

To decide where to 
cut, we choose a ‘Lpivot” 
point q on the boundary 
of C that is also on the 
boundary of ch(P). By 
a symbolic perturbation, 
we may assume that no 
two points of P lie on 
a line through q. Now, 

Figure 8: Partitioning C 

sweep a line e through q across C. Let Le denote 
the weight to the left of e, which is the weight of the 
boundary segments of S and the number of points in 
C that lie completely to the left of e. Let Rl denote 
the weight to the right of e, which is define-d similarly 
except that any point on the line is counted as lying on 
the right. The difference n - (Le + Re) is always the 
weight of the line segment in S that e intersects. In 
Figure 8, Le = 22 and Rl = 4. 

If both LL and Rl are at most [n/2], we partition 
ch(P) as follows: if f? intersects along a segment s E S, 
we first cut along s. Then we cut along e. Neither of 
these cuts a segment of S2, and all fragments have the 
proper size. What remains is to show that such a line e 
exists. 

As e sweeps counter-clockwise, RL goes from zero 
to greater than /n/21: passing a point decreases Le and 
increases RL by one, and passing a segment of S adds 
its weight to Re. In either case, just before Re becomes 
greater than [n/21, we know that Lt 5 [n/2]. 

For the running time, if the points are sorted, 
then convex hulls can be computed in linear time. 
Intersecting segments with the convex hull, sorting, and 
locating the points among the regions takes O((m + 
n) log m) time. Centroid computation can be done by a 
greedy algorithm in O(m) time. The sweep to find f? is 
easy to do in O((m + n) log(m + n)), and can be done 
in linear time. 

To analyze the running time of our recursive algc+ 
rithm, we consider a recursion tree T in which a node v 
corresponds to a recursive call of the algorithm. We 
charge non-recursive computation against points and 



segments involved on each level; the total computation 
will be the sum of all charges to all nodes in T. 

Denote the sets of points and segments assigned to 
node v by P(V) and S(Y), respectively. In a similar 
manner, let S;(V), for i = 0, 1,2, be the sets of segments 
outside hull ch(P(v)), with an endpoint inside, and 
intersecting hull ch(P(~)) twice. 

By the partitioning of P, the recursion tree T 
has several properties. For points, the following are 
relevant: 

l T has depth O(logn). 

l A point appears in a set P(V) for at most one node 
per level. 

Thus, the total number of points in the tree is 
O(nlogn). 

Now, consider the charges that can be applied 
against points. Each point is involved in partitioning 
according to Lemma 2.5, for which it charged O(logm), 
and in construction of the query data structure of 
Lemma 2.3, for which O(logn) is certainly enough. 
Thus, the total charges against points are O(n log2 n + 
nlognlogm). 

For segments, there are additional relevant proper- 
ties: 

l For two nodes Y and 7 that are not on a common 
path to the root, the convex hulls ch(P(~)) and 
ch(P(7)) are disjoint. 

l If a segment s E So, then s is in Sz for at most 
one child of Y. 

l If a segment s E SO (v) then s does not appear in 
any descendant of V. 

The first property implies that a segment appears in Sl 
sets on the two paths to its endpoints; that is, there 
are O(mlog n) segments in all S1 sets. Each s in an 
S1 set can lead to an s in an Sz set in a child; by the 
second this can lead to a path on which s is in SZ sets 
down the tree. If this occurs at every level, then there 
are at most O(mlog2 n) segments in S2 sets. Finally, 
every segment in an So more than once is there because 
a parent was in an Sl or Sz, which says that the total 
number of segments in So sets is also O(m log2 n). 

The charges against segments are for queries accord- 
ing to Lemma 2.4, which is O(logn) each. This gives 
a total of O(mlog3 n) in the entire recursion tree, and 
completes the proof of the following theorem. 

THEOREM 2.2. Given n points and m disjoint segments 
in the plane, the closest point to every segment can be 
computed in O(m log3 n + n log2 n + m log m) time. 
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2.3 Intersecting, general queries 
For completeness, we note that data structures can 
be developed for the general problem: locating the 
closest point to query segments that may intersect. We 
do not into precise detail because the technology is 
more standard and the running times are asymptotically 
slower. 

.4s mentioned in the introduction, the general prob 
lem can be used to solve Hopcroft’s problem: given n 
points and n lines, does any point lie on any line. Er- 
ickson [lo] has shown that any algorithm that can be 
implemented in a computational model based on par- 
tition trees, which includes our algorithms, must take 
R(n4i3) time to solve Hopcroft’s problem. 

When the points are given in advance and the query 
segments are given on-line, then we can build a spanning 
path with @ stabbing number for the points-that 
is, a path that intersects any query line in at most 
J;; edges [l, 2, 93. We build the query structures of 
Subsection 2.1 according to a balanced merge. Then, 
for any query segment s, we use the line through s to 
cut the path into at most Jii fragments, each of which is 
covered by logn query structures for which s is outside 
the convex hull. This would achieve O(,/Xlogk n) query 
time per segment, for some constant k. 

When both points and segments are given in ad- 
vance, then Agarwal and Procopiu (personal commu- 
nication) have an algorithm that attains O(n4j3 logk n) 
time in total. Such results can be obtained in much the 
same way that algorithms for Hopcroft’s problem are 
obtained [l, 2,9]-by using random sampling to reduce 
the problem to queries outside convex hulls, which can 
be answered by our query structure of Subsection 2.1. 

3 Nearest foreign neighbors and Hausdorff 
distance for disjoint segments 

We note that theorem 2.2 allows us, in O(n log3 n) time, 
to solve the Hausdorff distance for sets of disjoint red 
segments and disjoint blue segments, and to solve the 
nearest foreign neighbor problem for disjoint segments. 
We begin with a simple lemma for nearest red neighbors 
to blue segments. 

LEMMA 3.1. Given n disjoint red segments and n dis- 

joint blue segments in the plane, the nearest red neighbor 

for each blue segment can be computed in O(n log3 n) 
time. 

Proof, Note that this problem is asymmetric-every 
blue segment must discover its nearest red segment, but 
not the other way around. 

The minimum distance between a red and a blue 
segment is realized in one of three ways: by the inter- 
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section of a red and a blue segment, by a blue endpoint 
with its closest red segment, or by a red endpoint that 
is closest to the relative interior of the blue segment. 
(When the interior of two disjoint segments realize the 
minimum distance, then the segments are parallel and 
the distance is also realized at an endpoint.) 

Those blue segments that intersect red segments can 
be found by a modification of the Bentley-Ottmann [5] 
line-sweep algorithm for segment intersection. When- 
ever an intersection is detected it must be between a red 
and a blue segment, make the red the nearest neighbor 
of the blue and delete the blue. This takes O(nlogn) 
time. 

The closest red segment for each blue endpoint can 
be found by computing the Voronoi diagram of the red 
segments and quering with blue endpoints in 0( n log n) 
time. 

Finally, the closest red point for each biue segment 
can be found by Theorem 2.2 in O(n log3 n) time. 

These computations give at most four candidates 
for the closest red to each blue segment-taking the 
minimum completes the computation. 

The Hausdorff distance is the maximum of the 
distances from red to blue and from blue to red. 

COROLLARY 3.1. (HAUSDORFF DISTANCE) Given n 
disjoint red segments and n disjoint blue segments in 
the piane, the Hausdorff distance between red and blue 
sets can be computed in O(n log3 n) time. 

The nearest foreign neighbor problem for disjoint 
segments can also be reduced to instances of the red 
neighbor problem for segments. 

COROLLARY 3.2. (NEAREST FOREIGN NEIGHBORS) 
Given n disjoint, colored line segments in the plane, 
one can compute for every segment the closest neighbor 
of a diflerent color in O(n log3 n) time. 

Proof. Compute the Voronoi diagram of all line seg- 
ments. Now, choose one of the colors: blue, for example. 

We claim that the Voronoi cell for a nearest neigh- 
bor to a blue segment will be adjacent to some blue 
Voronoi cell. Consider a shortest path from a blue seg- 
ment b to its nearest neighbor s, but trace it starting 
from s. If this path left the Voronoi cell of S at the 
boundary of the cell for a segment t # b, then there 
is an equal length path from b to t that bends at this 
boundary. Thus, either t is also blue, or s was not the 
nearest neigbhor. 

Thus, we can form a red neighbor subproblem for 
the blue segments by taking all blue segments and 

taking only the sites of neighboring cells as the red 
segments. We form similar subproblems for each of the 
other colors. 

To bound the total size of all subproblems we can 
count all neighbor relations in the Voronoi diagram? 
which is equivalent to determining the sum of the 
degrees in its dual graph when multiple edges are 
collapsed. Since the dual is a planar graph, this is 
at most 6n - 12, and the total time is bounded by 
O(n log3 n). 

Note that if we relax the disjointness restrictions 
on any of the above problems, we can use them to 
solve Hopcroft’s problem. For example, if we allow 
intersecting segments of different colors in the nearest 
foreign neighbors problem, then we could color each 
point and line a different color. The nearest foreign 
neighbors for the points would tell us if any point was 
on any line. 
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